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Abstract 

Background  Treatment switching commonly occurs in clinical trials of novel interventions, 

particularly in the advanced or metastatic cancer setting, which causes important problems for  health 

technology assessment.  Previous research has demonstrated which adjustment methods are 

suitable in specific scenarios, but scenarios considered have been limited.  

Objectives  We aimed to assess statistical approaches for adjusting survival estimates in the 

presence of treatment switching in order to determine which methods are most appropriate in a new 

range of realistic scenarios, building upon previous research.  In particular we consider smaller 

sample sizes, reduced switching proportions, increased levels of censoring, and alternative data 

generating models.   

Methods  We conducted a simulation study to assess the bias, mean squared error and coverage 

associated with alternative switching adjustment methods across a wide range of realistic scenarios.   

Results  Our results generally supported those found in previous research, but the novel scenarios 

considered meant that we could make conclusions based upon a more robust evidence base.  Simple 

methods such as censoring or excluding patients that switch again resulted in high levels of bias.  

More complex randomisation-based methods (e.g. Rank Preserving Structural Failure Time Models 

(RPSFTM)) were unbiased when the “common treatment effect” held.  Observational-based methods 

(e.g. inverse probability of censoring weights (IPCW)) coped better with time-dependent treatment 

effects but are heavily data reliant, and generally led to higher levels of bias in our simulations.  Novel 

“two stage” methods produced relatively low bias across all simulated scenarios.  All methods 

generally produced higher bias when the simulated sample size was smaller and when the censoring 

proportion was higher.  All methods generally produced lower bias when switching proportions were 

lower.  We find that the size of the treatment effect in terms of an acceleration factor has an important 

bearing on the levels of bias associated with the adjustment methods.  

Conclusions  Randomisation-based methods can accurately adjust for treatment switching when the 

treatment effect received by patients that switch is the same as that received by patients randomised 

to the experimental group.  When this is not the case observational-based methods or simple two-

stage methods should be considered, although the IPCW is prone to substantial bias when the 

proportion of patients that switch is greater than approximately 90%.  Simple methods such as 

censoring or excluding patients that switch should not be used. 
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1. Introduction 

 

It is commonplace for new drugs to be assessed formally by Health Technology Assessment (HTA) 

agencies for their effectiveness and value for money before approval is given for their reimbursement.  

Typically, the evidence to support the effectiveness of the drug comes from randomised controlled 

trials (RCT) from which the effect size for the intervention is estimated.  Clearly, for a fair assessment 

of the drug, estimating the effect size is of central importance.  For treatments that affect survival it is 

recommended that economic evaluations take a lifetime time horizon, and thus estimates of overall 

survival (OS) are key.[1,2,3,4]  However, treatment switching – where patients randomised to the 

control group of a clinical trial are permitted to switch onto the experimental treatment at some point 

during follow-up – is common in trials of oncology treatments, and causes problems for HTA.[5,6,7,8]  

RCTs allow a comparison of effects between the novel drug and a comparator, used in separate arms 

of the trial.  When treatment switching occurs the separation of the treatment arms is lost.  If control 

group patients switch and benefit from the experimental treatment, an intention to treat (ITT) analysis 

(a comparison of treatment groups as randomised) will underestimate the “true” survival benefit 

associated with the new treatment – that is, the benefit that would have been observed had treatment 

switching not been allowed.   

 

Treatment switching may occur for a number of reasons, both ethical and practical.  Ethically, when 

there are no other non-palliative treatments available it may be deemed inappropriate to deny control 

group patients the new treatment if interim analyses indicate a positive treatment effect.  Practically, 

including the possibility of treatment switching within a trial protocol is likely to significantly help 

enrolment as patients (and their clinicians) know that they are likely to receive the novel treatment at 

some point whichever trial group they are randomised to.  In addition, clinical trials of cancer 

treatments are often powered to investigate differences in progression free survival (PFS) as a 

primary endpoint, rather than overall survival (OS), because drug regulatory agencies such as the 

United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA) 

accept that this represents an acceptable primary endpoint for drug approval.[9,10]  Hence, there is 

less motivation for pharmaceutical companies to ensure that randomised groups are maintained 

beyond disease progression for registration purposes.   

 

Simple methods for adjusting for treatment switching, such as excluding or censoring patients who 

switch, will lead to substantial bias when switching is associated with prognosis.  More complex 

switching adjustment methods have been described in the literature and previous research has shown 

that some of these, such as the Rank Preserving Structural Failure Time Model (RPSFTM),[11] 

perform very well when their key methodological assumptions are satisfied.[5]  In previous research 

we completed a simulation study that included a full comparison of all relevant adjustment methods 

across a range of realistic scenarios – including scenarios where key methodological assumptions are 

not satisfied.[12]  Such a study had not previously been undertaken.  The aim of this paper is to 

describe a second simulation study that complements the previous study, providing further 
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information on the performance of switching adjustment methods in realistic scenarios.  In Section 2 

we summarise the findings of our previous study and present the aims of the current study.  In 

Section 3 we briefly describe the switching adjustment methods.  Section 4 presents the methods we 

have used to conduct the current study and Section 5 presents results of the study, and discusses 

these.  Section 6 considers the implications of our results, offering conclusions and recommendations, 

and also considers the limitations of the study.  

 

2. Findings from previous research  

 

In our previous study we simulated 72 scenarios in order to analyse the bias and coverage associated 

with a range of switching adjustment methods in a wide range of different situations.[12]  Simple 

adjustment methods, such as a standard intention to treat (ITT) analysis, censoring switchers at the 

point of switch (PPcens), excluding switching patients from the analysis (PPexc), and including the 

treatment received as a time-dependent covariate were compared to more complex methods.  The 

more complex methods were categorised as observational-based or randomisation-based.  

Observational-based methods included inverse probability of censoring weights (IPCW) and structural 

nested models (SNM).  Randomisation-based methods included the rank preserving structural failure 

time model (RPSFTM) and the iterative parameter estimation algorithm (IPE).  In addition, we 

considered a novel two-stage Weibull method. 

 

Our simulation study demonstrated that naïve methods (such as simple censoring and exclusion 

approaches) produced high levels of bias consistently across all scenarios and thus should be 

avoided.   We found that randomisation-based methods for adjusting for treatment switching, such as 

the RPSFTM and IPE algorithm, produce low bias in a wide range of scenarios, provided the relative 

treatment effect received by switching patients is equal to that received by experimental group 

patients (that is, the “common treatment effect” assumption holds).  However, when the treatment 

effect is strongly time-dependent, and the “common treatment effect” assumption does not hold, these 

methods produce high levels of bias and in some circumstances may not be preferable to an ITT 

analysis. 

 

We found that observational-based methods such as the IPCW and SNM – which do not require the 

“common treatment effect” assumption – require large amounts of data and are particularly sensitive 

to bias when the switching proportion is very high.  Our simulations suggested that the relatively small 

size of RCT datasets may cause these methods to work sub-optimally – these methods produced 

important levels of bias (approximately 5-10%) even when the “no unmeasured confounders” 

assumption held and the switching proportion was moderate (approximately 60%).  The bias 

associated with the observational-based methods increased substantially when switching proportions 

increased to around 90%.   

 

4 
 



We found that the novel two-stage Weibull method performed well across the majority of scenarios, 

often producing less bias than any of the other adjustment methods.  Although the method was 

sensitive to the switching proportion, it was much less sensitive to this than the IPCW and SNM 

methods. 

 

Although the findings of our previous study were valuable, we did not obtain information on all 

scenarios that may be of interest.  In particular, we did not test any scenarios with a switching 

proportion of lower than 52%.  We focussed upon high switching proportions because we 

hypothesised that adjustment methods would struggle most when a high proportion of control group 

patients switched treatments – and thus, if they performed well in these scenarios they could be 

expected to perform well at lower switching proportions.  However, given that several of the 

adjustment methods did not perform well at high switching proportions it would be valuable to 

investigate whether they perform better at lower switching proportions.  Also, our previous study only 

considered a sample size of 500, with 1:1 randomisation to the control and experimental groups.  

Feedback suggested that metastatic oncology RCTs often have sample sizes of less than 500, and 

that they are often randomised using a 2:1 ratio in favour of the experimental group.  Given the 

reliance of observational-based methods on patient and event numbers, analysing the performance of 

the alternative methods with a lower sample size is important.  Additionally, in our previous study we 

only considered administrative censoring proportions of 1-21% across the 72 scenarios simulated, 

whereas in fact censoring proportions for overall survival may be higher than this in oncology trials.  

Hence, further investigation of this parameter is warranted.  Similarly, further investigation of the 

impact of missing data on potentially important confounders is important.  Feedback from clinicians 

suggested that usually patients have a choice of whether they wish to accept a clinician’s offer of 

switching treatments – and usually data on this choice would not be collected in a clinical trial.  This 

represents an “unmeasured confounder” for the probability of switching, and could impact upon the 

performance of the IPCW method.  Finally, as with any simulation study, there may be suspicion that 

results were driven by the methods used to generate the simulated data.  Hence, we wished to 

investigate the use of alternative data generating models.   

 

Therefore, the aims of the current study were to provide further information on the performance of 

switching adjustment methods, focussing on five main areas: 

• Lower switching proportions 

• Lower sample sizes 

• Higher censoring proportions 

• Missing predictors of switch 

• Alternative data generating models. 
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3. Adjustment methods 

In this section we briefly introduce the switching adjustment methods.  The different switching 

adjustment methods are grouped into simple methods (those which are currently widely used),[6] and 

more complex methods.  Further, the more complex methods are classified as “observational-based” 

methods and “randomisation-based” methods. 

3.1 Simple methods 

 

3.1.1 Intention to treat 

An ITT analysis does not attempt to adjust for treatment switching, but represents the standard 

analysis undertaken on an RCT.  Groups are compared as randomised, and thus the randomisation-

balance of the trial is respected.  The ITT analysis represents a valid comparison of randomised 

groups, but in the presence of treatment switching this may not be what is required for an HTA.[20]   

3.1.2 Per protocol – excluding and censoring switchers 

Where treatment received in an RCT differs from what was planned, a common approach to 

analysing the resulting data is to conduct a per protocol (PP) analysis.  In the case of treatment 

switching, data from patients that switch would either be excluded entirely from the analysis, or would 

be censored at the point of the switch.  Such analyses are prone to selection bias because the 

randomisation balance between groups may be broken, particularly if switching is associated with 

prognostic patient characteristics.[21,22]  

3.1.3 Treatment as a time-dependent covariate 

Under this approach data are analysed according to treatment received, using a Cox proportional 

hazards model [23] in which a binary time-dependent covariate indicates time-periods in which 

treatment was received.  The model takes the form: 

𝜆𝑖(𝑡) =  𝜆0(𝑡) exp�𝛽𝑋𝑖(𝑡)�    (1) 

where 𝜆0(𝑡) is the baseline hazard function and 𝑋𝑖(𝑡) takes the value of zero while a patient is 

receiving the control and 1 while they are receiving the experimental treatment.  Again, this approach 

may break the randomisation balance and is therefore prone to selection bias.[24]  

3.2 Complex methods  

 

3.2.1 Observational-based complex methods 

 

3.2.1.1 Inverse Probability of Censoring Weights 

6 
 



The inverse probability of censoring weights (IPCW) method represents a proportional hazards 

approach to adjusting estimates of a treatment effect in the presence of informative censoring.  In the 

context of treatment switching, patients are artificially censored at the time of switch, and remaining 

observations are weighted based upon covariate values in an attempt to remove selection bias.   

Stabilised weights (𝑊� (𝑡)) applied to each individual for time interval (t), as specified by Hernan et al. 

(2001) are:[25]  

𝑊� (𝑡) = ∏ 𝑃𝑟[𝐶(𝑘)=0|𝐶̅(𝑘−1)=0,�̅�(𝑘−1),𝑉,𝑇>𝑘]
𝑃𝑟[𝐶(𝑘)=0|𝐶̅(𝑘−1)=0,�̅�(𝑘−1),𝐿�(𝑘),𝑇>𝑘]

𝑡
𝑘=0     (2) 

where 𝐶(𝑘) is an indicator function demonstrating whether or not informative censoring (switching) 

had occurred at the end of interval k, and 𝐶̅(𝑘 − 1) denotes censoring history up to the end of the 

previous interval (𝑘 − 1).  �̅�(𝑘 − 1) denotes an individual’s treatment history up until the end of the 

previous interval (𝑘 − 1), and V is an array of an individual’s baseline covariates.  𝐿�(𝑘) denotes the 

history of an individual’s time-dependent covariates measured at or prior to the beginning of interval k.  

Hence the numerator of (2) represents the probability of an individual remaining uncensored (not 

switched) at the end of interval k given that that individual was uncensored at the end of the previous 

interval (𝑘 − 1), conditional on baseline characteristics and past treatment history.  The denominator 

represents that same probability conditional on baseline characteristics, time-dependent 

characteristics and past treatment history.  When the cause of informative censoring is treatment 

switching, past treatment history is removed from the model because as soon as switching occurs the 

individual is censored. 

The IPCW adjusted Cox hazard ratio (HR) can be estimated by fitting a time-dependent Cox model to 

a dataset in which switching patients are artificially censored.  The model includes baseline covariates 

and uses the time-varying stabilised weights for each patient and each time interval.  Similarly, the 

Kaplan-Meier estimator and log-rank test can be replaced with their IPCW versions.[26] 

The IPCW method is reliant on the “no unmeasured confounders” assumption – only if there are data 

on all time-dependent prognostic factors for mortality that independently predict informative censoring 

(switching) can the method produce unbiased results.  This assumption cannot be tested using the 

observed data.[27,28] Models for switching and survival must be correctly specified,[29] and the 

method fails if there are any covariates which ensure (that is, the probability equals 1) that treatment 

switching will occur.[25,28,30]   

3.2.1.2 Structural Nested Models 

Structural nested failure time models (SNMs) are causal models which estimate the effect of a time-

dependent treatment on a survival time outcome in the presence of time-dependent confounding.  

They were developed for use on observational datasets.[31]  However, these models can also be 

used to address treatment switching in an RCT.  Counterfactual survival times – that is, the survival 
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times that would have been observed if no treatment had been given – are fundamental to SNM 

methodology.  An accelerated failure time (AFT) model structure is used, such as that presented by 

Robins (1998):[31] 

𝑈 = ∫ exp[𝜓𝐴𝑖(𝑡)]𝑑𝑡𝑇
0       (3)  

where U is the counterfactual survival time for each patient, which is a known function of observed 

survival time (T), observed treatment (A, where A is a binary time-dependent variable equal to 1 or 0 

over time), and the unknown treatment effect parameter ψ.  It is assumed that exposure to treatment 

accelerates the time to event (such as death) by a factor exp(−𝜓), and that exposure to treatment is 

independent of counterfactual survival times, conditional on a “no unmeasured confounders” 

assumption.  The SNM is used to estimate counterfactual survival times for a range of possible 

treatment effects and g-estimation is used to determine a value 𝜓0 for which treatment exposure at 

each time-point is independent of counterfactual survival.  The model used for the g-test, as specified 

by Robins (1998),[31] is a time-dependent Cox proportional hazards model for the hazard of 

treatment change: 

𝜆0(𝑡) exp[𝛼′𝑊(𝑡)]     (4)  

where W(t) is a known vector valued function of treatment history and covariate history up until time t, 

α is an unknown parameter vector, and 𝜆0(𝑡) is an unspecified baseline hazard function.  To conduct 

the g-test the term 𝜃𝑄(𝑡,𝜓) is added to  𝛼′𝑊(𝑡) in the model, where 𝑄(𝑡,𝜓) is a function of treatment 

and covariate history up until time t and the estimated counterfactual survival time for a given value of 

ψ. The value of ψ that results in a Cox partial likelihood score test (g-test) statistic of zero for the 

hypothesis θ = 0 in this model provides a consistent and asymptotically normal estimator of 𝜓0, given 

the “no unobserved confounders” assumptions holds, the Cox model of the hazard of treatment 

change is correct, and the SNM is correct.  The confidence interval for 𝜓0 is given by the values of 𝜓 

that result in the g-test not being rejected at the 0.05 level.[31] 

Like the IPCW, the SNM method is reliant upon the untestable “no unmeasured confounders” 

assumption, which requires that all variables that contribute to the process that determines whether a 

patient switches treatment are measured.[32].   

3.2.2 Randomisation-based efficacy estimators 

 

3.2.2.1 Rank Preserving Structural Failure Time Model 

The RPSFTM method represents a SNM approach designed specifically for an RCT context.[11]  The 

RPSFTM uses a counterfactual framework to estimate the causal effect of the treatment in question, 

but relies only upon the randomisation of the trial, treatment history and observed survival times to 

identify the treatment effect.  The method splits the observed event time (𝑇𝑖) for each patient into two, 
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that is the event time when the patient is on the control treatment (𝑇𝐴𝑖), and the event time when the 

patient is on the intervention treatment (𝑇𝐵𝑖).  For patients who are randomised to the intervention 

treatment, and who do not switch onto the control treatment (that is, when compliance is full in the 

treatment group), 𝑇𝐴𝑖 is equal to zero.  For patients randomised to the control group who do not switch 

onto the intervention (i.e. compliance is full in the control group) 𝑇𝐵𝑖 is equal to zero.  However, for 

patients who switch treatments (for whom compliance is imperfect) both 𝑇𝐴𝑖 and 𝑇𝐵𝑖 will be greater 

than zero. 

The RPSFTM method relates 𝑇𝑖 to the counterfactual event time (𝑈𝑖) with the following causal model: 

𝑈𝑖 = 𝑇𝐴𝑖 + 𝑒𝜓0𝑇𝐵𝑖     (5) 

𝑒−𝜓0 represents the acceleration factor associated with the intervention – the amount by which an 

individual’s expected survival time is increased by treatment.  By defining a binary process 𝑋𝑖(𝑡) 

which equals 1 when a patient is on the intervention treatment, and equals zero when the patient is on 

control treatment, the causal model can be rewritten as: 

𝑈𝑖 = ∫ exp[𝜓𝑋𝑖(𝑡)]𝑑𝑡𝑇𝑖
0      (6) 

which is identical to the SNM introduced in equation (3).  The value of 𝜓 is estimated using a grid 

search.  For each value of 𝜓 equation (5) is used to estimate 𝑈𝑖, and the true value of 𝜓 is that for 

which 𝑈(𝜓) is independent of randomised groups.  A log-rank or Wilcoxon test can be used for the 

RPSFTM g-test in a non-parametric setting, testing the hypothesis that the baseline survival curves 

are identical in the two treatment groups, or a Wald test could be used for parametric models.[33]  

The point estimate of 𝜓 is that for which the test (z) statistic equals zero.   

White et al. (1999) demonstrate that censoring is problematic for the RPSFTM due to an association 

between treatment received, counterfactual censoring time, and prognosis.[34]  The authors suggest 

that possible bias be avoided by breaking the dependence between censoring time and treatment 

received by recensoring 𝑈𝑖(𝜓) at the minimum of the administrative censoring time 𝐶𝑖  and 𝐶𝑖 exp𝜓.  

𝑈𝑖(𝜓) is then replaced by the censoring time of the counterfactual event time 𝐷𝑖∗(𝜓) if 𝐷𝑖∗(𝜓) <  𝑈𝑖(𝜓).    

The RPSFTM is rank preserving, and therefore assumes that if two patients have the same observed 

event time and neither have received treatment, those two patients would also have the same event 

time if they both received treatment.  Further, it is assumed that the relative treatment effect is equal 

for all patients no matter when the treatment is received (the “common treatment effect” assumption), 

and that the randomisation of the trial means that there are no differences between the treatment 

groups, apart from treatment allocated.[11]  

3.2.2.2 Iterative Parameter Estimation algorithm 
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Branson and Whitehead (2002) extended the RPSFTM method using parametric methods, 

developing a novel iterative parameter estimation (IPE) procedure.[35]  A parametric failure time 

model is fitted to the original, unadjusted ITT data to obtain an initial estimate of 𝜓.  The observed 

failure times of switching patients are then re-estimated using the counterfactual survival time model 

presented in equation (6), and the treatment groups are then compared again using a parametric 

failure time model.  This will give an updated estimate of 𝜓, and the process of re-estimating the 

observed survival times of switching patients is repeated.  This iterative process is continued until the 

new estimate for exp𝜓 is very close to the previous estimate (the authors suggest within 10-5 of the 

previous estimate but offer no particular rationale for this), at which point the process is said to have 

converged.[35]  Bootstrapping is recommended to obtain standard errors and confidence intervals for 

the treatment effect.[35]     

The IPE procedure makes similar assumptions to the RPSFTM method – for example the 

randomisation assumption is made, as is the “common treatment effect” assumption.  An additional 

assumption is that survival times follow a parametric failure time distribution.  

3.2.2.3 Two-stage estimation – a novel method 

In our previous simulation study we considered a novel method for adjusting for treatment switching, 

designed in accordance with the type of switching often observed in metastatic oncology RCTs.[12]  

Usually switching is only permitted after disease progression, but is likely to happen soon after this 

time-point.  In this case, disease progression can be used as a secondary baseline for patients in the 

control group and data on these patients can be treated as an observational dataset.  Fitting an 

accelerated failure time (AFT) model (such as a Weibull model) to this data including covariates 

measured at the secondary baseline and including a time-varying covariate indicating treatment 

switch would be expected to produce a reasonable estimate of the treatment effect received by 

patients who switched, provided the model fits the data, there are “no unmeasured confounders” at 

the point of the secondary baseline and provided switching occurs soon after the secondary baseline.  

Counterfactual survival times can then be obtained using:   

𝑈𝑖 = 𝑇𝐴𝑖 +
𝑇𝐵𝑖
𝜇𝐵

       (7) 

Where 𝑇𝐴𝑖  represents the time spent on control treatment, 𝑇𝐵𝑖  represents the time spent on the new 

intervention, and 𝜇𝐵is the treatment effect (acceleration factor) in switching patients.  

Robins and Greenland (1994) and Yamaguchi and Ohashi (2004) have previously used a similar 

approach to adjust for treatment switches,[27,28] but have utilised an SNM to estimate the treatment 

effect in the control group, rather than a less complex AFT model as suggested here.  The simplified 

approach suggested in our previous report and re-stated here makes no attempt to adjust for time-

dependent confounding beyond disease progression, but requires less data (the “no unmeasured 

confounders” assumption is only required at the secondary baseline timepoint) and does not require 
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modelling of the treatment switching process.  If switching occurs soon after the secondary baseline 

bias caused by time-dependent confounding may be minimal.  Unlike the RPSFTM and IPE methods, 

the simple two-stage method suggested here does not require the “common treatment effect” 

assumption, and our previous study showed that this method performed very well across a wide 

range of scenarios.  Hence we investigate this method further in the current study.  The method is not 

restricted to a Weibull model – any AFT model may be used, and hence in this study we consider 

both a Weibull model and a Generalised Gamma model.  In addition, in our previous study we did not 

incorporate recensoring within this method.  However, because the method involves “shrinking” both 

censoring times and survival times for switching patients there is scope for informative censoring, as 

demonstrated by White et al. (1999) for the RPSFTM approach.[34]  Hence, in the current study we 

incorporate full recensoring within the two-stage estimation, whereby 𝑈𝑖(𝜇𝐵) (where 𝜇𝐵 is the 

acceleration factor associated with treatment estimated by the AFT model fitted to the control group 

post-progression data) is recensored at the minimum of the administrative censoring time 𝐶𝑖  and 

𝐶𝑖 exp 𝜇𝐵.  𝑈𝑖(𝜇𝐵) is then replaced by the censoring time of the counterfactual event time 𝐷𝑖∗(𝜇𝐵) if 

𝐷𝑖∗(𝜇𝐵) <  𝑈𝑖(𝜇𝐵).    

4. Novel simulation study 

We simulated independent datasets in which the true survival differences between treatment options 

were known.  We then applied each of the switching adjustment methods and compared their bias, 

mean squared error and coverage.  We designed our study such that the data simulated reflected 

data typically observed in clinical trials in the advanced/metastatic cancer disease area.  The 

simulation study was conducted using Stata software, version 11.2.[39]   

4.1 Underlying survival times 

We used a joint survival and longitudinal model to simultaneously generate a continuous time-

dependent covariate (referred to as “antigen”) and survival times.[40]  We incorporated a time-

dependent covariate that influenced both survival and the probability of treatment switching and was 

influenced by treatment received.  Within the data-generating joint model, the longitudinal model for 

the antigen value for the ith patient at time t was:   

𝑎𝑛𝑡𝑖𝑔𝑒𝑛𝑖(𝑡) =  𝛽0𝑖 + 𝛽1𝑡 + 𝛽2𝑡 ×  𝑡𝑟𝑡𝑖 + 𝛽4𝑏𝑎𝑑𝑝𝑟𝑜𝑔𝑖         (8) 

where, 

𝛽0𝑖~𝑁(𝛽0,𝜎02)  

𝛽0𝑖 is the random intercept, 𝛽1 the slope against time for a patient in the control group, 𝛽1 + 𝛽2 the 

slope against time for a patient in the experimental treatment group. 𝛽4 is the change in the intercept 

for a patient with a poor prognosis (referred to as “badprog”) compared to a patient with a good 

prognosis, trti is a binary covariate that equals 1 when the patient is in the experimental group and 0 
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otherwise, and badprogi is a binary covariate that equals 1 when a patient has poor prognosis at 

baseline, and 0 otherwise.  

In our previous study we simulated survival times using a Weibull baseline distribution and the antigen 

model changed linearly with log time (rather than time shown in Equation (8)).  This allowed use of the 

inversion simulation method described by Bender et al. (2005),[41] which is a computationally simple 

method to implement, with all required formulae having closed form solutions. 

In order to simulate survival times from a more complex underlying distribution, to reflect those seen 

in real datasets, we used the general survival simulation framework described by Crowther and 

Lambert (2013),[40] which uses a combination of numerical integration and root finding to simulate 

survival dependent on a time-varying biomarker.  In particular, we assume a 2-component mixture 

Weibull baseline hazard function to incorporate the desired flexibility. This can be written as  

ℎ0(𝑡) =  𝜆1𝛾1𝑝𝑡
𝛾1−1exp(−𝜆1𝑡𝛾1)+𝜆2𝛾2(1−𝑝)𝑡𝛾2−1exp(−𝜆2𝑡𝛾2)

𝑝 exp(−𝜆1𝑡𝛾1)+(1−𝑝)exp(−𝜆2𝑡𝛾2)
         (9) 

where 𝜆1, 𝜆2 > 0 and 𝛾1,𝛾2 > 0 are scale and shape parameters, respectively.  We have the mixture 

parameter, p, with 0 ≤ 𝑝 ≤ 1, therefore 𝑝 represents the contribution of the first Weibull to the overall 

survival model, and  1 − 𝑝 represents the contribution of the second Weibull.  The linear predictor of 

the survival model is then incorporated as follows: 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp[𝑋𝑖(𝑡)𝛽(𝑡)]    (10) 

where, 

𝑋𝑖(𝑡)𝛽(𝑡) = 𝛿1(𝑡𝑟𝑡𝑖) + �𝜂 (𝑡)�𝑡𝑟𝑡𝑖 + 𝛿2𝑏𝑎𝑑𝑝𝑟𝑜𝑔𝑖 + 𝛼�𝑎𝑛𝑡𝑖𝑔𝑒𝑛𝑖(𝑡)�   (11) 

𝛿1 is the baseline log hazard ratio intercept, η the rate at which the treatment effect changes with time, 

𝛿2 is the impact of poor prognosis, and α is the coefficient of the antigen level.  

Simulating using a mixture model allows us to simulate complex hazard functions that could not be 

produced using one Weibull model.  The result is a hazard function that does not represent that 

associated with any standard parametric distribution.  This is important because there is no reason to 

expect that real-world survival data will follow standard parametric distributions, and also because 

simulating complex hazard functions means that none of the switching adjustment methods should be 

advantaged due to underlying assumptions. 

In the “base case” (Scenario 1) simulation the parameter values for the mixture Weibull survival model 

and the longitudinal antigen model were: 

𝛽0 = 20 , 𝜎02 = 1 , 𝛽1 = 15 , 𝛽2 = −8 , 𝛽4 = 10, 𝛿1 = −0.75, 𝛿2 = 0.5, 𝛼 = 0.02, 𝜆1 = 1.8, 𝛾1 = 2.1 ,  

𝜆2 = 0.1, 𝛾2 = 0.5 , 𝑝𝑚𝑖𝑥 = 0.7, 𝜂 = 0.3    
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One example of the Kaplan-Meier curves produced by the simulation model (in the absence of 

treatment switching) using these parameter values are presented in Figure 1.  Note that trtrand=0 

represents the control group, and trtrand=1 represents the experimental group.    

Figure 1:  Overall Survival Kaplan-Meier from one simulated dataset Scenario 1:  No switching 

 

The hazard function associated with Figure 1 is illustrated in Figure 2.  This demonstrates that we 

simulated a hazard function that was initially low, which then steadily increased before decreasing 

towards the end of the trial follow-up.  We believe that this is representative of the types of hazards 

that would be expected within an metastatic oncology RCT setting – the initial hazard is likely to be 

low, reflecting the inclusion criteria usually used in RCTs which means that patients with the worst 

prognosis are usually excluded.  The hazard is then likely to rise, reflecting the seriousness of the 

disease, before falling in the longer-term as those who remain alive are of relatively better prognosis. 

Figure 2:  Hazard function from one simulated dataset Scenario 1:  No switching 
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4.2 Treatment effect in the experimental group 

We cannot write down the treatment effect experienced in the experimental group over time because 

our hazard function includes “t” terms.  However, as demonstrated by Figure 2, the treatment effect 

(as observed by the difference between the hazard functions) initially increases during the period of 

greatest hazard, before falling in the longer-term.  We believe that this is representative of a realistic 

treatment effect, which falls in the longer-term when the initial treatment effect may have worn off, and 

when only better prognosis patients remain alive. 

4.3 Treatment effect in switchers 

The treatment effect applied to patients who switched from the control group to the experimental 

treatment was calculated in the same way as for our previous study.  The baseline treatment effect 

was applied to switchers, but was multiplied by a factor (ω) such that the effect received was lower 

than the average effect received by experimental group patients.  The magnitude of ω was varied 

across scenarios to represent reductions in the average treatment effect of 0% and 20%. This allowed 

us to test scenarios in which the “common treatment effect” assumption did not hold.  

4.4 The switching mechanism 

We allowed the probability of treatment switching to depend upon the antigen value at the time of 

disease progression and the time of progression itself, in a similar way to that modelled in our 

previous simulation study.  Switching was only allowed from the control group on to the experimental 

treatment and was not allowed prior to disease progression, to reflect the treatment switching typically 

seen in metastatic cancer trials.  In addition, switching was only allowed to occur at one of the three 

consultations immediately following disease progression (including the consultation at which 

progression was first observed), and the probability of switching declined in each of these 

consultations. Consultations were assumed to occur every 21 days (also in line with metastatic cancer 

trials) and hence the earliest that switching could occur was 21 days after randomisation, and the 

latest that switching could occur was 42 days after the first consultation at which disease progression 

was observed.  In addition, switching was only permitted in patients who were randomly assigned a 

value of ‘1’ for a “choice” variable.  80% of patients were assigned a value of ‘1’ and 20% were 

assigned a value of ‘0’.  Hence patients were only “at risk” of switching if they had a “choice” covariate 

value of ‘1’, and if they had had 3 or less consultations since their disease progression was observed 

(including the initial consultation at which disease progression was observed).  Patients never 

became “at risk” of switching if they had a “choice” covariate value of ‘0’, and if they died before 21 

days since randomisation.   

The probability of switching was calculated for each control group patient who had a “choice” 

covariate value of ‘1’ using a logistic function.  In the base case the probability of switching increased 

if the antigen value was high at the time of disease progression, and if time-to-progression was high.  
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Both these factors indicate that patients with a relatively long progression free survival period are 

more likely to switch treatments than patients with shorter progression free survival times – hence, 

patients with better prognosis were more likely to switch.  The probability of switching in the different 

progression and antigen groups at the three consultations following disease progression for the base 

case scenario are presented in Appendix 1.   

4.5 Scenarios investigated 

The simulated data generating mechanism had several variables for which values had to be 

assumed. These are listed in Appendix 2.  The variables altered within the simulations related to: 

• Sample size: moderate (n=500); small (n=300); large (n=1,000) 

• Data generating model: 2-component mixture Weibull baseline hazard function; 2-component 

mixture Gompertz baseline hazard function 

• Treatment effect decrement received by switchers: 0% (zero time-dependency); 20% 

• Switch proportion: moderate (approximately 50% of control group); low (approximately 20% of 

control group); very low (approximately 7% of control group); very high (approximately 94% of 

“at-risk” control group, which is equivalent to approximately 70% of all control group patients) 

• Treatment effect: moderate (average HR approximately 0.75); high (average HR 

approximately 0.50) 

• Disease severity: moderate (restricted mean survival in control group approximately 285 

days, censoring approximately 15%); high (restricted mean survival in control group 

approximately 365 days, censoring approximately 55%) 

Varying the switch proportion, the treatment effect size, the commonality of the treatment effect and 

disease severity resulted in 16 scenarios.  In addition, we tested the impact of different sample sizes 

and data generating models.  All 16 of the base scenarios were tested again in simulations in which 

the sample size was reduced from 500 to 300.  In all scenarios the randomisation was 2:1 in favour of 

the experimental group.  Then, each of the 32 scenarios were replicated using a 2-component mixture 

Gompertz baseline hazard function instead of the Weibull function used for the base scenarios. 

As an addition to our main 64-scenario analysis, we re-ran selected scenarios to investigate the 

impact of specific alterations to parameters.  We selected 8 base scenarios to run with a sample size 

of 1,000 instead of 500, in order to investigate the impact of this on the performance of the adjustment 

methods.  Given the observational-analysis nature of the IPCW method, we hypothesised that a 

larger sample size may improve its performance.  Four base scenarios were re-run incorporating a 

very low switching proportion because we wished to investigate whether the IPCW method performed 

poorly if very few patients switched (which could lead to problems with accurately modelling the 

switching mechanism).  Finally, 4 scenarios were re-run incorporating a very high switching proportion 

in order to assess the consistency of our results with our previous study.  In total 80 scenarios were 

run. One-thousand simulations were run for each scenario.  
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4.6 Performance measures 

Because of the inclusion of a time-varying confounder in our simulated dataset, the treatment effect is 

a function both of the initially assigned treatment effect, and the effect that occurs through the antigen 

(CEA), as the experimental treatment reduces the antigen value over time and the antigen value 

carries a risk of death.  Therefore, the treatment effect is not constant over time, and it is not possible 

to produce a single true HR or acceleration factor that the results of the adjustment methods can be 

compared to.  Instead, as in our previous study, we used restricted mean survival time as our true 

value upon which to base our performance measures.  Because this study seeks to provide 

information on the performance of switching adjustment methods it is of most relevance to consider 

mean survival times restricted to the trial follow-up period, so as not to confuse bias associated with 

extrapolation methods with bias associated with switching adjustment methods.  

 

In our previous study we were able to integrate the survivor functions associated with our simulated 

survival data.  However, this is no longer possible because our hazard function includes “t” terms.  

Instead, for each scenario we simulated data for 1,000,000 patients without incorporating treatment 

switching, and estimated the mean survival at 18 months (the administrative censoring time in the 

simulated dataset).  We used this as our “truth” upon which to base our performance measures.  

Because this value is the product of a simulation rather than a calculation it is prone to error, but this 

is likely to be extremely minimal given the large number of patients simulated. 

We evaluated the performance of the switching adjustment methods according to the bias in their 

estimate of the true area under the curve (restricted mean at 18 months) for the control group.  Bias 

(δ) was measured by the difference between the true restricted mean (β) and the estimated restricted 

mean (β��).  Relative bias was calculated as  𝛿
𝛽
.  The mean squared error (MSE) was also calculated, 

where the standard error was that associated with the mean restricted mean estimated by each 

adjustment method over the 1,000 simulations run for each scenario. 

The coverage of each method was also calculated, defined as the proportion of simulations where the 

95% confidence intervals of the restricted mean estimated by each method contained the true 

restricted mean.  We also calculated the proportion of times that each method resulted in an estimate 

of the treatment effect (i.e. the proportion of times they converged), which helps illustrate whether any 

of the methods are potentially unreliable and unsuitable for use in the real world.  Where methods do 

not converge the bias and coverage performance measures were calculated based upon simulations 

in which convergence did occur.   

4.7 Adjustment methods to be included 

The methods tested in our simulation study were those described in Section 3, with some exceptions.  

It is clear that the “simple” switching adjustment methods described in Section 3.1 are highly prone to 

bias – this is demonstrated by our previous simulation study.[12]  In our current study we retained the 
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ITT and PP approaches since they are commonly used, and because the ITT analysis represents the 

standard statistical analysis of a clinical trial.  We excluded the treatment as a time-dependent 

covariate approach in the current study, since this is seldom used and because it produced extremely 

high bias across the range of scenarios included in our previous study – we deemed it unnecessary to 

investigate this method any further.  We also excluded the SNM method, because this typically 

performed more poorly than the IPCW method across the scenarios included in our previous study, 

and often failed to converge.[12]   

For the RPSFTM method we used a Cox test within the g-estimation procedure, and for the IPE 

algorithm we tested alternative methods using exponential and Weibull models within the estimation 

procedure, in order to assess whether the performance of the method is sensitive to this.  For the 

RPSFTM and IPE methods we included baseline covariates in the estimation procedure.  For the 

IPCW method we used stabilised weights and included two versions – one in which all covariates 

were included in the relevant models, and one in which the “choice” covariate was excluded – in order 

to test the sensitivity of the method to the availability of this covariate. 

We applied the two-stage method using both a Weibull model and a Generalised Gamma model, so 

that the performance of different AFT models could be compared.  We fitted these models to control 

group patients using disease progression as the secondary baseline time-point, and included 

covariates for switching, baseline prognosis group, baseline antigen value, time-to-disease 

progression, antigen value at disease progression, and the “choice” covariate.   

The specific approach we used to apply each of the adjustment methods are explained in detail in 

Appendix 3. 

5.  Results 

 

The performance of each adjustment method differed importantly depending upon the scenario 

investigated.  Due to the large number of methods and scenarios assessed it is not helpful to present 

detailed results for every method and every scenario.  Instead, we present detailed results from 8 

scenarios that clearly illustrate the key findings.  In Section 5.1 we report key results in scenarios that 

involved moderate (approximately 50%) switching proportions, and in Section 5.2 we report key 

results in scenarios that involved low (approximately 20%) switching proportions.  In Section 5.3 we 

summarise the extent to which the 8 scenarios focussed upon reflect the results of the 24 other base 

scenarios completed.  We then summarise the results of the additional scenarios run – those that 

tested the sensitivity of the results to the data generating model, those that tested a larger sample 

size, and those that tested extreme high and low switching proportions.  In this section, method 

names are abbreviated as follows: Intention-to-Treat (ITT), Exclude switchers (PPexc), Censor at 

switch (PPcens), Inverse Probability of Censoring Weights (IPCW), IPCW excluding the “choice” 

covariate (IPCWn), Rank Preserving Structural Failure Time Model (RPSFTM), Iterative Parameter 
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Estimation with a Weibull model (IPE), Iterative Parameter Estimation with an exponential model 

(IPEexp), two-stage Weibull estimation (Weib2m), two-stage Generalised Gamma model (Gam2m). 

 

In Appendix 4 we present an overview of each scenario run, with regard to average treatment effects, 

true restricted mean survival (area under the curve), switching proportions and censoring proportions.   

5.1 Scenarios with moderate switching proportions 

Tables 1 and 2 present detailed results from Scenarios 1, 3, 9 and 11.  These are illustrative of the 

results of scenarios in which the switching proportion simulated was approximately 58 – 61% of at-risk 

patients.  In Scenario 1 mean true survival in the control group (in the absence of treatment switching) 

was 0.56 years, and in the experimental group was 0.79 years, which was associated with an average 

HR of 0.51. The mean switching proportion was 44% of all control group patients, which equated to 

58% of those who became at risk of switching.  14% of patients were administratively censored at 1.5 

years and the treatment effect applied to switching patients was 20% lower than the average 

treatment effect received by patients in the experimental group – hence the “common treatment 

effect” assumption did not hold.  The probability of switching was related to the time-dependent 

antigen covariate value at the time of disease progression, and the time to disease progression itself.  

Patients with higher antigen values at longer progression free survival times were more likely to 

switch.  These patients tended to be of relatively good prognosis. 

 

As expected, the ITT analysis overestimated the true, unconfounded control group mean survival time 

in this scenario.  The absolute bias was 0.05 years, equivalent to 8.22% relative to the true mean 

survival time.  Simple adjustment methods (PPexc, PPcens) produced substantially higher relative 

bias than the ITT analysis, ranging from -9.94% to 17.66%.  The IPCW and the IPCWn both 

underestimated mean survival in the control group (hence over-estimated the treatment effect), but 

produced lower bias than the ITT analysis, with the version that included the “choice” covariate 

resulting in marginally less bias than the version that excluded this covariate (relative bias of -2.30% 

compared to -2.46%).  In this scenario the RPSFTM, IPE and IPEexp all produced very similar levels 

of bias (relative bias -1.40%, -1.70% and -1.90% respectively), underestimating mean survival in the 

control group but producing lower bias than the ITT and IPCW analyses.  The Weib2m and Gam2m 

methods produced less bias than all other methods, resulting in very low relative bias of 0.48% and 

0.41% respectively.     

  

The only substantive difference between Scenario 1 and Scenario 3 was that the treatment effect was 

lower in Scenario 3, with mean survival time 0.64 years in the control group and 0.74 years in the 

experimental group, associated with an average HR of 0.76.  Owing to this, the relative bias 

associated with each of the adjustment methods generally marginally decreased.  However, the best 

performing adjustment methods remained the same – the Weib2m and Gam2m produced least bias 

(relative bias -0.28% and -0.36% respectively).  However, in this scenario the IPCW and IPCWn 

produced lower bias than the RPSFTM, IPE and IPEexp (relative bias 1.19% and 0.51% compared to 
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-1.40%, -1.69% and -1.79% respectively).  It is interesting that the IPCWn produced lower bias than 

the IPCW – a finding that we will discuss further in Section 5.7.2.  In this scenario the simple 

adjustment methods again produced substantially higher levels of bias (PPcens relative bias: 22.13%; 

PPexc relative bias: -5.37%).  Due to the lower treatment effect the ITT analysis gave lower relative 

bias (2.94%) than in Scenario 1, but still produced higher bias than all adjustment methods except 

PPcens and PPexc. 

 

Table 1:  Scenarios 1 and 3 - Results 

Scenario details 

Method 
Mean 
estimate 

SE of 
mean 

95% Confidence 
interval 

Bias 
Relative 
bias MSE 

Coverage 
(%) 

Successful 
estimation 
(%) 

 
Lower Upper 

Scenario number: 1 ITT 0.60 0.03 0.55 0.66 0.05 8.22 0.0029 65.40 100.00 
True mean survival: PPExc 0.50 0.04 0.43 0.58 -0.06 -9.94 0.0044 66.40 100.00 
Control:  0.56 PPcens  0.65 0.04 0.57 0.74 0.10 17.66 0.0114 36.10 100.00 
Experimental:  0.79 IPCW 0.54 0.03 0.47 0.63 -0.01 -2.30 0.0013 97.60 100.00 

 
IPCWn 0.54 0.03 0.47 0.63 -0.01 -2.46 0.0012 97.40 100.00 

Mean switch %: 58.26% Weib2m 0.56 0.03 0.54 0.58 0.00 0.48 0.0008 52.10 100.00 
True Average HR: 0.51 Gam2m 0.56 0.03 0.54 0.58 0.00 0.41 0.0008 52.10 100.00 
Mean censored: 13.59% RPSFTM 0.55 0.03 0.49 0.62 -0.01 -1.40 0.0011 94.70 100.00 
Treatment effect:  IPE 0.55 0.03 0.48 0.62 -0.01 -1.70 0.0012 94.20 100.00 
20% decrement IPEexp 0.55 0.03 0.48 0.62 -0.01 -1.90 0.0012 93.90 100.00 
Scenario number: 3 ITT 0.66 0.03 0.60 0.72 0.02 2.94 0.0014 91.90 100.00 
True mean survival: PPExc 0.61 0.05 0.51 0.70 -0.03 -5.37 0.0034 86.50 100.00 
Control:  0.64 PPcens  0.78 0.05 0.69 0.88 0.14 22.13 0.0223 14.70 100.00 
Experimental:  0.74 IPCW 0.65 0.04 0.55 0.76 0.01 1.19 0.0018 98.40 100.00 

 IPCWn 0.64 0.04 0.55 0.74 0.00 0.51 0.0015 98.60 100.00 
Mean switch %: 61.20% Weib2m 0.64 0.03 0.62 0.67 0.00 -0.28 0.0012 50.60 100.00 
True Average HR: 0.76 Gam2m 0.64 0.03 0.62 0.67 0.00 -0.36 0.0012 51.80 99.90 
Mean censored: 15.03% RPSFTM 0.63 0.04 0.56 0.71 -0.01 -1.40 0.0018 93.30 100.00 
Treatment effect:  IPE 0.63 0.04 0.56 0.71 -0.01 -1.69 0.0019 92.80 100.00 
20% decrement IPEexp 0.63 0.04 0.56 0.71 -0.01 -1.79 0.0019 92.50 100.00 

 

Table 2 presents detailed results of Scenario 9 and Scenario 11.  Scenario 9 is approximately 

equivalent to Scenario 1 and Scenario 11 is approximately equivalent to Scenario 3, except the 

“common treatment effect” assumption holds.  This has an important impact upon the results of the 

adjustment methods.  While the Weib2m and Gam2m methods continued to produce very low levels 

of bias (relative bias -0.36% to 0.44%), the RPSFTM/IPE methods also performed very well, with 

relative bias between -0.01% and -0.55% in Scenario 9, and between -0.77% and -1.17% in Scenario 

11.  The RPSFTM again produces lower bias than the IPE method, which in turn produces lower bias 

than the IPEexp method.  In Scenarios 9 and 11 the IPCW and IPCWn methods produced similar 

levels of bias to those found in Scenarios 1 and 3 (relative bias -2.27% and -2.49% in Scenario 9, and 

1.29% and 0.60% in Scenario 11), with lower bias again produced in the scenario exhibiting the lower 

treatment effect.  The PPcens and PPexc methods again produced substantially higher levels of bias 
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(relative bias -5.46% to 21.74%) than all methods, including the ITT analysis (relative bias associated 

with the ITT analysis was 9.83% in Scenario 9 and 3.48% in Scenario 11).   

Table 2:  Scenarios 9 and 11 - Results 

Scenario details Method 

Mean 

estimate 

SE of 

mean 

95% Confidence 

interval 

Bias 

Relative 

bias MSE 

Coverage 

(%) 

Successful 

estimation 

(%) Lower Upper 

Scenario number: 9 ITT 0.61 0.03 0.55 0.67 0.05 9.83 0.0039 56.20 100.00 

True mean survival: PPExc 0.50 0.04 0.42 0.57 -0.06 -10.54 0.0049 63.40 100.00 

Control:  0.56 PPcens  0.65 0.04 0.57 0.74 0.10 17.16 0.0109 40.10 100.00 

Experimental:  0.79 IPCW 0.54 0.03 0.47 0.63 -0.01 -2.27 0.0013 98.00 100.00 

 

IPCWn 0.54 0.03 0.47 0.63 -0.01 -2.49 0.0012 97.70 100.00 

Mean switch %: 58.27% Weib2m 0.56 0.03 0.54 0.58 0.00 0.44 0.0008 54.90 100.00 

True Average HR: 0.51 Gam2m 0.56 0.03 0.54 0.58 0.00 0.39 0.0008 55.40 100.00 

Mean censored: 13.74% RPSFTM 0.56 0.04 0.49 0.63 0.00 -0.01 0.0012 95.10 100.00 

Treatment effect:  IPE 0.55 0.03 0.49 0.63 0.00 -0.31 0.0012 95.30 100.00 

0% decrement IPEexp 0.55 0.03 0.49 0.62 0.00 -0.55 0.0012 94.90 100.00 

Scenario number: 11 ITT 0.66 0.03 0.60 0.73 0.02 3.48 0.0016 89.10 100.00 

True mean survival: PPExc 0.61 0.05 0.51 0.70 -0.04 -5.46 0.0036 84.60 100.00 

Control:  0.64 PPcens  0.78 0.05 0.69 0.88 0.14 21.74 0.0218 16.20 100.00 

Experimental:  0.74 IPCW 0.65 0.04 0.55 0.76 0.01 1.29 0.0020 98.00 100.00 

 
IPCWn 0.65 0.04 0.55 0.74 0.00 0.60 0.0017 98.30 100.00 

Mean switch %: 60.90% Weib2m 0.64 0.04 0.62 0.67 0.00 -0.36 0.0013 47.70 100.00 

True Average HR: 0.76 Gam2m 0.64 0.04 0.62 0.67 0.00 -0.44 0.0013 48.60 100.00 

Mean censored: 15.09% RPSFTM 0.64 0.04 0.56 0.72 0.00 -0.77 0.0020 92.10 100.00 

Treatment effect:  IPE 0.63 0.04 0.56 0.71 -0.01 -1.06 0.0020 91.20 100.00 

0% decrement IPEexp 0.63 0.04 0.56 0.71 -0.01 -1.17 0.0021 90.70 100.00 

 

Tables 1 and 2 show a substantial difference in the levels of coverage and MSE achieved by each of 

the adjustment methods.  It is important to note the low levels of coverage achieved by the Weib2m 

and Gam2m – particularly because these produce low levels of bias.  These methods exhibit poor 

coverage because confidence intervals for mean counterfactual survival times were estimated by 

using the 95% confidence intervals for 𝜓𝐵 in equation (7).  This only takes into account the uncertainty 

in the treatment effect itself – it does not take into account the uncertainty in the underlying survival 

distribution.  In reality, if a two-stage approach were to be taken, uncertainty around mean survival 

estimates would need to be taken into account using bootstrapping.  The MSE results provide 

information on the variability of the estimates obtained using the different adjustment methods, 

combined with the bias results.  The MSE results suggest that the levels of variability associated with 

the different adjustment methods are generally similar relative to the bias levels – i.e. higher levels of 

bias are generally associated with higher MSEs.  Variability is useful to consider, because if methods 

produce similar levels of bias, but one produces much more variable estimates, then the method that 

produces less variability may be preferred.  However, our results suggest that different levels of 
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variability across methods do not seem to be of key importance – bias is the most important indicator 

of the performance of these methods. 

 

In contrast, the IPCW method produced higher levels of coverage (97.40% - 98.60%) in Scenarios 1, 

3, 9 and 11, indicating the relatively wide confidence intervals associated with the treatment effect 

estimated using the IPCW approach.   

 

The RPSFTM, IPE and IPEexp approaches led to similar levels of coverage – a result that may not be 

expected as the RPSFTM generally retains the ITT analysis p-value in its estimating of the adjusted 

treatment effect, whereas the IPE analysis does not – the confidence intervals around the parameter 

estimates supplied by the final iteration of the IPE algorithm were used to generate restricted mean 

confidence intervals.  However, because we have used baseline covariates to increase the power 

associated with these methods, the RPSFTM does not retain the simple ITT analysis p-value, and as 

a result coverage is reduced (compared, for example, to scenarios presented in our previous study for 

variations of the RPSFTM and IPE methods where baseline covariates were not included), though 

remains over 90% in these scenarios.    

 

Successful estimation was achieved with all of the adjustment methods across Scenarios 1, 3, 9 and 

11, with only the Gam2m method failing to converge in 0.1% of simulations in Scenario 3.  It should 

be noted that the IPCW and IPCWn methods failed to converge in one of the weighting regressions in 

several simulations, but that estimations were still obtained from these.  Restricting the results of 

these methods only to simulations in which full convergence was achieved in each of the regression 

models had only a minor impact on their performance – this will be discussed further in Section 5.8.1. 

 

5.2 Scenarios with low switching proportions 

 

Tables 3 and 4 present detailed results from Scenarios 5, 7, 13 and 15.  These are illustrative of the 

results of scenarios in which the switching proportion simulated was approximately 23 – 26% of at-risk 

patients.  Scenarios 5, 7, 13 and 15 are similar to Scenarios 1, 3, 9 and 11 respectively, with the only 

substantive difference the switching proportion.  

 

The reduced switching proportion has a limited impact on the bias associated with the adjustment 

methods.  In Scenarios 5 and 13 the bias associated with the IPCW and IPCWn methods increased 

(relative bias ranged from -3.52% to -4.05%) compared to the bias produced in Scenarios 1 and 9 

(relative bias ranged from -2.27% to -2.49%), whereas the opposite was true in Scenarios 7 and 15 

(relative bias ranged from -0.15% to -0.83%) compared to Scenarios 3 and 11 (relative bias ranged 

from 0.51% to 1.29%).  This may suggest the IPCW method is susceptible to more fluctuation than 

the other adjustment methods.  The bias associated with the two-stage Weib2m and Gam2m 

methods generally marginally decreased when the switching proportion reduced to the levels 

simulated in Scenarios 5, 7, 13 and 15, with relative bias remaining substantially less than 1% in each 
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scenario.  Similarly, the bias associated with the RPSFTM, IPE and IPEexp methods marginally 

reduced in Scenarios 5, 7, 13 and 15 compared to Scenarios 1, 3, 9 and 11.  

 

As expected, the bias associated with the ITT analyses and the simple adjustment methods (PPcens 

and PPexc) reduced in Scenarios 5, 7, 13 and 15 compared to Scenarios 1, 3, 9 and 11, owing to the 

lower switching proportion.  However, in each Scenario PPcens and PPexc continued to produce 

higher bias than the ITT analysis and all of the complex adjustment methods (with the exception of 

Scenario 13, in which the PPcens method produced slightly less bias than the IPCW, IPCWn and ITT 

analyses (relative bias 3.73% compared to -4.02%, -4.05% and 3.99% respectively).  The complex 

adjustment methods produced lower bias than the ITT analysis in Scenarios 5, 7, 13 and 15, with the 

exception of the IPCW and IPCWn methods, which produced marginally more bias than the ITT 

analyses in Scenarios 5 and 13 (relative bias of IPCW and IPCWn -3.52% and -3.53% compared to 

3.47% in Scenario 5; relative bias -4.02% and -4.05% compared to 3.99% in Scenario 13).  The 

RPSFTM produced least bias in Scenario 5, the IPCW produced least bias in Scenario 7, and the 

Gam2m produced least bias in Scenarios 13 and 15.   

 

Table 3:  Scenarios 5 and 7 - Results 

Scenario details Method 
Mean 
estimate 

SE of 
mean 

95% Confidence 
interval 

Bias 
Relative 
bias MSE 

Coverage 
(%) 

Successful 
estimation 
(%) Lower Upper 

Scenario number: 5 ITT 0.58 0.03 0.52 0.63 0.02 3.47 0.0011 90.00 100.00 
True mean survival: PPExc 0.53 0.03 0.47 0.59 -0.03 -4.76 0.0016 83.60 100.00 
Control:  0.56 PPcens  0.58 0.03 0.52 0.64 0.02 4.18 0.0015 89.90 100.00 
Experimental:  0.79 IPCW 0.54 0.03 0.47 0.61 -0.02 -3.52 0.0012 95.80 100.00 

 
IPCWn 0.54 0.03 0.47 0.61 -0.02 -3.53 0.0012 95.40 100.00 

Mean switch %: 23.78% Weib2m 0.56 0.03 0.55 0.57 0.00 0.46 0.0007 33.80 100.00 
True Average HR: 0.51 Gam2m 0.56 0.03 0.55 0.57 0.00 0.45 0.0007 32.90 100.00 
Mean censored: 13.42% RPSFTM 0.56 0.03 0.49 0.63 0.00 -0.17 0.0008 97.90 100.00 
Treatment effect:  IPE 0.55 0.03 0.49 0.63 0.00 -0.31 0.0008 97.90 100.00 
20% decrement IPEexp 0.55 0.03 0.49 0.63 0.00 -0.33 0.0008 98.10 100.00 
Scenario number: 7 ITT 0.65 0.03 0.59 0.72 0.01 1.69 0.0012 94.50 100.00 
True mean survival: PPExc 0.62 0.04 0.55 0.69 -0.02 -3.10 0.0018 88.70 100.00 
Control:  0.64 PPcens  0.68 0.04 0.61 0.75 0.04 6.19 0.0029 82.00 100.00 
Experimental:  0.74 IPCW 0.64 0.04 0.56 0.73 0.00 -0.15 0.0014 98.20 100.00 

 IPCWn 0.64 0.04 0.56 0.73 0.00 -0.21 0.0014 98.10 100.00 
Mean switch %: 25.87% Weib2m 0.65 0.03 0.63 0.67 0.00 0.63 0.0011 32.30 100.00 
True Average HR: 0.76 Gam2m 0.65 0.03 0.63 0.67 0.00 0.59 0.0011 33.40 100.00 
Mean censored: 15.15% RPSFTM 0.64 0.04 0.57 0.72 0.00 -0.17 0.0014 96.80 100.00 
Treatment effect:  IPE 0.64 0.04 0.56 0.72 0.00 -0.29 0.0014 96.40 100.00 
20% decrement IPEexp 0.64 0.04 0.56 0.72 0.00 -0.30 0.0014 96.50 100.00 

 

Tables 6 and 7 again show the low levels of coverage associated with the Weib2m and Gam2m 

methods, demonstrating the inadequacy of using the 95% confidence intervals for 𝜓𝐵 to estimate 
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confidence intervals for mean counterfactual survival times.  It is notable that the coverage of the 

RPSFTM, IPE and IPEexp is improved in Scenarios 5, 7, 13 and 15 compared to Scenarios 1, 3, 9 

and 11, suggesting that the performance of these methods is improved in scenarios with lower 

switching proportions.      

 

Successful estimation was achieved with all of the adjustment methods across Scenarios 5, 7, 13 and 

15, with only the Gam2m method failing to converge in 0.3% of simulations in Scenarios 13 and 15.  

Again, it should be noted that the IPCW and IPCWn methods failed to converge in one of the 

weighting regressions in several simulations, but that estimations were still obtained from these.  

Restricting the results of these methods only to simulations in which full convergence was achieved in 

each of the regression models had only a minor impact on their performance. 

Table 4:  Scenarios 13 and 15 - Results 

Scenario details 

Method 
Mean 
estimate 

SE of 
mean 

95% Confidence 
interval 

Bias 
Relative 
bias MSE 

Coverage 
(%) 

Successful 
estimation 
(%) 

 
Lower Upper 

Scenario number: 13 ITT 0.58 0.03 0.52 0.63 0.02 3.99 0.0013 88.40 100.00 
True mean survival: PPExc 0.53 0.03 0.47 0.59 -0.03 -5.19 0.0017 80.80 100.00 
Control:  0.56 PPcens  0.58 0.03 0.52 0.64 0.02 3.73 0.0014 90.90 100.00 
Experimental:  0.79 IPCW 0.53 0.03 0.47 0.61 -0.02 -4.02 0.0014 94.90 100.00 

 
IPCWn 0.53 0.03 0.47 0.61 -0.02 -4.05 0.0014 95.00 100.00 

Mean switch %: 23.76% Weib2m 0.56 0.03 0.55 0.57 0.00 0.12 0.0007 32.70 100.00 
True Average HR: 0.51 Gam2m 0.56 0.03 0.55 0.57 0.00 0.09 0.0007 32.80 99.70 
Mean censored: 13.52% RPSFTM 0.56 0.03 0.49 0.63 0.00 0.11 0.0009 97.90 100.00 
Treatment effect:  IPE 0.56 0.03 0.49 0.63 0.00 0.01 0.0009 97.90 100.00 
0% decrement IPEexp 0.56 0.03 0.49 0.63 0.00 -0.06 0.0009 98.20 100.00 
Scenario number: 15 ITT 0.65 0.03 0.59 0.71 0.01 1.43 0.0011 94.90 100.00 
True mean survival: PPExc 0.62 0.04 0.55 0.69 -0.02 -3.68 0.0019 89.10 100.00 
Control:  0.64 PPcens  0.68 0.04 0.60 0.75 0.04 5.51 0.0025 86.20 100.00 
Experimental:  0.74 IPCW 0.64 0.04 0.56 0.72 0.00 -0.76 0.0013 97.70 100.00 

 IPCWn 0.64 0.04 0.56 0.72 -0.01 -0.83 0.0013 97.80 100.00 
Mean switch %: 25.61% Weib2m 0.64 0.03 0.63 0.66 0.00 0.06 0.0011 34.10 100.00 
True Average HR: 0.76 Gam2m 0.64 0.03 0.63 0.66 0.00 0.03 0.0011 34.90 99.70 
Mean censored: 15.04% RPSFTM 0.64 0.04 0.56 0.72 0.00 -0.45 0.0013 96.50 100.00 
Treatment effect:  IPE 0.64 0.04 0.56 0.72 0.00 -0.55 0.0013 96.40 100.00 
0% decrement IPEexp 0.64 0.04 0.56 0.72 0.00 -0.58 0.0013 96.40 100.00 

 

5.3 Other “base” scenarios 

 

We have presented detailed results for 8 scenarios which we believe provide a clear illustration of the 

key findings of our study.  It is notable that across all of these scenarios the complex adjustment 

methods generally performed well, with relative bias usually below 1.0%.  Some caution should be 

taken with this conclusion, since in this study we worked in yearly units – hence in the context of 
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survival estimates and cost-effectiveness analysis a 1.0% error in the estimate of mean survival could 

still be important.  However, it appears that in scenarios with moderate to low switching proportions 

the complex adjustment methods perform well – with the possible exception of the IPCW and IPCWn 

methods in scenarios where the treatment effect is high (in which relative bias increased to 2-4%).   

 

In the other “base” scenarios run (that is, the first 16 scenarios, as described in Appendix 4) the 

pattern of the results remained similar – PPcens and PPexc approaches generated very high levels of 

bias; RPSFTM, IPE and IPEexp methods produced low bias – in particular when the “common 

treatment effect” assumption held and when the switching proportion was low; the Weib2m and 

Gam2m  methods produced generally low levels of bias across all scenarios; IPCW and IPCWn 

methods generally produced lower levels of bias than the ITT analysis and sometimes produced 

similar levels of bias to the RPSFTM, IPE and IPEexp methods in scenarios where the “common 

treatment effect” assumption did not hold, but relative bias fluctuated more between scenarios.  

Relative bias graphs for the key methods across the first 16 scenarios are presented in Appendix 5.  

 

It is notable that in all scenarios the RPSFTM, IPE and IPEexp methods led to negative bias – that is, 

they over-adjusted for the treatment switching effect.  This is likely to be due to the recensoring 

involved in the treatment effect estimation procedure.  Recensoring involves basing the treatment 

effect estimation upon shorter-term data, and where the experimental group treatment effect 

decreases over time this may lead to an over-estimate of the true treatment effect.  This appears to 

have been the case across all scenarios.  This pattern was not as clear for the IPCW and IPCWn 

methods – negative bias was produced in Scenarios 1, 5, 7, 9, 13 and 15, suggesting a tendency to 

over-estimate the treatment effect in circumstances where the treatment effect was high and the 

proportion of administrative censoring was relatively low.  There was a tendency for the IPCW and 

IPCWn to produce positive bias when the treatment effect was lower and when censoring proportions 

were higher.  The IPCW and IPCWn were not affected by the “common treatment effect” assumption.  

In general the Weib2m and Gam2m methods were prone to positive bias (underestimating the 

treatment effect), although Scenarios 3, 6 and 11 were exceptions to this. 

 

5.4 Impact of sample size 

 

Scenarios 17-32 replicated Scenarios 1-16, but with the sample size simulated in each scenario 

reduced to 300.  We anticipated that this would cause a worsening in the performance of the 

adjustment methods, particularly for the IPCW and IPCWn due to their observational basis.  In fact, 

there was a marginal increase in bias for all methods, and the increase was not greater for the IPCW 

approaches when compared to the RPSFTM, IPE and IPEexp.  Relative bias across Scenarios 17-32 

increased by 0.15 percentage points for the IPCW, 0.21 percentage points for IPCWn, and 0.15, 0.14 

and 0.14 percentage points for the RPSFTM, IPE and IPEexp methods respectively.  Relative bias 

associated with the Weib2m increased by 0.11 percentage points, and by 0.03 percentage points for 

the Gam2m.  The reduced sample size had a significant impact upon the convergence of the Gam2m 
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method.  Across Scenarios 1-16 the Gam2m method converged in 98.8% of simulations, but this fell 

to 88.1% in Scenarios 17-32.  Convergence problems were heightened in scenarios that included a 

high proportion of administrative censoring – in these scenarios the Gam2m method converged in 76-

84% of simulations.  Hence, the results for the Gam2m method should be treated with caution in 

these scenarios.  The relative bias associated with the key adjustment methods across Scenarios 17-

32 is illustrated in Appendix 6.  

 

5.5 Impact of censoring 

 

Scenarios with an odd number incorporated administrative censoring proportions of 13-15%, whereas 

scenarios with an even number incorporated administrative censoring proportions of 47-56% (for 

more details, see Appendix 4).  The mean relative bias associated with “odd” and “even” scenarios 

within the first 32 scenarios of our study are presented in Table 5. 

Table 5: Comparison of relative bias by censoring proportion, Scenarios 1-32 

Method 

Relative bias, "odd" 
scenarios (low 
censoring) 

Relative bias, "even" 
scenarios (high censoring) 

Increase in relative bias in 
"even" (high censoring) 
scenarios 

ITT 4.37 2.65 -1.71 

PPexc 6.05 2.83 -3.22 

PPcens 12.24 9.01 -3.23 

IPCW 2.06 2.12 0.06 

IPCWn  1.94 1.35 -0.59 

Weib2m 0.38 0.59 0.21 

Gam2m 0.40 0.42 0.02 

RPSFTM 0.63 0.94 0.31 

IPE 0.81 0.96 0.16 

IPEexp 0.90 0.97 0.07 
 

Table 5 demonstrates that for the simple adjustment methods (PPexc, PPcens) and the ITT analysis 

relative bias substantially fell in scenarios that had higher administrative censoring proportions.  This 

is because in these scenarios the proportion of patients in the control group as a whole who switched 

treatment was lower (as demonstrated by Table A4, in Appendix 4) than in the corresponding “odd” 

scenarios.  The average proportion of all control group patients that switched in the “even” scenarios 

was 21.7%, compared to 30.6% in the “odd” scenarios.  This makes it difficult to identify the specific 

effect that increases in the censoring proportion has on the performance of the adjustment methods.   

 

For the IPCW method the proportion of patients who switch of those who become at-risk of switching 

is important, and this was similar between the “odd” and “even” scenarios.  An increase in the 

administrative censoring proportion may cause problems for IPCW estimation if relatively few events 

are observed in patients in the control group “at-risk” population who do not switch treatment.  For the 

IPCW method this led to a marginal increase in relative bias in the “even” scenarios, despite the lower 

overall switching proportion in these scenarios.  For the IPCWn method this was not the case – this is 
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likely to be due to the larger “at-risk” population used by this version of the method (because it uses 

all control group patients, rather than only those with a “choice” covariate value of 1), an issue that will 

be discussed further in Section 5.8.1.   

 

Relative bias marginally increased in the “even” scenarios for the Weib2m, Gam2m, RPSFTM, IPE 

and IPEexp methods, as demonstrated by Table 5.  This is despite the lower proportion of switching 

in the “even” scenarios, and suggests that the reduction in observed events caused by the increase in 

the administrative censoring proportion more than counteracts the reduction in bias that would be 

expected due to the lower switching proportion.  Hence, it appears that if all else remained equal it 

would be reasonable to expect an increase in bias associated with the adjustment methods in the 

presence of increasing levels of administrative censoring.   

 

5.6 Impact of the data generation model 

In Scenarios 33-64 we replicated Scenarios 1-32, replacing the 2-component mixture Weibull baseline 

hazard function data generation model with a 2-component mixture Gompertz baseline hazard 

function data generation model.  We chose parameter values for the Gompertz models such that the 

simulated scenarios were similar to the mixture-Weibull based scenarios.  Although the probabilistic 

nature of the simulations and the different characteristics of the Weibull and Gompertz models meant 

that we could not make the corresponding scenarios identical, the scenario details summarised in 

Table A4, Appendix 4, demonstrate that these scenarios were very similar.  It was important to test 

the sensitivity of our results to different data generation models, in order to investigate whether the 

results of the adjustment methods were sensitive to the parametric distributions used to generate the 

data.  However, we found that the performance of the adjustment methods in Scenarios 33-64 was 

very similar to that observed in Scenarios 1-32.   

5.7 Additional analyses 

5.7.1 Larger sample size 

Because the IPCW method is reliant upon observational modelling of the switching mechanism and 

survival, we anticipated that the method may perform better in larger trials, and may perform more 

poorly in smaller trials.  Section 5.4 demonstrates that the impact of reducing the sample size to 300 

had only a marginal impact on the relative bias associated with the IPCW methods, and that in the 

scenarios investigated the reduction in sample size was no more important for the IPCW method than 

it was for the RPSFTM, IPE and IPEexp methods.  However, to provide further information on this in 

Scenarios 65—72 we re-ran Scenarios 1, 2, 3, 4, 9, 10, 11 and 12 with a sample size of 1,000 

patients, rather than 500 (retaining the 2:1 randomisation in favour of the experimental group). 

Increasing the sample size to 1,000 had very little impact upon the bias associated with the 

adjustment methods. Further detail on this is provided in Table 6, which shows that the relative bias 

associated with all of the adjustment methods was very similar irrespective of whether the sample 
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size was 500 or 1,000.  The methods that benefited most from the increase in the sample size were 

the two-stage estimation methods (Weib2m and Gam2m), for which relative bias reduced by 0.06-

0.10 percentage points.  It is logical that these methods benefit from a larger sample size, as the 

“observational” part of the approach – that is, the estimation of the treatment effect in control group 

patients who switch – is based upon an increased number of patients.  It is also notable that in the 

scenarios with n=1,000, the Gam2m method converged in all simulations, which was not the case in 

all of the n=500 scenarios. 

Table 6: Comparison of relative bias by sample size 

Method 
Relative bias, n=500 
Scenarios 

Relative bias, n=1000 
Scenarios 

Reduction in relative bias in 
n=1000 Scenarios 

ITT 4.88 4.87 -0.01 

PPEXC 6.38 6.34 -0.04 

PPCENS 16.62 16.60 -0.02 

IPCW 2.41 2.36 -0.05 

IPCWn  1.65 1.66 0.01 

Weib2m 0.44 0.34 -0.10 

Gam2m 0.40 0.34 -0.06 

RPSFTM 1.11 1.13 0.02 

IPE 1.28 1.24 -0.04 

IPEexp 1.37 1.33 -0.05 
 

5.7.2 Extreme switching proportions 

In our previous simulation study we found that observational-based methods such as the IPCW were 

prone to very substantial levels of bias when the switching proportion was extremely high 

(approximately 90% of “at-risk” patients).[12]  In the current simulation study our results show that the 

IPCW performs much better – producing much lower bias – at moderate levels of switching 

(approximately 60% of “at-risk” patients) and lower levels of switching (approximately 25% of “at-risk” 

patients).  In these scenarios all complex adjustment methods perform well, generally producing low 

levels of bias, with relatively rare exceptions for the IPCW method when the treatment effect was high 

(equivalent to an average HR of approximately 0.51).  The RPSFTM, IPE and IPEexp methods 

produced higher levels of bias when the “common treatment effect” assumption did not hold, but even 

in such circumstances the resulting bias was relatively low when the switching proportion was low.  In 

order to provide further information on the impact of the switching proportion in Scenarios 73-80 we 

re-ran Scenarios 1-8 with extreme switching proportions.  In Scenarios 73-76 a very low switching 

proportion (5%-8% of all control group patients, equivalent to 10-11% of “at-risk” patients) was 

simulated.  In Scenarios 77-80 a very high switching proportion (47%-70% of all control group 

patients, equivalent to 94-95% of “at-risk” patients) was simulated.   

Reducing the switching proportion had a significant impact upon the results of the ITT analysis – as 

expected the bias associated with the ITT analysis is lower when the switching proportion is lower.  In 

contrast, the relative bias associated with the IPCW and IPCWn methods generally increased.  This is 
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logical, because when very few patients switch the IPCW may struggle to accurately model the 

probability of switching in “at-risk” patients.  The impact of simulating a very low switching proportion 

is much less clear for the RPSFTM, IPE, IPEexp, Weib2m and Gam2m methods, with relative bias 

marginally increasing in some scenarios and marginally decreasing in others.  However, it is important 

to note that in these scenarios the ITT analysis is more likely to produce least bias. 

The scenarios in which an extremely high switching proportion was simulated resulted in much more 

noticeable changes in the bias associated with the adjustment methods.  The extreme increase in 

switching proportion increased the bias associated with all adjustment methods, but this increase was 

much more significant for the IPCW method than all other methods.  This reflects the results of our 

previous simulation study.  However, of particular note is that the bias associated with the IPCWn 

method did not increase substantially, and that in these scenarios the IPCWn produced substantially 

less bias than the IPCW method.  Initially, this may seem counterintuitive, because the IPCWn 

excludes information on the “choice” covariate, which influences the probability of switching, and thus 

it would be expected that this version of the IPCW would perform sub-optimally.  In fact, across all 

scenarios we found that the IPCW method produced very similar levels of bias as the IPCWn method, 

and the IPCW method only produced less bias than the IPCWn in 11 of the 32 base scenarios. 

We believe that the reason that the IPCWn method produced similar and often less bias than the 

IPCW method relates to the data required by the weighting regressions, and also to the 

characteristics of the “choice” covariate.  Firstly, because the “choice” covariate value was randomly 

assigned to simulated patients, and was not related to prognosis, including data on this within the 

IPCW weighting regressions may not be expected to have a substantial impact – the impact would be 

expected to be greater if the “choice” covariate was associated with prognosis in some way.     

Secondly, because the “choice” covariate represents a perfect predictor of switching – that is, it is 

impossible for any patients to switch if they have a “choice” covariate value of ‘0’, it cannot be 

included as a covariate in the weighting regressions.  Instead, we incorporated this information by 

only applying the time-dependent weighting regression (the denominator of the stabilised weight) to 

patients who had experienced disease progression and who had a “choice” covariate value of ‘1’.  

Because only 80% of patients had a “choice” covariate value of ‘1’, this cut down the size of the 

sample size informing this regression by 20%.  This means that the remaining patients are more likely 

to be assigned high weights, which leads to the IPCW adjusted treatment effect becoming prone to 

substantial error.  The results of Scenarios 77-80 suggest that this becomes very important at 

extremely high switching proportions.  In Scenarios 77-80 the number of control group patients who 

were at-risk of switching but did not switch ranged between 4 and 8 for the IPCW method, whereas 

for the IPCWn method this number ranged between 25 and 40.  In our previous study, we concluded 

that the IPCW method produced significant bias when this number fell below 19.[12]  The results of 

our current study support this finding – the IPCW method can perform relatively well when the number 

of at-risk patients who do not switch is 25 or above, even when data on a non-prognostic variable that 
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influences the probability of switching is not incorporated.  However, when the number of at-risk 

patients who do not switch is lower than 10, the method is prone to very high levels of bias.          

5.8 Comparisons of variations of methods 

Thus far, we have presented results across the range of scenarios that we simulated, but have largely 

grouped similar methods together in our discussion.  However, it is important to consider the relative 

performance of the similar methods. 

5.8.1 IPCW 

In Section 5.7.2 we discussed the relative performance of the IPCW and IPCWn methods.  However, 

in our simulation study we also examined the relative performance of these methods according to the 

convergence of the logistic weighting regressions (for the numerator and denominator of the stabilised 

weight).  Stata provides information on three relevant indicators of the performance of the regression: 

a. Whether or not the regression converged 

b. The number of completely determined successes 

c. The number of completely determined failures 

Convergence is clearly an issue, and if any successes or failures are completely determined this is a 

sign of potential hidden collinearity.  Across our 32 base scenarios, convergence of the IPCW method 

occurred in 59.9% of simulations, and convergence of the IPCWn method occurred in 63.8% of 

simulations.  Convergence combined with zero completely determined successes or failures occurred 

in just 21.0% of simulations for the IPCW method, and 25.1% of simulations for the IPCWn method.  

Convergence was lower in simulations in which relatively lower proportions of patients switched 

treatments, and was particularly low (sometimes as low as 4-7% for convergence combined with zero 

completely determined successes or failures) in scenarios with lower switching proportions combined 

with a simulated sample size of 300 patients.  The lowest level of convergence (irrespective of 

whether any successes or failures were completely determined) was 33.2%, in Scenario 21. 

In the results previously presented in this Section we have included all simulations for the IPCW 

method, since Stata provides coefficient estimates even if regressions fail to converge.  However, 

convergence and possible collinearity are clear problems associated with the IPCW method, and 

therefore in practice the application of the IPCW method will need to be considered carefully on a 

case-by-case basis, and models may need to be adapted in order to achieve convergence.  Given the 

high proportions of simulations in which convergence was not achieved, comparisons of the results of 

the IPCW method according to the extent to which convergence was achieved is problematic.  

However, we found that both IPCW and IPCWn methods only produced marginally lower levels of 

bias in instances where full convergence was achieved, compared to instances where full 

convergence was not achieved.  Table 7 demonstrates that in instances where the IPCW converged, 

the mean relative bias across Scenarios 1-32 was 0.24 percentage points lower than when all IPCW 
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results were analysed irrespective of convergence.  When convergence was achieved and zero 

successes or failures were completely determined, mean relative bias reduced by a further 0.15 

percentage points.  Similar reductions in relative bias were observed for the IPCWn method. 

Stata has strict convergence criteria, and this may explain why the IPCW methods appear to have 

produced reasonable results even when one or more of the logistic regressions did not converge.  In 

addition we anticipate that the convergence problems may have resulted from the use of splines 

within the logistic weighting regressions.  To create these splines we used the spbase Stata program, 

as recommended by Fewell et al,[43] with 5 knots placed according to percentiles of the survival time 

distribution.  However, we believe that using an alternative spline basis, using the Stata rcsgen 

program and generating knots based upon the event time distribution, may allow convergence issues 

to be avoided.  As a lack of convergence does not seem to be of key importance in our simulations 

we do not anticipate that this has had an important impact upon our results, but from a practical 

perspective models may need to be adapted to achieve convergence.  

Table 7:  Relative bias by IPCW convergence status – Scenarios 1-32 

Method 

Relative bias 

(Scenarios 1-32) 

Proportion of simulations 

(Scenarios 1-32) 

IPCW all 2.09 100% 

IPCW converged 1.85 59.9% 

IPCW converged and zero completely determined 1.70 21.0% 

IPCWn all 1.65 100% 

IPCWn converged 1.40 63.8% 

IPCWn converged and zero completely determined 1.32 25.1% 

  

 

5.8.2 RPSFTM, IPE and IPEexp 

 

The RPSFTM, IPE and IPEexp methods all use the same underlying counterfactual survival model to 

estimate a treatment effect adjusted for treatment switching.  They only differ in their estimation 

procedure – with the RPSFTM using non-parametric g-estimation and the IPE and IPEexp using an 

iterative procedure based upon parametric distributions.  In our study the IPE uses a Weibull 

parametric distribution and the IPEexp uses an exponential distribution.  Across our 32 base 

scenarios we found that the RPSFTM resulted in least bias, with relative bias across all 32 scenarios 

averaging at 0.79%, compared to 0.89% for the IPE method and 0.94% for the IPEexp.  Given the 

complex hazard functions used to generate our survival data it is not surprising that the non-

parametric RPSFTM method produces marginally lower bias than the IPE method, and similarly that 

the IPE method produces marginally lower bias than the IPEexp method.  The similarity in the results 

of these methods reflects the findings of our previous simulation study.[12]   

 

5.8.3 Two-stage methods 
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In our previous simulation study we tested a novel two-stage Weibull method.  It performed well, and 

so in this study we examined the two-stage method more closely, considering both a two-stage 

Weibull method (Weib2m) and a two-stage Generalised Gamma method (Gam2m).  Both methods 

performed well in the current study.  The Gam2m method produced marginally lower bias across the 

32 base scenarios (relative bias 0.41% compared to 0.48%), but the Gam2m experienced some 

convergence issues in scenarios, with convergence dropping to 76.4% in Scenario 26.  Convergence 

was lower in scenarios in which the sample size was 300, and where the proportion of administrative 

censoring was high.  However, in general the convergence issues were not very serious, with the 

Gam2m converging in 98.8% of simulations when the sample size was 500, and 88.1% when the 

sample size was 300.  In practice, the accelerated failure time model used within the two-stage 

estimation method should be determined through a consideration of which model best fits the data. 

5.9 Results – Summary 

Our results show that in the scenarios simulated each of the switching adjustment methods generally 

performed well, although they were sensitive to key scenario parameters.  For the RPSFTM, IPE and 

IPEexp the most influential parameters were the “common treatment effect” and the switching 

proportion.  Across Scenarios 1-32 the mean relative bias for the RPSFTM was 0.46%, for the IPE 

was 0.55% and for the IPEexp was 0.60% in scenarios where the “common treatment effect” 

assumption held.  This relative bias more than doubled in scenarios where the “common treatment 

effect” assumption did not hold (in which the treatment effect received by switchers was 

approximately 20% lower than the treatment effect received by patients initially randomised to the 

experimental group.  In these scenarios the mean relative bias was 1.11%, 1.22% and 1.27% for the 

RPSFTM, IPE and IPEexp respectively.  The switching proportion had a similarly important impact on 

the performance of these methods.  Across the 32 base scenarios relative bias for the RPSFTM, IPE 

and IPEexp was 1.25%, 1.43% and 1.51% respectively in scenarios where the switching proportion 

ranged between 30% and 44% of all control group patients.  This was reduced significantly in 

scenarios where the switching proportion ranged between 13% and 18%.  In these scenarios the 

relative bias associated with the RPSFTM, IPE and IPEexp was 0.32%, 0.34% and 0.36% 

respectively.  These findings were supported by the results of our analyses that considered more 

extreme switching proportions.  Our results also suggest that the randomisation-based methods 

perform better in the presence of lower administrative censoring proportions, in larger sample sizes, 

and when the treatment effect is relatively low – but the impact of these parameters is relatively minor.  

These methods are likely to produce very low bias when the “common treatment effect” holds and 

when switching proportions are low. 

For the IPCW and IPCWn the switching proportion and the size of the treatment effect had the most 

important influences on performance.  For the IPCW. mean relative bias increased from 1.52% in 

scenarios between 1 and 32 that had switching proportions of 13-18% (equivalent to approximately 

25% of “at-risk” patients) to 2.67% in those scenarios with switching proportions of 30-44% 

(equivalent to approximately 60% of “at-risk” patients).  For the IPCWn the mean relative bias across 
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these scenarios increased from 1.48% to 1.81%.  In scenarios where the average treatment effect 

was equivalent to a HR of approximately 0.51 the mean relative bias for the IPCW was 2.49% and for 

the IPCWn was 2.17%.  These fell to 1.70% and 1.13% in scenarios where the average treatment 

effect was equivalent to a HR of approximately 0.76.  Our additional analyses demonstrated that 

these methods were prone to extremely high bias in scenarios where approximately 95% of “at-risk” 

patients switched treatments – reflecting the findings of our previous study.  Bias also increased at 

very low levels of switching for these methods, but this increase was only marginal.  As expected, the 

commonality of the treatment effect had little impact on the performance of the IPCW methods.  More 

surprising, increasing the proportion of administrative censoring from around 15% to around 50% also 

had a relatively minor impact, although as for the randomisation-based methods our results indicated 

that the IPCW and IPCWn performed better with lower administrative censoring proportions.  

Similarly, we found that reducing the sample size from 500 to 300 had a relatively minor impact on the 

IPCW methods – although again, as for the randomisation-based methods, a larger sample size is 

likely to lead to reduced bias.  However, it is notable that the “critical number” of control group patients 

who do not switch (that is, the number of control group non-switchers that is required in order for the 

IPCW method to perform acceptably, which appears to be between 10 and 20) will be reached with 

lower switching proportions in smaller trials.  The IPCW and IPCWn methods usually produced higher 

levels of bias than the randomisation-based methods, although this was often only marginal (for 

example, across the 16 scenarios within Scenarios 1-32 in which the “common treatment effect” 

assumption did not hold the mean relative bias associated with the IPCW and IPCWn was 1.99% and 

1.55% respectively, compared to 1.11% for the RPSFTM).  The bias associated with the IPCW and 

IPCWn was often in the opposite direction to that produced by the randomisation-based methods, and 

fluctuated more between scenarios.  The randomisation-based methods usually had a greater 

advantage over the IPCW methods when the “common treatment effect” assumption held.  

Importantly, the IPCW method and the IPCWn method performed similarly, except when the switching 

proportion of “at-risk” patients was extremely high – in these circumstances the IPCWn produced 

much lower bias than the IPCW.  This is because in these scenarios the IPCWn retained substantially 

more patients in its time-dependent weighting regression, and it appeared that excluding information 

on patient choice was not important, probably because the covariate was not prognostic for survival.  

The two-stage accelerated failure time model methods (Weib2m and Gam2m) were much less 

sensitive to the scenario parameters than the other adjustment methods.  Their relative bias differed 

only marginally between different sets of scenarios, with the biggest impacts arising from increasing 

the censoring proportion to approximately 50% from approximately 15% (mean relative bias increased 

from 0.38% to 0.59% for the Weib2m, and the Gam2m failed to converge in a significant proportion of 

simulations when the censoring proportion was high).  Relative bias increased with these methods 

when the sample size decreased, and when the switching proportion decreased.  These methods 

often produced least bias compared to all other adjustment methods, even when the “common 

treatment effect” assumption held.  Where this was less likely was where the “common treatment 
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effect” assumption held and there was a lower switching proportion – in these scenarios it was more 

common for the randomisation-based methods to produce least bias. 

The simple adjustment methods (PPexc and PPcens) produced higher bias than all of the other 

adjustment methods and the ITT analysis across all scenarios.  In general, the more complex 

adjustment methods produced less bias than the ITT analysis.  However, the ITT analysis produced 

less bias than the IPCW, IPCWn, RPSFTM, IPE and IPEexp in some circumstances in which the 

administrative censoring proportion was high (causing the adjustment methods to work slightly less 

well) combined with a relatively low treatment effect (meaning the bias associated with the ITT was 

relatively low), particularly when the “common treatment effect” assumption did not hold (causing the 

randomisation-based methods to produce higher bias).  This was the case in Scenarios 4 and 20.  

Similar results – where the ITT analysis produced less bias than some (but not all) of the complex 

adjustment methods) – were found in Scenarios 8, 12, 16, 24, 28 and 32.  In all of these scenarios the 

administrative censoring proportion was relatively high and the treatment effect was relatively low.  

The ITT analysis produced very low bias when the switching proportion was extremely low (Scenarios 

73-76), and produced less bias than the IPCW, IPCWn, RPSFTM, IPE and IPEexp in two of these 

scenarios, but in each scenario at least one of the complex adjustment methods produced lower bias. 

6. Conclusions, limitations, recommendations and research priorities 

 

In this Section we compare the results of the current study to those found in our previous simulation 

study and make conclusions and recommendations on the use of switching adjustment methods.  We 

also address the limitations of our study. 

 

6.1 Comparison to previous study 

 

In general, the results of our current study support our previous findings, and offer further insights.  

However, there are some key differences in the results of the two studies.  Firstly, the methods 

generally produce less bias in the current study than in our previous study.  We often found levels of 

bias of between 5% and 10% in our previous study, or even higher in scenarios with high switching 

proportions and where the “common treatment effect” assumption did not hold (for the randomisation-

based methods).  In our present study, levels of relative bias rarely exceeded 2-3% across all 

scenarios except those that incorporated extreme switching proportions.  There are two critical 

reasons for this difference in results.  Firstly, in our previous study half of the 72 scenarios run 

included extremely high switching proportions equivalent to 90-95% of the control group at-risk of 

switching.  We re-tested these circumstances in our additional analyses in the current study, and 

again found that bias increased substantially – particularly for the IPCW methods. 

 

Secondly, in our previous study we used a less complex data generating mechanism, compared to 

the mixture models used in the current study, which allowed hazard function turning points to be 

simulated.  Although we simulated similar average treatment effects in terms of hazard ratios in our 
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two studies, the survival functions simulated were different and the corresponding average 

acceleration factors (AF) in each scenario were very different: because hazard ratios work on the 

hazard scale, and acceleration factors work on the time scale, a given hazard ratio can be compatible 

with a range of different acceleration factors.  For example, in our previous study the average AF 

across the 72 scenarios varied between 1.44 and 3.58, and was over 2.0 in 60 of the 72 scenarios.  In 

the current study the AF across the 32 base scenarios ranged between 1.22 and 1.78, despite the 

fact that we simulated data that produced similar average hazard ratios in the two studies.  Given that 

we have found that the performance of each of the switching adjustment methods is affected by the 

size of the treatment effect – particularly the IPCW methods, which produce more bias when the 

treatment effect is higher – this is likely to be a key reason behind the lower biases found in the 

current study.  In addition, in the scenarios that violated the “common treatment effect” assumption 

the decrement in the treatment effect was calculated as a proportion of the average true AF in the 

experimental group – when this true AF is higher the absolute decrement in the treatment effect 

applied to switching patients will be higher given the same proportional decrement.  This is likely to 

explain why the randomisation-based methods were more sensitive to departures from the “common 

treatment effect” assumption in our previous study – it is the absolute difference in the AF between 

switchers and patients randomised to the experimental group that determines the subsequent bias of 

these methods.  In our new study we found that the randomisation-based methods generally 

produced low (in the region of 1-2%) bias, and slightly less bias than the IPCW methods even when 

the treatment effect received by switchers was 20% lower than that received by patients randomised 

to the experimental group.  This is likely to be because the true AF was relatively low compared to our 

previous study, where we found that decrements in the treatment effect of 20% or more were 

associated with very significant increases in bias associated with the randomisation-based methods.  

This in itself is a useful finding of our new study, and illustrates that it is important to assess the size 

of the treatment effect in terms of an AF, rather than only a HR. 

 

In addition to this, the current simulation study has provided more information on the performance of 

two-stage AFT methods, as well as the impact of sample size, administrative censoring, and more 

moderate switching proportions.  Hence, we are able to able to add to our previous recommendations 

drawing upon our new findings.   

 

6.2 Recommendations 

 

Below, we make a series of recommendations on the use of switching adjustment methods, based 

upon the findings of our two simulation studies.  In addition, in Figure 3 we provide a step-by-step 

analytical guide that – alongside our more detailed recommendations – could be used by analysts on 

a case-by-case basis to help determine which adjustment methods may be appropriate. 

 

1. If a detailed analysis of the trial data suggests that the treatment effect received by switchers 

is unlikely to be different to that received by experimental group patients an RPSFTM or IPE 
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approach should be used to adjust for treatment switching.  If it is feasible to apply a two-

stage accelerated failure time model approach, this is also likely to produce low bias.  An 

IPCW approach may also produce low bias, but this is less certain.  

2. If the proportion of patients that switch is 90% or greater of those that became at risk of 

switching the IPCW method is highly prone to bias (assuming a trial sample size of 

approximately 300-500, with 1:1 or 2:1 randomisation in favour of the experimental group). 

Randomisation-based methods and two-stage accelerated failure time models are relatively 

less affected by high levels of switching and therefore should be given precedence (unless 

there is evidence of a strong time-dependent treatment effect).  

3. If there is evidence of a time-dependent treatment effect the strength of that effect should be 

assessed if possible. If it is feasible to apply a two-stage method the suitability of this 

approach should be considered based upon the treatment switching mechanism.  The 

importance of departures from the “common treatment effect” assumption depends upon the 

absolute size of the acceleration factor and the absolute difference between the acceleration 

factor received by switchers compared to patients randomised to the experimental group.  If 

the AF in the experimental group is less than approximately 1.8 randomisation-based 

methods may produce only relatively minor levels of bias (1-2%) and are likely to produce 

lower bias than the IPCW method even if the AF decrement in switchers is up to 20%. 

However, if the AF in the experimental group is higher – for example, 2.0-4.0 – the 

randomisation-based methods can be expected to produce substantial bias (in the region of 

10%) if the AF decrement in switchers is 15% or greater.  In this case the IPCW method is 

likely to be preferable if a two-stage technique cannot be applied – although it may still be 

prone to bias of around 10%, depending upon the switching proportion and the exact size of 

the treatment effect.   

4. In circumstances where the treatment effect is very small (with an AF of less than 

approximately 1.4) and where the switching proportion is low, the ITT analysis will produce 

low levels of bias, but may still produce more bias than the complex adjustment methods, 

depending upon the other characteristics of the trial.  On the other hand, in circumstances 

where the complex adjustment methods do not work well – for instance, where the switching 

proportion is extremely high, or where the AF is high (2.0-4.0) in combination with a treatment 

effect decrement in switchers of 20% or more – the ITT analysis may produce least bias (but 

will still contain bias).  

5. If the decrement in the treatment effect received by switchers is likely to be above 30% 

RPSFTM and IPE methods are likely to be unsuitable, but this remains dependent upon the 

size of the AF – if the AF is low (less than 1.8) these methods may still produce relatively low 

levels of bias.  

6. When there is a time-dependent treatment effect and the RPSFTM/IPE methods are applied it 

is likely that these will over-estimate the treatment effect – this should be taken into account if 

such methods are to be used to produce ‘least bias’ estimate of the treatment effect.  It is less 
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certain whether the IPCW method will lead to an over- or under-estimate of the treatment 

effect. 

7. Reducing the sample size of a trial causes all methods to produce marginally more bias, 

whereas increasing the sample size has the opposite effect.  For non-extreme switching 

proportions all adjustment methods are affected by this to a similar extent.  However, it is 

notable that with smaller sample sizes the critical number of “at-risk” patients who do not 

switch treatments will be reached at lower switching proportions, and the opposite is true for 

larger sample sizes. 

8. The IPCW method is more adversely affected than the other adjustment methods when very 

low (less than 10%) proportions of patients switch treatments. 

9. Under the guidance above, the switching adjustment methods can still produce low levels of 

bias when administrative censoring is up to approximately 50%.  However, higher censoring 

levels generally lead to increased bias associated with the adjustment methods, and cause 

some problems with the convergence of two-stage methods.  Censoring is increasingly 

important in small trials (with sample size of around 300).  

10. If extrapolation is required to estimate mean survival the impact of recensoring should be 

considered when RPSFTM or IPE methods are used.  An analysis should be undertaken to 

identify whether recensoring is likely to lead to inappropriate extrapolations.  A survivor 

function approach whereby the treatment effect is applied to an extrapolation of un-

recensored experimental group survival times is likely to be preferable.  

11. When preliminary analysis of trial data suggests that the choice of preferable switching 

adjustment method is unclear, sensitivity analysis should be undertaken to demonstrate the 

uncertainty (and the value of this uncertainty) associated with the methodology used.  
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Figure 12:  Treatment switching analysis framework 
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6.3 Limitations 

 

A limitation associated with any simulation study is that not all scenarios that we observe in practice 

can be investigated.  We attempted to include all the most important and most relevant scenarios 

given results of our previous study, realistic cancer trial characteristics and the characteristics of the 

methods we were assessing.  We also ran additional analyses where we selected specific scenarios 

to re-run with altered parameter values in order to test specific hypotheses.  However, there remain 

further questions that would be useful to investigate. 

 

For instance, we found that the randomisation-based methods were much more robust to departures 

from the “common treatment effect” assumption in this study, compared to our previous study.  This is 

highly likely to be due to the difference in the size of the acceleration factors simulated in our current 

study, compared to in our previous study.  It would be of particular value to analyse real-world 

datasets in order to determine realistic AF sizes, and, if necessary, to re-run our simulations using 

these in order that we can better understand the potential problems caused by departures from the 

“common treatment effect” assumption in the real world.   

 

Secondly, between our previous study and our current study we have gathered useful information 

regarding what number of “at-risk” patients in the control group who do not switch treatments is 

required in order for the IPCW to produce low levels of bias.  It seems that this number is likely to be 

in the region of 10-20, but it would be very useful to run further scenarios with different sample sizes 

and switching proportions aimed specifically at providing more information on this.  Linked to this, we 

could further analyse our simulations in order to attempt to ascertain what level IPCW stabilised 

weights can rise to before substantial bias is observed in the results.  From a practical perspective, 

this would provide useful guidance to analysts.  

 

As it was in our previous study, a technical limitation of our simulation study was that we could not 

estimate the weighted Kaplan Meier successfully and without bias in our simulations. However, we 

instead used the IPCW survivor function approach which is likely to closely resemble results that 

would have been obtained for the WKM. 

  

Another general limitation of simulation studies is that the results are likely to always be linked in 

some way to the chosen data generating process.  However, we have gone some way to 

demonstrating that this is not the case in this study, since we tested each scenario using two different 

data-generating models.  In addition, our results generally support those found in our previous study, 

which used a different data generating model.   

 

Finally, our previous study and our current study give us confidence that the two-stage AFT method 

represents a potentially valuable method for adjusting for treatment switching.  However, so far we 

have only tested this method in scenarios where switching happens soon after the “secondary 
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baseline” of disease progression.  It would be important to identify how sensitive this method is to 

switching that occurs further from the secondary baseline time-point, and also to test how sensitive 

this method is to violations of the “no unmeasured confounders” assumption. 
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Appendix 1:  Treatment switching probabilities   

Table A1 presents the probability of switching for different patient groups at different time-points in our 

base scenarios.  Higher group numbers represent higher values for that group (that is, “time to 

progression group” 0 are the control group patients that had time-to-progression times in the lowest 

33.3% of the control group).  Note however that these groups only refer to patients who became “at-

risk” of switching – that is, those control group patients that survived for longer than 21 days.  Hence 

the lowest 33% represent the lowest third of the at-risk group, not the control group as a whole. 

Table A1:  Probability of treatment switch by prognostic groups and consultation 

Consultation 1 Antigen group at progression 

0 1 2 

Time to progression group 0 0.10 0.18 0.28 

1 0.25 0.40 0.54 

2 0.40 0.57 0.70 

Consultation 2 Antigen group at progression 

0 1 2 

Time to progression group 0 0.08 0.15 0.24 

1 0.21 0.35 0.48 

2 0.35 0.52 0.65 

Consultation 3 Antigen group at progression 

0 1 2 

Time to progression group 0 0.05 0.10 0.16 

1 0.14 0.25 0.37 

2 0.25 0.40 0.54 

In the base case scenario the mean switching proportion in the control group across the 1,000 

simulations was 43.60%, which was equivalent to 58.26% of control group patients who became at-

risk of switching – i.e. those that experienced disease progression and had a “choice” covariate value 

of ‘1’.  This proportion of switching led to an increase in the average HR based on an ITT analysis 

from 0.51 to 0.60, reflecting the beneficial effect on survival of switching from the control group onto 

the experimental treatment.   
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Appendix 2:  Scenario parameter values 

In Table A2, values for each variable in Scenario 1 are quoted, as are alternative values for different 

scenarios.   

Table A2:  Simulated scenarios – Parameter values and alternatives tested 
Variable Value (Scenario 1) Alternative Values 
Sample size 500 (2:1 randomisation) 300; 1,000 (2:1 randomisation) 
Number of prognosis groups 
(prog) 

2 - 

Probability of good prognosis 0.5 - 
Probability of poor prognosis 0.5 - 
Maximum follow-up time  3 years (1095 days) - 
Choice covariate (probability 
of value of ‘1’) 

0.8 - 

Multiplication of OS survival 
time due to bad prognosis 
group 

Log hazard ratio = 0.5 - 

Survival time distribution  Weibull parameters: 
Mix 1: Shape parameter 2.1 
             Scale parameter 1.8 
Mix 2: Shape parameter 0.5 
             Scale parameter 0.1 
p = 0.7 (mix parameter)  
 
 
  

Weibull parameters to represent a less 
severe disease with more censoring: 
Mix 1: Shape parameter 2.1 
             Scale parameter 1.5 
Mix 2: Shape parameter 0.5 
             Scale parameter 0.05 
p = 0.25 (mix parameter)  
 
Gompertz parameters: 
Mix 1: Shape parameter -1.6 
             Scale parameter 0.15 
Mix 2: Shape parameter 2.2 
             Scale parameter 0.5 
p = 0.3 (mix parameter)  
 
Gompertz parameters to represent a 
less severe disease with more 
censoring: 
Mix 1: Shape parameter -1.6 
             Scale parameter 0.1 
Mix 2: Shape parameter 2.2 
             Scale parameter 0.4 
p = 0.75 (mix parameter)  

Progression free survival Overall survival time multiplied by a 
value from a beta distribution with shape 
parameters (10,10) – this implies the 
assumption that time to progression is 
approximately half of OS. This is not an 
important assumption – time to 
progression is only included because we 
model a situation where switching 
cannot occur before disease progression 

- 

Baseline treatment effect 
(note this is not the true 
treatment effect as this does 
not take into account the 
effect of the treatment that 
occurs through the time-
dependent confounder, 
antigen level, or the time-
dependent part of the 
treatment effect, η ) 

Baseline log hazard ratio in scenarios 
that include an additional time-
dependent effect  = -0.75 
  

Alter log hazard ratio to -0.35 to 
represent a smaller treatment effect  
 
 

Antigen intercept Calculated using a normal distribution 
with mean of 20 and standard deviation 
of 1.  Increased by 10 in patients who 
are in the poor prognosis group.   

- 

Antigen value progression 
over time 

As demonstrated by formula (8).  
β2 = −8  to represent that the antigen 
value increases more slowly in the 
experimental group, and β1 = 15 to 
indicate that the antigen value increases 
over time 

- 
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Impact of antigen value on 
overall survival 

As demonstrated by formulas (10) and 
(11). Increased antigen value increases 
the risk of death. The strength of this 
relationship depends on the variable α, 
which equals 0.02 in Scenario 1 

- 

Impact of antigen value on 
treatment effect 

Because treatment reduces the 
progression of the antigen value and 
increased antigen values increase the 
risk of death, the treatment has an 
additional effect through the antigen. 
The strength of this relationship depends 
on the variable α, which equals 0.02 in 
Scenario 1 

All scenarios include a time-dependent 
treatment effect in the experimental 
group.  However, in selected scenarios 
the treatment effect received by 
switchers equals the average treatment 
effect in the experimental group, 
satisfying the “common treatment effect” 
assumption 

Time-dependent portion of 
treatment effect, η  

η =0.3 to generate a reduction in the 
treatment effect over time 

All scenarios include a time-dependent 
treatment effect in the experimental 
group.  However, in selected scenarios 
the treatment effect received by 
switchers equals the average treatment 
effect in the experimental group, 
satisfying the “common treatment effect” 
assumption 

Assumed frequency of 
consultations 

One every 3 weeks (21 days) - 

Probability of switching 
treatment over time  

As shown in Table 1. This results in a 
switching proportion of approximately 
44% in Scenario 1 

Test a low switching scenario where all 
probabilities are decreased – to an 
extent where approximately 20% of 
control group patients switch. 
 
Test a very low switching scenario 
where all probabilities are decreased – 
to an extent where approximately 7% of 
control group patients switch. 
 
Test a very high switching scenario 
where all probabilities are increased – to 
an extent where approximately 94% of 
“at-risk” control group patients switch 

Prognosis of switching 
patients 

As shown in Table 1. This makes 
switching more likely in good prognosis 
patients, via a mechanism that takes into 
account both time to progression and 
antigen value at progression 

- 

Treatment effect in switching 
patients 

Equal to baseline treatment effect 
multiplied by ω. Set ω such that 
treatment effect received by switching 
patients is 80% of the average effect 
received by experimental group patients 
in base scenarios. 

Alter ω such that the “common treatment 
effect” assumption holds – the treatment 
effect received by switching patients 
equals 100% of the average effect 
received by experimental group patients. 
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Appendix 3:  Applying the methods 

 

• Intention to Treat (ITT) 

 

The area under the curve associated with an ITT analysis was calculated simply by applying the Stata 

stci command to the unadjusted dataset which is subject to confounding by treatment switching. 

 

• Per Protocol – exclude switchers  (PPexc) 

 

The area under the curve associated with a per-protocol analysis where switching patients are 

excluded will be calculated by simply excluding all switchers and using the Stata stci command.  

 

• Per Protocol – censor switchers (PPcens) 

 

The area under the curve associated with a per-protocol analysis where switching patients are 

censored was calculated by censoring all switchers at the time at which they switch treatments, and 

using the Stata stci command on this adjusted dataset.  

 

• Inverse Probability of Censoring Weights 

 

IPCW was applied in line with the example given by Fewell et al. (2004), although we applied the 

IPCW method rather than a full marginal structural model.[43]  In addition, we only applied weights to 

patients in the control group, as our context is an RCT rather than an observational study.  

 

To apply the IPCW method using stabilised weights first the data is split into time intervals and time-

dependent covariate values are recorded for each of these intervals.  Data is excluded for switching 

patients beyond the point of switch, and OS is censored for these patients.  IPCWs are then 

estimated for each patient and for each time interval.  The numerator of each stabilised weight is the 

cumulative probability of remaining uncensored (i.e. not switching) from the beginning of follow-up to 

the end of the interval given only baseline covariates.  This is estimated for all control group patients 

for all time periods.  The denominator of the stabilised weight is the cumulative probability of 

remaining uncensored (i.e. not switching) to the end of the interval given both baseline and time-

dependent covariates.  These weights are only different from 1 for time periods during which patients 

are at risk of switching – that is after disease progression has been observed, and before 3 

consultations after disease progression have taken place.  The probabilities of remaining uncensored 

are obtained by fitting pooled logistic models with informative censoring due to treatment switching as 

the dependent variable.  A Cox proportional hazards model can then be run, weighted by the 

stabilised weights, in order to estimate an adjusted HR that estimates the average treatment effect 

which theoretically avoids confounding due to switching.  
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To test the sensitivity of the IPCW method to the no unmeasured confounders assumption we 

included two versions of the method.  In the first we included all baseline and time-dependent 

covariates and considered that patients were only at risk of switching if their “choice” covariate 

equalled 1:  

• Baseline prognosis group  

• Baseline antigen value  

• Time-to-disease progression  

• Antigen value at disease progression  

• Antigen value (which differs at each observation)  

 

In the second we simulated a situation whereby the “choice” covariate was unknown, and hence 

weights were calculated irrespective of the value of the “choice” covariate.   

 

The IPCW approach allows a weighted Kaplan-Meier (WKM) curve to be obtained, which would 

provide the optimal area under the curve measure for the method.  However, the Stata code provided 

by Fewell et al. does not provide us with this curve, and there are problems with calculating this in the 

context of a simulation study.  For the WKM to be estimated we must calculate the sum of the weights 

for all patients at-risk, and all patients who experienced the event, for each time point.  Because it is 

possible in our study that control group patients with the longest follow-up times may switch and be 

censored at an earlier date a new administrative censoring time would need to be generated for each 

simulation in order to avoid biased overestimates of mean survival being produced.  This means that 

generating the WKM accurately in a simulation study would be a very computationally-intensive 

process and therefore we took a different approach to calculating mean survival for the control group 

associated with the IPCW approach.  First we fitted a flexible parametric model (FPM) to the 

experimental group survival data (as an FPM will provide a better fit to the complex hazards simulated 

than standard parametric models).  We then predicted the survivor function and hazard function for 

the experimental group, and multiplied the experimental group hazard function by the inverse of the 

IPCW HR to obtain the control group hazard function.  From this we calculated the control group 

survivor function and calculated the area under the survival curve up to 18 months.  We termed this 

the “IPCW survivor function” approach.  This should represent a close approximation of the IPCW 

WKM, were this to be extrapolated to 1095 days.  CIs for the mean survival estimate were calculated 

by applying the 95% CIs of the estimated treatment effect in the “survivor function” process. 

 

• Rank Preserving Structural Failure Time Model 

 

The RPSFTM included in the simulation study was applied using the strbee program developed by 

White et al. (2002).[44]  The strbee program incorporates recensoring and allows baseline covariates 

to be included in the estimation procedure.  
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The RPSFTM method provides an estimate of the treatment effect adjusted for treatment switching in 

the form of an acceleration factor.  It also provides counterfactual survival times – i.e. survival times 

that would have been observed if nobody had received treatment.  In our previous study, we tested 

three approaches to calculating the control group area under the curve:[12]  

 

• Shrinkage approach.  The inverse of the AF is used to shrink survival times in patients who 

switched and the stci Stata command is used to estimate the area under the adjusted survival 

curve.  This approach does not involve full recensoring as although the AF is estimated using 

recensoring and survival times of switching patients are recensored, survival times of all other 

control group patients are not.  This creates the potential for bias. 

• Extrapolation approach.  Under this approach the recensored counterfactual survival times 

produced by the strbee command are extrapolated out to 1095 days and the area under the 

extrapolated survival curve is estimated.    

• Survivor function approach.  This approach is similar to the “survivor function” approach 

described above for the “IPCW survivor function” method, except the control group survival 

curve is derived in a slightly different way because the RPSFTM provides an acceleration 

factor rather than a hazard ratio.  An FPM is fitted to the experimental group data, and the 

survivor function derived.  The time associated with each survivor function probability is 

divided by the RPSFTM AF in order to obtain the survival times associated with the survival 

probabilities for the control group, and the area under the resulting curve is estimated up to 18 

months.   

 

Our previous simulation study demonstrated that the “extrapolation” and “survivor function” 

approaches produced similar results.[12]  We concluded that the “shrinkage” approach should not be 

relied upon due to its inherent bias.[12]  Because the “survivor function” approach is more consistent 

with the approach used for the IPCW method, and because it is less prone to potential bias 

associated with extrapolating from recensored counterfactual survival times, we only included the 

“survivor function” in the current study.  CIs for the area under the curve estimate were calculated by 

applying the 95% CIs of the estimated treatment effect in the “survivor function” process. 

 

• Iterative Parameter Estimation Algorithm 

 

The IPE algorithm approach can also be applied using the strbee Stata program.  We applied the 

method using full recensoring (rather than the partial recensoring initially recommended by Branson 

and Whitehead (2002)[35]), and included baseline covariates.  We applied the method using both a 

Weibull distribution and an exponential distribution in order to examine the sensitivity of the method to 

the parametric form chosen in the treatment effect estimation process.  

 

In addition to an AF adjusted for treatment switching, the IPE method provides us with the parameter 

values of the final parametric model used to estimate the adjusted treatment effect and these could 
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have been used to estimate mean survival at 18 months.  We tested this “extrapolation” approach 

alongside “survivor function” and “shrinkage” approaches in our previous study, and found that the 

“extrapolation” and “survivor function” approaches produced similar results.  To aid consistency with 

the IPCW and RPSFTM analyses included in this study, we used a “survivor function” approach, as 

described for the RPSFTM method above.  As for the other adjustment methods, CIs for the area 

under the curve estimate were calculated by applying the 95% CIs of the estimated treatment effect in 

the area under the curve estimation process.  As noted by Morden et al. (2011) this is likely to provide 

relatively poor coverage as the confidence intervals associated with the treatment effect from the final 

IPE iteration are underestimates.[5] 

 

• Two-stage accelerated failure time model 

 

In our previous simulation study we tested a novel “two-stage Weibull” method.[12]  The method 

performed well, generally producing low levels of bias and often producing less bias than any other 

adjustment method.  Hence, we investigated this method further in the current study.  Rather than 

relying only upon a Weibull model, we generalised the method to a two-stage AFT method – because 

it is applicable using any AFT model.  We chose to apply the method using a Weibull model, as 

before, and also using a Generalised Gamma model.  The Generalised Gamma distribution is a more 

flexible distribution than the Weibull distribution, with an additional parameter included in the model.  

Hence it may be hypothesised that this model could produce more accurate results than the Weibull.  

In reality, this will depend upon the fit of each model to the observed data, and including both 

methods will demonstrate how different results may be if different AFT models are chosen. 

 

In addition, in the current study we implement the two-stage AFT method incorporating full 

recensoring – an approach that was not taken in our initial study, but which avoids a potential bias 

associated with estimating counterfactual survival and censoring times, as discussed by White et al. 

(1999).[34] 

 

The following covariates were included in the AFT models used to estimate the treatment effect 

associated with switching patients:  

• Baseline prognosis group  

• Baseline antigen value 

• Time-to-disease progression  

• Antigen value at time of disease progression 

• Choice covariate 

 

These are the “baseline” covariates in the secondary dataset that only covers the post-progression 

period for the control group.  The resulting treatment effect was then used to shrink survival times in 

switching patients using formula (7) presented in Section 3.2.2.3.  The area under the curve of the 
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adjusted dataset produced by this method was then calculated using the Stata stci command, and 

confidence intervals were calculated using the confidence intervals of the treatment effect.  

 

Appendix 4:  Overview of simulation scenarios  

 

Table A4 presents key details associated with each of the scenarios simulated.  Scenarios 1-32 are 

the base scenarios using a 2-component mixture Weibull baseline hazard function.  Scenarios 33-64 

replicate these scenarios using a 2-component mixture Gompertz baseline hazard function.  

Scenarios 65-72 are additional scenarios investigating the impact of a larger sample size, and 

scenarios 73-80 are additional scenarios investigating the impact of extreme switching proportions.   

 

The true area under the curve (restricted mean survival) unconfounded by treatment switching is 

presented, along with the average treatment effect in terms of a hazard ratio (calculated using a Cox 

model) and an acceleration factor (calculated using a Weibull model).  These reflect the treatment 

effect calculated before switching is applied averaged across each of the 1000 simulations run for 

each scenario.  This represents only an approximation of the true treatment effect as the proportional 

hazards assumption does not hold.  In terms of a hazard ratio, the treatment effect varied between 

0.51 and 0.77. 

  

The proportion of control group patients that switch, averaged across the 1000 simulations that made 

up each scenario, is also presented.  The switching proportion varied between 5% and 70% of all 

control group patients.  Scenarios 5-8, 13-16, 21-24, 29-32 and corresponding Gompertz-based 

scenarios (37-40, 45-48, 53-56 and 61-64) were designed to result in moderately low levels of 

switching, although these levels are probabilistic and are reliant on other characteristics.  Scenarios 

73-76 investigated very low switching proportions, and Scenarios 77-80 investigated very high 

switching proportions.  Table A4 also presents the switching proportion as a percentage of the control 

group patients that became “at-risk” of switching.  In our simulations control group patients could only 

switch treatments if they were alive at their first ‘consultation’ at 21 days, if their disease progressed 

before the end of the simulated follow-up, and if they had a “choice” covariate value of ‘1’.  The 

switching proportion as a percentage of patients that became at-risk of switching is higher than when 

it is measured as a percentage of all control group patients – it ranged from 10% to 95%.  This is 

particularly important to consider for observational-based approaches such as IPCW as these 

methods are reliant upon differentiating between the patient characteristics of switchers and non-

switchers and applying inverse probability weightings based upon these characteristics.  This can only 

be achieved by comparing the patients who were at risk of switching treatments and this will become 

increasingly difficult at the extremes – either when almost all patients switch, or when very few 

patients switch.  The IPCW formulates a ‘pseudo population’ whose survival times are based upon on 

those of uncensored patients, and thus if there are very few of these patients high weightings will be 

applied which could lead to bias.  We estimated the proportion of patients who become at risk of 

switching in each scenario by collecting data on the number of patients for whom disease progression 
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was observed in each simulation.  We then calculated the mean for this value across the scenario, 

and multiplied this by 0.8, representing the proportion of patients who had a “choice” covariate value 

of ‘1’.  This is therefore approximate, but appropriately indicative for our purposes.  

 

Table A4 also presents details on whether the treatment effect was assumed to be “common” – that 

is, whether the treatment effect received by switchers was the same as the average treatment effect 

received by patients initially randomised to the experimental group.  In scenarios 9-16, 25-32, 41-48, 

57-64 and 69-72 the “common treatment effect” assumption held.  To provide further information on 

the strength of the time-dependent effect in each scenario we also include details on the treatment 

effect size received by switchers.  

 

Table A4 also presents details on the mean proportion of patients that were censored in each 

scenario – that is, the proportion for whom death was not observed.  This varied between 13% and 

56%. 
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Table A4:  Overview of Scenarios 

Scenario 

Truth (years) Average treatment 
effects Mean 

switcher % 
of total 

Mean 
switcher % 
of at risk 

Mean 
censoring 
proportion 
(%) 

Sample 
size 

Data 
generating 
model 

Common 
treatment 
effect? 

Treatment 
effect in 
switchers 
(AF) 

% of exp 
group 
treatment 
effect 

Restricted 
mean (Control 
group) 

Restricted 
mean (Exp 
group) 

HR AF 

1 0.56 0.79 0.51 1.54 43.60% 58.26% 13.59% 500 Weibull No 1.43 80% 

2 0.99 1.20 0.52 1.78 30.03% 60.33% 55.80% 500 Weibull No 1.63 80% 

3 0.64 0.74 0.76 1.22 43.09% 61.20% 15.03% 500 Weibull No 1.17 80% 

4 0.99 1.08 0.77 1.25 30.52% 61.13% 46.60% 500 Weibull No 1.20 80% 

5 0.56 0.79 0.51 1.54 17.77% 23.78% 13.42% 500 Weibull No 1.43 80% 

6 0.99 1.20 0.52 1.78 12.88% 25.86% 55.21% 500 Weibull No 1.63 80% 

7 0.64 0.74 0.76 1.22 18.18% 25.87% 15.15% 500 Weibull No 1.17 80% 

8 0.99 1.08 0.77 1.25 13.24% 26.55% 46.58% 500 Weibull No 1.20 80% 

9 0.56 0.79 0.51 1.54 43.63% 58.27% 13.74% 500 Weibull Yes 1.54 100% 

10 0.99 1.20 0.52 1.78 30.04% 60.53% 56.35% 500 Weibull Yes 1.78 100% 

11 0.64 0.74 0.76 1.22 42.86% 60.90% 15.09% 500 Weibull Yes 1.22 100% 

12 0.99 1.08 0.77 1.25 30.66% 61.63% 46.82% 500 Weibull Yes 1.25 100% 

13 0.56 0.79 0.51 1.54 17.78% 23.76% 13.52% 500 Weibull Yes 1.54 100% 

14 0.99 1.20 0.52 1.78 12.86% 25.86% 55.53% 500 Weibull Yes 1.78 100% 

15 0.64 0.74 0.76 1.22 18.00% 25.61% 15.04% 500 Weibull Yes 1.22 100% 

16 0.99 1.08 0.77 1.25 13.14% 26.44% 46.70% 500 Weibull Yes 1.25 100% 

17 0.56 0.79 0.51 1.54 43.65% 58.34% 13.48% 300 Weibull No 1.43 80% 

18 0.99 1.20 0.52 1.78 29.90% 60.27% 55.81% 300 Weibull No 1.63 80% 

19 0.64 0.74 0.76 1.22 43.08% 61.18% 15.00% 300 Weibull No 1.17 80% 

20 0.99 1.08 0.77 1.25 30.35% 60.91% 46.69% 300 Weibull No 1.20 80% 

21 0.56 0.79 0.51 1.54 17.82% 23.81% 13.45% 300 Weibull No 1.43 80% 

22 0.99 1.20 0.52 1.78 12.95% 26.03% 55.34% 300 Weibull No 1.63 80% 

23 0.64 0.74 0.76 1.22 18.22% 25.90% 15.05% 300 Weibull No 1.17 80% 

24 0.99 1.08 0.77 1.25 13.07% 26.43% 46.74% 300 Weibull No 1.20 80% 

25 0.56 0.79 0.51 1.54 43.58% 58.25% 13.64% 300 Weibull Yes 1.54 100% 
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Scenario 

Truth (years) Average treatment 
effects Mean 

switcher % 
of total 

Mean 
switcher % 
of at risk 

Mean 
censoring 
proportion 
(%) 

Sample 
size 

Data 
generating 
model 

Common 
treatment 
effect? 

Treatment 
effect in 
switchers 
(AF) 

% of exp 
group 
treatment 
effect 

Restricted 
mean (Control 
group) 

Restricted 
mean (Exp 
group) 

HR AF 

26 0.99 1.20 0.52 1.78 30.34% 60.85% 56.14% 300 Weibull Yes 1.78 100% 

27 0.64 0.74 0.76 1.22 42.97% 61.12% 15.11% 300 Weibull Yes 1.22 100% 

28 0.99 1.08 0.77 1.25 30.54% 61.54% 46.85% 300 Weibull Yes 1.25 100% 

29 0.56 0.79 0.51 1.54 17.97% 23.96% 13.46% 300 Weibull Yes 1.54 100% 

30 0.99 1.20 0.52 1.78 13.02% 26.12% 55.58% 300 Weibull Yes 1.78 100% 

31 0.64 0.74 0.76 1.22 18.07% 25.71% 15.17% 300 Weibull Yes 1.22 100% 

32 0.99 1.08 0.77 1.25 13.05% 26.36% 46.86% 300 Weibull Yes 1.25 100% 

33 0.54 0.78 0.51 1.60 40.89% 55.89% 13.82% 500 Gompertz No 1.48 80% 

34 0.99 1.19 0.52 1.77 33.77% 54.62% 55.23% 500 Gompertz No 1.62 80% 

35 0.63 0.74 0.76 1.24 42.71% 59.91% 15.66% 500 Gompertz No 1.19 80% 

36 0.99 1.08 0.77 1.25 36.23% 58.54% 46.17% 500 Gompertz No 1.20 80% 

37 0.54 0.78 0.51 1.60 16.78% 22.91% 13.59% 500 Gompertz No 1.48 80% 

38 0.99 1.19 0.52 1.77 13.64% 22.04% 54.59% 500 Gompertz No 1.62 80% 

39 0.63 0.74 0.76 1.24 18.00% 25.26% 15.77% 500 Gompertz No 1.19 80% 

40 0.99 1.08 0.77 1.25 15.28% 24.70% 46.11% 500 Gompertz No 1.20 80% 

41 0.54 0.78 0.51 1.60 40.82% 55.77% 13.89% 500 Gompertz Yes 1.60 100% 

42 0.99 1.19 0.52 1.77 33.77% 54.59% 55.61% 500 Gompertz Yes 1.77 100% 

43 0.63 0.74 0.76 1.24 42.52% 59.78% 15.78% 500 Gompertz Yes 1.24 100% 

44 0.99 1.08 0.77 1.25 36.24% 58.57% 46.26% 500 Gompertz Yes 1.25 100% 

45 0.54 0.78 0.51 1.60 16.64% 22.74% 13.65% 500 Gompertz Yes 1.60 100% 

46 0.99 1.19 0.52 1.77 13.59% 21.94% 54.84% 500 Gompertz Yes 1.77 100% 

47 0.63 0.74 0.76 1.24 17.98% 25.21% 15.64% 500 Gompertz Yes 1.24 100% 

48 0.99 1.08 0.77 1.25 15.24% 24.66% 46.13% 500 Gompertz Yes 1.25 100% 

49 0.54 0.78 0.51 1.60 40.30% 55.16% 13.67% 300 Gompertz No 1.48 80% 

50 0.99 1.19 0.52 1.77 33.99% 54.89% 55.21% 300 Gompertz No 1.62 80% 

51 0.63 0.74 0.76 1.24 42.60% 59.79% 15.85% 300 Gompertz No 1.19 80% 
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Scenario 

Truth (years) Average treatment 
effects Mean 

switcher % 
of total 

Mean 
switcher % 
of at risk 

Mean 
censoring 
proportion 
(%) 

Sample 
size 

Data 
generating 
model 

Common 
treatment 
effect? 

Treatment 
effect in 
switchers 
(AF) 

% of exp 
group 
treatment 
effect 

Restricted 
mean (Control 
group) 

Restricted 
mean (Exp 
group) 

HR AF 

52 0.99 1.08 0.77 1.25 36.45% 58.84% 46.15% 300 Gompertz No 1.20 80% 

53 0.54 0.78 0.51 1.60 16.42% 22.46% 13.64% 300 Gompertz No 1.48 80% 

54 0.99 1.19 0.52 1.77 13.71% 22.13% 54.58% 300 Gompertz No 1.62 80% 

55 0.63 0.74 0.76 1.24 18.01% 25.27% 15.54% 300 Gompertz No 1.19 80% 

56 0.99 1.08 0.77 1.25 15.24% 24.65% 46.10% 300 Gompertz No 1.20 80% 

57 0.54 0.78 0.51 1.60 40.79% 55.73% 13.94% 300 Gompertz Yes 1.60 100% 

58 0.99 1.19 0.52 1.77 33.86% 54.61% 55.51% 300 Gompertz Yes 1.77 100% 

59 0.63 0.74 0.76 1.24 42.54% 59.71% 15.70% 300 Gompertz Yes 1.24 100% 

60 0.99 1.08 0.77 1.25 36.23% 58.52% 46.31% 300 Gompertz Yes 1.25 100% 

61 0.54 0.78 0.51 1.60 16.63% 22.70% 13.59% 300 Gompertz Yes 1.60 100% 

62 0.99 1.19 0.52 1.77 13.72% 22.19% 54.81% 300 Gompertz Yes 1.77 100% 

63 0.63 0.74 0.76 1.24 17.81% 25.05% 15.65% 300 Gompertz Yes 1.24 100% 

64 0.99 1.08 0.77 1.25 15.27% 24.68% 46.06% 300 Gompertz Yes 1.25 100% 

65 0.56 0.79 0.51 1.54 43.44% 58.07% 13.57% 1000 Weibull No 1.43 80% 

66 0.99 1.20 0.52 1.78 30.04% 60.39% 55.90% 1000 Weibull No 1.63 80% 

67 0.64 0.74 0.76 1.22 43.01% 61.13% 15.05% 1000 Weibull No 1.17 80% 

68 0.99 1.08 0.77 1.25 30.35% 61.10% 46.78% 1000 Weibull No 1.20 80% 

69 0.56 0.79 0.51 1.54 43.57% 58.24% 13.77% 1000 Weibull Yes 1.54 100% 

70 0.99 1.20 0.52 1.78 30.16% 60.53% 56.21% 1000 Weibull Yes 1.78 100% 

71 0.64 0.74 0.76 1.22 42.87% 60.90% 15.14% 1000 Weibull Yes 1.22 100% 

72 0.99 1.08 0.77 1.25 30.56% 61.27% 46.79% 1000 Weibull Yes 1.25 100% 

73 0.56 0.79 0.51 1.54 7.34% 9.81% 13.27% 500 Weibull No 1.43 80% 

74 0.99 1.20 0.52 1.78 5.41% 10.85% 54.85% 500 Weibull No 1.63 80% 

75 0.64 0.74 0.76 1.22 7.68% 10.92% 14.95% 500 Weibull No 1.17 80% 

76 0.99 1.08 0.77 1.25 5.58% 11.18% 46.30% 500 Weibull No 1.20 80% 

77 0.56 0.79 0.51 1.54 70.20% 93.80% 13.67% 500 Weibull No 1.43 80% 
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Scenario 

Truth (years) Average treatment 
effects Mean 

switcher % 
of total 

Mean 
switcher % 
of at risk 

Mean 
censoring 
proportion 
(%) 

Sample 
size 

Data 
generating 
model 

Common 
treatment 
effect? 

Treatment 
effect in 
switchers 
(AF) 

% of exp 
group 
treatment 
effect 

Restricted 
mean (Control 
group) 

Restricted 
mean (Exp 
group) 

HR AF 

78 0.99 1.20 0.52 1.78 47.22% 94.45% 56.06% 500 Weibull No 1.63 80% 

79 0.64 0.74 0.76 1.22 66.39% 94.32% 15.15% 500 Weibull No 1.17 80% 

80 0.99 1.08 0.77 1.25 47.11% 94.91% 46.73% 500 Weibull No 1.20 80% 
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Appendix 5:  Relative Bias Scenarios 1-16 

 

Figure A5: Relative bias Scenarios 1-16 
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Appendix 6:  Relative Bias Scenarios 17-32 

Figure A6: Relative bias in Scenarios 17-32 
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