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Abstract

Patients with multiple myeloma commonly develop focal osteolytic bone disease, as well as generalised osteoporosis. The
mechanisms underlying the development of osteoporosis in patients with myeloma are poorly understood. Although
disruption of the RANKL/OPG pathway has been shown to underlie formation of focal osteolytic lesions, its role in the
development of osteoporosis in myeloma remains unclear. Increased soluble RANKL in serum from patients with myeloma
raises the possibility that this molecule plays a key role. The aim of the present study was to establish whether sRANKL
produced by myeloma cells contributes directly to osteoporosis. C57BL/KaLwRij mice were injected with either 5T2MM or
5T33MM murine myeloma cells. 5T2MM-bearing mice developed osteolytic bone lesions (p,0.05) with increased osteoclast
surface (p,0.01) and reduced trabecular bone volume (p,0.05). Bone volume was also reduced at sites where 5T2MM cells
were not present (p,0.05). In 5T2MM-bearing mice soluble mRANKL was increased (p,0.05), whereas OPG was not altered.
In contrast, 5T33MM-bearing mice had no changes in osteoclast surface or trabecular bone volume and did not develop
osteolytic lesions. Soluble mRANKL was undetectable in serum from 5T33MM-bearing mice. In separate experiments, RPMI-
8226 human myeloma cells were transduced with an human RANKL/eGFP construct, or eGFP alone. RPMI-8226/hRANKL/
eGFP cells, but not RPMI-8226/eGFP cells, stimulated osteoclastic bone resorption (p,0.05) in vitro. Sub-cutaneous injection
of NOD/SCID mice with RPMI-8226/hRANKL/eGFP or RPMI-8226/eGFP cells resulted in tumour development in all mice.
RPMI-8226/hRANKL/eGFP-bearing mice exhibited increased serum soluble hRANKL (p,0.05) and a three-fold increase in
osteoclast number (p,0.05) compared to RPMI-8226/eGFP-bearing mice. This was associated with reduced trabecular bone
volume (27%, p,0.05), decreased trabecular number (29%, p,0.05) and increased trabecular thickness (8%, p,0.05). Our
findings demonstrate that soluble RANKL produced by myeloma cells causes generalised bone loss, suggesting that
targeting RANKL may prevent osteoporosis in patients with myeloma.
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Introduction

An important clinical feature of multiple myeloma is the

development of a bone disease characterised by the presence of

osteolytic lesions, bone pain and pathological fractures. Patients

with myeloma also develop generalised bone loss, or osteoporosis,

independent of the focal osteolytic bone lesions [1]. There is a two-

fold increase in risk of osteoporotic fractures in patients with

myeloma [2] and individuals with monoclonal gammopathy of

underdetermined significance have an increased risk of axial

fractures prior to development of myeloma [3]. Although it is

widely recognised that increased osteoclastic resorption accounts

for the development of osteolytic bone disease, the cellular and

molecular mechanism responsible for the generalised bone loss is

poorly understood. Furthermore, studies aimed at clarifying the

importance of osteoporosis in the bone disease associated with

multiple myeloma, as well as the mechanism(s) involved, will help

provide the rationale for targeting this component of the disease.

The identification of the ligand for receptor activator of NFkB

(RANKL) [4,5,6], and the demonstration that RANKL plays a

critical role in normal osteoclast formation [7], raises the

possibility that abnormal expression of this molecule may stimulate

osteoclast formation and bone resorption in myeloma. RANKL

expression is increased in bone marrow stromal cells in patients

with myeloma [8,9] and may also be expressed directly by both

murine and human myeloma cells [10,11,12,13,14]. Furthermore,

RANKL may be upregulated in T lymphocytes derived from the

bone marrow of patients with myeloma [15]. The soluble decoy
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receptor for RANKL, osteoprotegerin (OPG), prevents RANKL-

association with receptor activator of NFkB (RANK) and blocks

osteoclast formation and bone resorption [10]. Studies have

demonstrated that myeloma cells down-regulate OPG production

in stromal cells and osteoblasts in a contact dependent manner

[8,9,16] and that serum concentrations of OPG are decreased in

patients with myeloma [17,18,19]. Furthermore, targeting

RANKL can prevent the development of myeloma bone disease

demonstrating that RANKL plays a pivotal role [9,10,20,21].

RANKL exists principally as a membrane-bound molecule,

although a soluble form (sRANKL) is generated by either

proteolytic processing, or alternative mRNA splicing [22,23,24].

The soluble form of RANKL can induce osteoclastogenesis in vitro

[5,25] and may be produced by T cells isolated from patients with

myeloma [15]. Furthermore, myeloma cells have been shown to

express the mRNA encoding the sRANKL isoform [23] and

increases in the concentration of sRANKL, and the ratio of

sRANKL/OPG, have both been detected in the serum of patients

with multiple myeloma. However, the importance of sRANKL

and its role in the development of osteoporosis associated with

myeloma bone disease remains unclear. Therefore, the aim of the

present study was to determine whether sRANKL causes

osteoporosis in murine models of multiple myeloma.

Materials and Methods

The 5T2MM and 5T33MM Models of Myeloma
The 5T2MM and 5T33MM murine models of myeloma

originated spontaneously in C57BL/KaLwRij mice [26,27].

5T2MM or 5T33MM cells were isolated from bone marrow of

disease-bearing animals, purified and injected into recipient mice

[28]. These models closely reflect many aspects of the disease seen

in humans. For example, they include the growth of myeloma in

bone, the dependency of the myeloma on the bone microenvi-

ronment for its growth and survival, the development of a

paraprotein that reflects myeloma burden and, in the case of

5T2MM, the characteristic osteolytic bone disease. Animals were

housed under conventional conditions and had free access to food

and tap water. All procedures involving these mice were approved

by the local ethics committee at the Free University of Brussels

(Belgium). Male C57BL/KaLwRij mice were injected with either

5T2MM or 5T33MM cells, or left un-injected (naı̈ve). Serum

paraprotein was monitored using standard electrophoretic tech-

niques throughout the development of the disease [29]. All

animals, including the respective uninjected, non-tumour bearing,

control groups, were sacrificed at 12 weeks for the 5T2MM

Figure 1. 5T2MM, but not 5T33MM cells cause osteolytic bone disease and tumour-induced bone loss. A. Reconstructed 3-dimensional
micro-CT images of the tibia of naı̈ve mice, mice bearing 5T2MM cells and mice bearing 5T33MM cells. Lesions in the tibia of 5T2MM bearing animals
are arrowed. B. Transverse sections of micro-CT images of tibiae from naı̈ve mice, mice bearing 5T2MM cells and mice bearing 5T33MM cells. Lesions
are arrowed. C. Radiographs of the tibia of naı̈ve mice, mice bearing 5T2MM cells and mice bearing 5T33MM cells. Lesions are arrowed. D. Number of
lesions in the tibia of naı̈ve mice and 5T2MM or 5T33MM bearing mice. E. Trabecular bone area as a proportion of total tissue area in the tibia of naı̈ve
mice, and mice bearing 5T2MM or 5T33MM cells. F. Total bone mineral density of naı̈ve mice, and 5T2MM or 5T33MM bearing mice. Statistical analysis
by Mann-Whitney U test. Data = mean6 S.E.M.
doi:10.1371/journal.pone.0041127.g001
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bearing mice (n = 12, naı̈ve control n = 9) and 4 weeks for the

5T33MM bearing mice (n = 7, naı̈ve control n = 9).

NOD/SCID Xenograft Model of Myeloma
Following whole body c-irradiation of NOD/SCID mice (3.0 Gy

per mouse, at a rate of 1Gy per 21.0 secs, using an IBL 437C 137Cs

gamma source, CIS BioInternational) at day 21, RPMI-8226

myeloma cells (American Type Culture Collection (ATCC),

Manassas, VA, USA) were injected subcutaneously (107 per mouse)

at day 0 (mice aged 8 weeks at day 0, and all male). The following

tumour cells were injected into irradiated mice: RPMI-8226/

hRANKL/eGFP (n = 8/group), RPMI- 8226/eGFP (n = 8/group),

RPMI-8226-wild-type (n = 7/group). Subcutaneous tumour pro-

gression was monitored via both eGFP-imaging (LightToolsH,

Synopsis Inc., Pasadena, CA) and caliper measurement and mice

were sacrificed once the tumour had reached 1 cm3. All procedures

involving these mice were undertaken at the University of Sheffield,

with written UK Home Office licence approval (ref. PPL402901).

Radiogaphic, Densitometric and MicroCT Analysis of Myelo-

ma Bone Disease To assess the number of osteolytic bone lesions

induced by the presence of myelomacells the femora and tibiae

were radiographed using a Faxitron x-ray system (Hewlett

Packard, McMinnville, Oregon). The radiographs were scanned

using a UMAX PowerLook 1100 scanner. Images were enlarged

using Adobe Photoshop 5.0 LE software and the numbers of lytic

bone lesions in the proximal tibiae and distal femora were counted

manually on the digital image. Total bone mineral density (BMD)

was measured by dual-energy x-ray absorptiometry (DXA) using a

PIXImus scanner (Lunar, Madison, WI).

In some studies tibiae were scanned using a microCT scanner

(Skyscan 1172) at 50 kV, 200 uA, using a detection pixel size of

4.3 um2 and a 0.5 mm aluminium filter, capturing images (62)

every 0.7u through 180u rotation. Reconstruction was performed

using Skyscan Recon software and images analysed using Skyscan

CT analysis software. A 1 mm3 volume of trabecular bone,

0.2 mm distal to the growth plate, was selected as a region of

interest (ROI), and trabecular volume as a proportion of tissue

volume (BV/TV, %), and trabecular number (Tb. N, mm21) was

assessed in this area.

Histomorphometric Analysis of Myeloma Bone Disease
The femora, tibiae, calvariae and lumbar vertebrae were

dissected free of soft tissues and processed for histological analysis.

Bones were decalcified in EDTA and embedded in paraffin.

Sections were cut and stained with haematoxylin and eosin.

Trabecular bone area as a proportion of the total area (Cn.Ar/

T.Ar,%) was determined in the distal femoral metaphysis and

proximal tibial metaphysis and lumbar vertebrae, on a minimum

of two separate sections, using a Leica QWin image analysis

system (Leica Microscope Systems, Milton Keynes, UK). The

medullary area in the calvariae was measured using the Leica

Qwin system and expressed as a proportion of total tissue area or

as an absolute area. To identify osteoclasts, sections were reacted

for the presence of tartrate resistant acid phosphatase (TRAP) and

counterstained with Mayer’s Haematoxylin. The number of

osteoclasts and/or the proportion of surface occupied by

osteoclasts on the cortical-endosteal bone surface (N.Oc/CE;

Oc.S/CE,%) were determined and, where appropriate, the

trabecular bone surface (N.Oc/Ca; Oc.S/Ca,%).

Measurement of Soluble RANKL and OPG in Serum
At sacrifice, blood samples were obtained from naı̈ve animals

(n = 8 as control for 5T2MM; n = 9 as control for 5T33MM) and

animals bearing 5T2MM (n = 12) or 5T33MM (n = 7) tumour

Figure 2. 5T2MM, but not 5T33MM murine myeloma cells promote osteoclast formation in C57BL/KaLwRij mice. A. Photomicrographs
of sections of the tibia reacted for TRAP activity from naive, 5T2MM and 5T33MM bearing mice showing the cortico-endosteal bone surface. TRAP-
positive osteoclasts are arrowed. Original magnification 640. B. The proportion of the cortical-endosteal bone surface occupied by osteoclasts,
expressed as the percentage of the total bone surface, from naive mice and mice bearing 5T2MM or 5T33MM myeloma cells. C. Photomicrographs of
sections of the tibia stained for TRAP activity from naive and 5T33MM bearing mice showing areas of trabecular bone. TRAP-positive osteoclasts are
arrowed. Original magnification 640. D. The proportion of trabecular bone covered by osteoclasts in naı̈ve and 5T33MM bearing mice. Statistical
analysis by Mann-Whitney U test. Data = mean6 S.E.M.
doi:10.1371/journal.pone.0041127.g002
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cells. Serum was separated by centrifugation and murine

sRANKL, and murine OPG, were each measured by commer-

cially available ELISA (R&D Systems, Abingdon, UK), according

to the manufacturer’s instructions.

Production of RPMPI-8226/hRANKL/eGFP myeloma cells
cDNA encoding full-length human RANKL (hRANKL) was

originally isolated from the SAOS2 osteosarcoma cell line (ATCC,

Manassas, VA, USA). Its sequence corresponds to AF053712

(NCBI). hRANKL was cloned into the pCL10.1 bicistronic

expression vector upstream of the sequence encoding enhanced

green fluorescent protein (eGFP - Aequorea victoria), in which co-

expression is controlled by the murine stem cell virus promoter.

Self-inactivating lentiviral particles were produced as described

previously [30]. Briefly, 293T human embryonal kidney cells

(ATCC, Manassas, VA, USA) were co-transfected using a four

plasmid-system, which introduced lentiviral gag-pol genes, the

vesicular stomatitis virus envelope glycoprotein gene, reverse

transcriptase and the expression cassette from pCL10.1. Titre was

determined by limiting dilution on HeLa cells (ATCC, Manassas,

VA, USA). RPMI-8226 human myeloma cells were plated at

56104 cells per well in six-well plates, then exposed to viral

supernatant (MOI 10) for 12 hours, in the presence of polybrene

(8 mg.ml21). Transduced RPMI-8226 expressing hRANKL/

eGFP, or eGFP alone, were expanded in culture, and used for in

vitro and in vivo experiments.

Detection of hRANKL expression
Transduction was assessed using flow cytometry (anti-

hRANKL-PE, eBioscience Inc. Cat. No. 12-6619, mouse

IgG2b-PE isotype control Cat. No. 12-4732), end-point polymerase

chain reaction (PCR) (using primers directed at hRANKL: FOR 59-

TAGGAGAATTAAACAGGCCTTTC-39, REV 59-CAAAAAC-

TGGGGCTCAATC-39) and western blot (performed using anti-

hRANKL, R&D Systems Cat. No. AF626, 0.1 ug.ml21, and

detected with anti-goat-HRP, Dako Cat. No. P0449, 1/30000;

abcam anti-RNA polymerase II antibody, Cat. No. ab5408, 1/

2000, detected with anti-mouse-HRP, Amersham Biosciences Cat.

No. NA931V, 1/15000, was used as a loading control). ELISA,

directed at hRANKL (Biomedica Gruppe, Wien, Austria) (per-

formed according to the manufacturer’s instructions), was used to

quantify hRANKL in culture supernatant produced using trans-

duced cells, as well as control cells. Where appropriate, SaOS2 and

MG63 human osteoblast like cells (ATCC, Manassas, VA, USA)

were included as bone cell controls.

Determining whether over-expressed hRANKL is
biologically active in vitro

Freshly isolated mouse peripheral blood mononuclear cells were

plated in medium conditioned with RPMI-8226/hRANKL/eGFP

cells, and supplemented with rmM-CSF at 25 ng.ml21 (using 6-

well plates). Media conditioned using either wild-type or eGFP-

transduced cells were used as controls. Alpha-MEM, supplement-

ed with rmM-CSF (see above) and rhRANKL at 0.5 ngml21, in

order to match the concentration detected in the conditioned

medium, was included as a positive control. The number of

TRAP-positive multinuclear (3+) cells was determined at 7, 14 and

21-day time points, via light microscopy.

In order to determine whether the multinuclear TRAP-positive

cells could resorb bone, freshly-isolated mouse PBMC were

cultured on dentine slices in medium conditioned with RPMI-

8226/hRANKL/eGFP, as above (using 96-well plates). eGFP-only

and wild-type controls were also included. At 21-days, slices were

stained, using toluidine blue, and resorption pits visualised and

scored, using light microscopy.

Statistical Analysis
Data were expressed as the mean 6 SEM. Comparison

between groups was performed by Mann-Whitney U test, Chi-

square analysis or Student’s unpaired t test, as appropriate.

Comparisons between distributions were performed using a

Kolmogorov-Smirnov test.

Results

5T2MM but not 5T33MM Myeloma Cells Promote the
Development of Myeloma Bone Disease in the Tibiae and
Femora in vivo

Injection of 5T2MM and 5T33MM cells into the tail vein of

syngeneic C57BL/KaLwRij mice resulted in growth of myeloma

cells in the bone marrow. Both 5T2MM and 5T33MM bearing

mice had detectable levels of paraprotein in the serum

(1.2560.25 g.L21, at 12 weeks, in the case of the 5T2MM-

bearing mice). MicroCT, as well as radiographic analysis, of the

long bones of mice bearing 5T2MM cells was used to demonstrate

the presence of osteolytic bone lesions in the tibia and femur,

which are areas in which increased osteoclast activity results in

focal bone loss (Figure 1A–C). On a digitised radiographic image

of a mouse tibia, the osteolytic bone lesions can be distinguished

from surrounding intact bone as darker regions in which the bone

has been removed. Assessment of the numbers of lesions in the

Figure 3. Serum concentrations of sRANKL and OPG are
abnormally regulated in mice bearing 5T2MM and 5T33MM
cells, respectively. Serum concentrations of sRANKL and OPG are
abnormally regulated in mice bearing 5T2MM and 5T33MM cells,
respectively. A. Serum concentrations of sRANKL in naive mice and mice
bearing 5T2MM or 5T33MM cells. B. Serum concentrations of OPG in
naive animals and animals bearing 5T2MM or 5T33MM cells. Statistical
analysis by Mann-Whitney U test. Data = mean6 S.E.M.
doi:10.1371/journal.pone.0041127.g003
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tibia showed a significant increase in 5T2MM bearing animals

when compared to naı̈ve animals (p,0.05)(Figure 1D), whereas no

lesions were observed in mice bearing 5T33MM cells (Figures 1C

and 1D). Histomorphometric analysis of the long bones of

5T2MM bearing mice demonstrated a significant decrease in

the trabecular bone area in the tibia and femur when compared to

un-injected naı̈ve animals (p,0.05). In contrast, trabecular bone

area in mice bearing 5T33MM cells was not significantly different

from naı̈ve, uninjected mice (Figure 1E). Total BMD in the tibiae

was also lower in 5T2MM bearing mice when compared to naı̈ve,

un-injected animals (p,0.01). There was no difference in total

BMD in the tibiae in naı̈ve mice and mice bearing 5T33MM cells

(Figure 1F).

Histomorphometric analysis demonstrated that the proportion

of cortico-endosteal bone surface covered by osteoclasts was

significantly increased in 5T2MM bearing animals when com-

pared to control (p,0.05). In contrast, osteoclasts were not

identified on the cortico-endosteal surface of naı̈ve mice or mice

bearing 5T33MM cells (Figure 2A and 2B). Analysis of the

trabecular bone surfaces of 5T33MM bearing mice showed a

Figure 4. 5T2MM bearing mice have increased bone loss in the lumbar vertebrae and calvariae. A. Photomicrographs of the vertebrae
from naı̈ve and 5T2MM bearing mice. Tumour infiltration is identified with black arrows. B. The proportion of trabecular bone area in the vertebrae
from naı̈ve and 5T2MM-bearing mice. C. Photomicrographs of the calvariae of naı̈ve and 5T2MM bearing mice. Medullary spaces are identified with
black arrows, and OC with yellow arrows. Non tumour-containing spaces are shown. D. The proportion of medullary area as a percentage of total
tissue area in naı̈ve and 5T2MM-bearing mice. E. Distribution of medullary spaces in naı̈ve and 5T2MM-bearing mice, showing significant differences
in distribution (KS test, p,0.02). Chi-square analysis demonstrated that 5T2MM-bearing mice had significantly fewer, smaller spaces and more, larger
spaces than naı̈ve mice (p,0.05). Data = mean6 S.E.M. (B and D).
doi:10.1371/journal.pone.0041127.g004
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decrease in the proportion of trabecular bone surface covered by

osteoclasts (p,0.01) (Figure 2C and 2D). It was not possible to

analyse the trabecular bone surface occupied by osteoclasts in

5T2MM bearing mice as the trabecular bone had been almost

completely resorbed.

Serum Concentrations of Soluble RANKL and OPG Are
Abnormally Regulated in 5T2MM and 5T33MM Bearing
Mice Compared to Non-Tumour Bearing, Naı̈ve Mice

We next measured serum concentrations of sRANKL and OPG

in mice bearing 5T2MM and 5T33MM cells and compared them

to non-tumour bearing, naı̈ve mice. sRANKL was not detectable

in the serum of naı̈ve mice or mice bearing 5T33MM cells.

However, significant concentrations of sRANKL were measured

in the serum of mice bearing 5T2MM cells (379.0658.4 pg/ml,

shown in Figure 3A). In contrast, serum concentrations of OPG in

5T2MM bearing animals and naı̈ve animals were not significantly

different (1.8660.08 and 1.7760.13 ng/ml respectively), whereas

serum OPG was significantly increased in mice bearing 5T33MM

cells when compared to naı̈ve, un-injected animals (14.9761.09

and 1.3360.13 ng/ml respectively, p,0.005) (Figure 3B). There

was no significant correlation between sRANKL and OPG in

5T2MM bearing mice.

5T2MM Bearing Mice Have Increased Bone Loss in the
Vertebrae and Calvariae

High serum concentration of sRANKL would be consistent with

the bone loss observed in the tibia and the development of

osteolytic bone lesions. However, alterations in circulating

sRANKL would also be expected to promote more generalised

bone loss. We therefore examined bones isolated from other sites

for evidence of generalised osteoporosis in 5T2MM bearing mice.

Histomorphometric examination of lumbar vertebrae demonstrat-

ed a significant decrease in trabecular bone in 5T2MM bearing

mice compared to non-tumour bearing, naı̈ve mice (Figure 4A and

4B), although, bone loss was also associated with significant

infiltration of 5T2MM tumour cells. However, analysis of the

medullary area in the calvariae demonstrated a significant increase

in area in 5T2MM bearing mice compared to naı̈ve mice

(p,0.05), consistent with increased bone loss (Figure 4C, 4D). In

the 5T2MM-bearing mice tumour infiltration was seen in only a

limited number of medullary spaces (13%). Comparison of the

medullary spaces from naı̈ve and 5T2MM-bearing mice, but

excluding those showing evidence of tumour infiltration, demon-

strated a significant difference in the distribution of medullary

space size (p,0.02) (Figure 4E). Chi-square analysis demonstrated

that 5T2MM-bearing mice had significantly more, larger spaces

and fewer, smaller spaces than naı̈ve mice (p,0.05). In contrast,

5T33MM bearing mice showed no difference in the distribution of

their medullary spaces when compared to naı̈ve mice (p = 0.42;

data not shown) and Chi-square analysis failed to show any

difference in the proportion of larger medullary spaces when

compared to naı̈ve mice.

RPMI-8226/hRANKL/eGFP human myeloma cells express
biologically active soluble hRANKL

To determine whether myeloma cell derived RANKL could

induce systemic bone loss we generated myeloma cells over-

expressing hRANKL (RPMI-8226/hRANKL/eGFP). Using end-

Figure 5. RPMI-8226/hRANKL/eGFP cells express hRANKL. A. End-point PCR demonstrating that human RANKL mRNA is present in RPMI-
8226/hRANKL/eGFP cells (labeled hRANKL). hRANKL mRNA was not detected in the corresponding eGFP-only control cell line (labeled eGFP), or in
wild-type cells (labeled WT). No product was amplified in the absence of RNA (labelled no RNA) or the superscript enzyme (labeled SS-). B. Western
Blot analysis detected the hRANKL monomer (,34 kDa) in culture supernatant from RPMI-8226/hRANKL/eGFP cells - red outline. (i) Wild-type and
eGFP-only expressing cell controls are included, and the rhRANKL antibody-control is also shown (,23 kDa). (ii) Ribosomal RNA loading controls were
included. C. Flow cytometric analysis of the RPMI-8226/hRANKL/eGFP-expressing cells. Representative plots showing cells stained with anti-hRANKL-
PE antibody (eBioScience, 1/50 dilution) (transparent profile) and isotype control (solid profile).
doi:10.1371/journal.pone.0041127.g005
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point PCR, hRANKL mRNA was detected in RPMI-8226/

hRANKL/eGFP (Figure 5A). In contrast, no expression was

detected in the vector-only control, or wild-type cells. Following

western blot, normalised using ribosomal RNA loading controls,

hRANKL protein was detected in culture medium conditioned by

RPMI-8226/hRANKL/eGFP cells (Figure 5B), but not in

medium conditioned by wild-type or vector only control cells, as

well as medium conditioned using osteoblast cell lines SAOS2 and

MG63. In addition, flow cytometric analysis, using an antibody

directed at hRANKL along with its corresponding isotype control,

demonstrates that the RPMI-8226/hRANKL/eGFP cells express

hRANKL at the cell surface (Figure 5C), whereas the RPMI-

8226/eGFP and wild-type cells do not. Soluble hRANKL was

detected in medium conditioned using the RPMI-8226/

hRANKL/eGFP cells (circa 0.4 ng.ml21), determined by ELISA.

Soluble RANKL was not detected in wild-type or RPMI-8226/

eGFP control cells (Figure 6A).

When freshly isolated mouse PBMC were cultured in medium

conditioned with RPMI-8226/hRANKL/eGFP cells, multinucle-

ate TRAP-positive cells were observed. No such cells formed in the

cultures treated with medium conditioned using RPMI-8226/

eGFP cells (Figure 6B). In separate in vitro experiments, where

mouse PBMC were cultured on dentine slices, in the presence of

medium conditioned by RPMI-8226/hRANKL/eGFP cells,

resorption trails were observed (Figure 6C). No pits were observed

on dentine slices cultured with medium conditioned using RPMI-

8226/eGFP control cells (Figure 6C).

RPMI-8226/hRANKL/eGFP-bearing mice have increased
osteoclast number, elevated serum soluble RANKL and
reduced trabecular bone volume and number

Sub-cutaneous injection of NOD/SCID mice with RPMI-

8226/hRANKL/eGFP, or RPMI-8226/eGFP cells, resulted in

palpable tumour development in all mice. The mice bearing

RPMI-8226/hRANKL/eGFP cells also exhibited increased serum

soluble hRANKL (p,0.05) compared to RPMI-8226/eGFP cells

(Figure 7A), although not all mice had detectable sRANKL.

Following sacrifice, histological analysis of the tibiae from all mice

showed that marrow space was not infiltrated with myeloma cells.

However, histomorphometric analysis demonstrated that RPMI-

8226/hRANKL/eGFP-bearing mice exhibited a three-fold in-

crease in osteoclast number (p,0.05) along the cortico-endosteal

surface compared to RPMI-8226/eGFP-bearing mice (Figure 7B

and 7C). MicroCT analysis of tibiae of RPMI-8226/hRANKL/

eGFP-bearing mice, with detectable sRANKL in the serum, was

associated with reduced trabecular bone volume (27%, p,0.05)

(Figure 7D and 7E), decreased trabecular number (29%, p,0.05)

(Figure 7F), and increased trabecular thickness (8%, p,0.05 - data

not shown).

Discussion

In the present study we examined the ability of two syngeneic

models of multiple myeloma, the 5T2MM and the 5T33MM

models, to cause both osteolytic bone disease and osteoporosis. In

5T2MM bearing mice this was characterised by the presence of

osteolytic bone lesions on radiographs, loss of trabecular bone, a

reduction in total bone mineral density and an increase in the

proportion of bone surface covered by osteoclasts. This mimics the

features of the bone disease seen in patients with multiple

myeloma. In contrast, injection of 5T33MM cells had little effect

on bone. 5T33MM cells did not promote the development of

osteolytic bone lesions, had no effect on trabecular bone area or

total bone mineral density and did not increase osteoclast

formation. Indeed, histomorphometric analysis demonstrated that

osteoclast surface on trabecular bone was significantly reduced in

mice bearing 5T33MM cells. These data contrast with a previous

study in which 5T33MM cells were reported to promote the

development of a myeloma bone disease [31]. The reason for the

difference between the two studies is unclear. However, the

5T33MM cells have been maintained independently, in different

laboratories for many years and therefore, this may reflect the

selection of different clones of 5T33MM cells over time.

In addition to focal osteolytic bone lesions, generalised

osteoporosis was observed in the bones of 5T2MM bearing mice

in which tumour cells were not present. In the calvariae of these

Figure 6. Transduced RPMI-8226 human myeloma cells express
biologically active soluble hRANKL. A. shRANKL is detected by
ELISA (Biomedica Gruppe, Wien, Austria), at a concentration of
,0.4 ng.ml21, in medium conditioned using RPMI-8226/hRANKL/eGFP
cells, but not in controls. B. Multinucleated TRAP-positive cells
(osteoclasts) formed in a culture of mouse PBMC cultured in medium
conditioned with RPMI-8226/hRANKL/eGFP, supplemented with M-CSF
(50 ng.ml21). No osteoclasts were observed in control wells containing
conditioned media from wild-type cells (data not shown) or RPMI-8226/
eGFP. C. Resorption trails formed on the surface of dentine slices
cultured in the presence of freshly prepared mouse PBMC, using
medium conditioned with RPMI-8226/hRANKL/eGFP. No trails formed
on slices cultured in medium conditioned by RPMI-8226/eGFP (or wild-
type - data not shown). Statistical analysis performed using unpaired t-
test. Data = mean6 S.E.M.
doi:10.1371/journal.pone.0041127.g006
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mice, significant bone loss was observed, which is consistent with

the hypothesis that bone loss also occurs independently of local

induction by tumour cells, and results from systemic induction of

osteoclastogenesis. In support of this, studies have shown that a

significant proportion of patients with multiple myeloma develop

osteopenia or osteoporosis independent of lytic bone lesions [2].

The molecular mechanism responsible for the development of

osteoporosis in myeloma is unknown.

Measurement of sRANKL in serum showed that 5T2MM-

bearing mice had high circulating levels of sRANKL in all tumour-

bearing mice. In contrast, sRANKL was not detectable in the

serum of naı̈ve mice, or mice bearing 5T33MM cells. This is

consistent with the demonstration of increased serum concentra-

tions of sRANKL in patients with myeloma and that an increase in

the ratio of RANKL/OPG is associated with lytic bone lesions

[32]. The source of sRANKL remains unclear, but may reflect

production by cells within the bone marrow microenvironment,

such as stromal cells and T-cells, or production by 5T2MM cells,

since we have shown previously that these cells express RANKL

[10]. Furthermore, the mechanism responsible for generating

sRANKL is unknown, but may include proteolytic cleavage of a

membrane-bound RANKL isoform, as myeloma cells can shed

membrane bound molecules [33,34] and express ADAM17, a

proteinase capable of shedding RANKL [35]. Alternatively,

circulating sRANKL may be generated by differential mRNA

splicing, which has been reported in myeloma cells [13].

Treatment of the RPMI8226/eGFP/hRANKL cells with phorbol

12-myristate 13-acetate, which has been shown to activate

membrane shedding activity, had no effect on membrane RANKL

expression and did not increase sRANKL in the culture super-

natent (data not shown). This may argue against proteolytic

processing of the membrane bound form being the main

mechanism of production. Irrespective of the source, these data

support the notion that sRANKL, as a key regulator of osteoclastic

bone resorption, drives the development of osteoporosis.

Serum concentrations of OPG were unchanged in 5T2MM-

bearing mice, but were elevated in those mice bearing 5T33MM

cells. This may account for the observed inhibition of osteoclast

formation, the lack of detectable bone disease seen in the

5T33MM model and explain the difference between the present

study and data reported by Garrett et al. [31]. The failure to affect

BMD in 5T33MM bearing mice is likely to reflect the short

timeframe of this model (4 weeks) and the relatively small

contribution attributable to trabecular bone.

In order to investigate the hypothesis that osteoporosis is caused,

at least in part, by elevated systemic sRANKL, experiments were

performed using a mouse xenograft system in which the tumour

cells were engineered to over-express hRANKL. Mice were injected

subcutaneously with RPMI-8226/hRANKL/eGFP cells and

growth shown to be restricted to the site of implant. Significant

increases in serum sRANKL were observed in mice bearing RPMI-

8226/hRANKL/eGFP cells, compared to control, myeloma cell

bearing animals. Histological examination demonstrated that this

increase was associated with elevated numbers of osteoclasts in

bones from RPMI-8226/hRANKL/eGFP bearing animals, despite

the absence of tumour cells in the bone marrow. These findings are

associated with a significant reduction in bone volume and

trabecular number in those animals. Taken together these data

Figure 7. RPMI-8226/hRANKL/eGFP-bearing mice have elevated serum soluble RANKL, increased osteoclast number and reduced
trabecular bone volume. A. ELISA demonstrating significantly increased serum sRANKL in mice bearing RPMI-8226/hRANKL/eGFP cells, compared
to RPMI-8226/eGFP-bearing animals, as well as wild-type cells (data not shown). B. Photomicrographs of sections of mouse tibiae demonstrating that
mice bearing RPMI-8226/hRANKL/eGFP (ii) have increased OC number at the CE-surface, compared to mice bearing RPMI-8226/eGFP control cells (i).
OC are arrowed. Original magnification640. C. Increased OC number is observed at the CE surface in mice bearing RPMI-8226/hRANKL/eGFP cells. D.
MicroCT images showing reduced bone volume in tibiae of mice bearing RPMI-8226/hRANKL/eGFP, as opposed to wild-type cells. E. RPMI-8226/
hRANKL/eGFP-treated mice have decreased trabecular bone volume (27%) when compared to RPMI-8226/eGFP cell-bearing animals. F. RPMI-8226/
hRANKL/eGFP-treated mice have reduced trabecular number (29%), when compared to RPMI-8226/eGFP-bearing animals. Statistical analysis
performed using unpaired t-test. Data = mean6 S.E.M.
doi:10.1371/journal.pone.0041127.g007
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demonstrate that RANKL expressed by myeloma cells, and released

as soluble RANKL, stimulates osteoclast formation and promotes

bone loss at distant sites in the skeleton. In support of this, both

OPG [10] and a soluble receptor activator of NFkB-Fc construct

(data not shown) were able to prevent osteoclast formation and the

development of bone disease in the 5T2MM model.

In conclusion, using mouse models of myeloma we have been

able to demonstrate that myeloma is associated with both focal

osteolytic bone disease and osteoporosis, and this is associated with

increased serum concentrations of sRANKL. Furthermore,

myeloma cells that express RANKL also produce soluble RANKL

in vivo and this is able to promote osteoclast formation and

osteoporosis. This supports the hypothesis that elevated serum

soluble RANKL contributes to the development of osteoporosis in

myeloma. Therefore, inhibiting RANKL may have therapeutic

potential not only for the treatment of osteolytic bone lesions but

also the generalised osteoporosis. Furthermore, this raises the

possibility of using novel treatments such as the monoclonal

antibody Denosumab, a fully human monoclonal antibody that

targets the RANK-RANKL interaction [36]. This agent has been

in development for the treatment of osteolytic bone disease in

patients with multiple myeloma, for the treatment of bone disease

in bone metastases and for osteoporosis in post- menopausal

women [37,38,39]. Its role in the treatment of osteoporosis in

myeloma is unclear but the data presented would argue that

consideration should be given to its use in this setting. Thus,

treatments such as Denosumab, which have been used successfully

for the treatment of post-menopausal osteoporosis, could be

considered as potential treatment of both the focal osteolytic

disease [39,40] and the generalised osteoporosis seen in patients

with multiple myeloma.
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