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Abstract

Minimal basis sets, denoted DSBSenv, have been developed based on the segmented

basis sets of Ahlrichs and co-workers for use as environmental basis set for the domain-

specific basis set incremental scheme with the aim of decreasing the CPU requirements

of the incremental scheme. The use of this minimal basis within explicitly correlated

(F12) methods has been enabled by the optimization of matching auxiliary basis sets

for use in density fitting of two-electron integrals and the resolution-of-the-identity.

The accuracy of these auxiliary sets has been validated by calculations on a test set

containing small- to medium-sized molecules. The errors due to density fitting are about

two to four orders of magnitude smaller than the basis set incompleteness error of the

DSBSenv orbital basis sets. Additional reductions in computational cost are tested

with the reduced DSBSenv basis sets, where the highest angular momentum functions

of the DSBSenv auxiliary basis sets have been removed. The optimized and reduced

basis sets are used in the framework of the domain-specific basis set of the incremental

scheme to decrease the computation time without significant loss of accuracy. The

computation times and accuracy of the previously used environmental basis and that

optimized in this work is validated with a test set of medium- to large-sized systems.

The optimized and reduced DSBSenv basis sets decrease the CPU-time by about 15.4 %

and 19.4 % compared to the old environmental basis and retains the accuracy in the

absolute energy with a standard deviation of 0.99 and 1.06 kJ/mol, respectively.

Introduction

The application of highly accurate wave function based methods to large systems is a chal-

lenging research field in the last few years. A primary goal is to have an alternative method

to density functional theory, which is systematically improvable and can be applied for

even larger systems. Coupled-cluster with single, double and perturbative triple excitations

[CCSD(T)] with an appropriate basis set is currently the “gold standard” of quantum chem-

istry.1–4 Due to its unfavorable scaling with respect to system size, different strategies are
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frequently used to make CCSD(T) applicable. The first deals with the slow convergence

of the coupled-cluster energies with respect to the one-particle basis set. To overcome this

drawback complete basis set extrapolations,5–7 interference-corrected coupled-cluster8–11 or

explicitly correlated methods6,12–19 are frequently used strategies. The convergence with re-

spect to the complete basis set (CBS) limit is improved and therefore smaller basis sets can

be used to achieve accurate energies with affordable computational cost.

Another strategy to reduce the computational effort is to introduce local approximations

in the wave function with the goal of reducing the scaling with system size. With the fun-

damental work of Pulay and Sæbø20–24 many groups have developed local methods includ-

ing Werner’s local coupled-cluster methods,17,18,25–33 Neese’s pair natural orbitals (PNOs)

coupled-cluster34–44 and Yang’s orbital specific virtuals (OSVs) coupled-cluster.33,45–47 The

incremental scheme proposed by Stoll48–55 is another local method and is frequently used

by Dolg,56–60 Friedrich61–66 and Paulus.54,67–72 A fully automated implementation of this

scheme for MP2 and CCSD(T) and the corresponding explicitly correlated methods were

developed by Friedrich73–80 and Dolg.56,57 The incremental scheme very efficiently delivers

highly accurate energies81,82 and properties66,83,84 for closed- and open-shell systems.85,86

In this work, the computational speed performance of the automated incremental scheme of

Friedrich shall be improved. The main approximation for improving the computation times

is the application of the domain-specific basis set. With this approach the virtual space of

a domain is reduced in order to save computational time and is discussed in detail below.

In previous work, the SV orbital basis set (OBS) of Ahlrichs87 was used in conjunction with

the SVP auxiliary basis sets (ABS)88 in both the density fitting of two electron integrals

in density-fitted MP2 (DF-MP2) and as the complementary basis for explicitly correlated

methods (F12) within the complementary auxiliary basis set (CABS)89 approach to the

resolution-of-identity (RI) approximation of many electron integrals. This combination was

used as an ad hoc guess to describe the environment of a domain in the domain-specific

basis set. Therefore, the aim is to construct a minimal OBS along with specifically matched
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ABS to improve the computational speed performance of the incremental scheme. Another

main goal is to achieve negligible loss of accuracy in using the newly developed basis sets.

The DSBSenv basis sets are optimized for the first three periods of the periodic table and

these basis sets are then used in the incremental scheme with the domain-specific basis set.

Moreover, the reduced DSBSenv basis sets remove the highest angular momentum functions

in the ABS to further improve computational speed performance. We compare the old envi-

ronmental SV/SVP basis sets with the newly optimized and reduced DSBSenv sets in respect

to the computation times of the incremental scheme as well as the accuracy in the absolute

correlation energy and relative energies.

Incremental Scheme

For an incremental calculation of the correlation energy, the system is divided into one-site

domains consisting of disjoint sets of localized occupied orbitals.61,62 The correlation energy

of the total system is computed through a truncated many-body expansion, summing the

correlation energy of these one-site domains and energy corrections for pairs, triples, etc. of

these domains that approximately account for the non-additivity of the correlation energy.

The incremental expansion of the correlation energy reads:50,61

Ecorr =
∑

X

X∈P(D)∧|X|≤n

∆εX (1)

where P(D) is the power set of the set of domains D. The restriction to the cardinality of

the sets X truncates the incremental series at the desired order n and the increment ∆εX is

defined as

∆εX = εX −
∑

Y

Y∈P(X)∧|Y|<|X|

∆εY. (2)
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εX is the correlation energy of the domain X. Each domain is a set of localized occupied

orbitals (LMOs), grouped using METIS graph partitioning90 on the basis of charge-center

distance criteria, and a subsequent pairwise refinement.79

The Domain-Specific Basis Set Approximation

To further improve the computational speed performance of the incremental scheme, for each

incremental domain calculation the virtual space is reduced by using a domain-specific basis

set, where the high quality basis set is used only at the atoms close to the charge centers of

the domain and a small basis set is used at the remaining atoms.63,73,76,91

In this approach, we construct the domains from Boys-localized molecular orbitals obtained

from a SCF calculation on the whole molecule in a small basis, which we are free to choose

(we use the SV and the DSBSenv OBS developed in this work). The incremental correlation

energy of a domain is computed after a Hartree-Fock (HF) calculation in the composed

domain-specific basis set, and a unique mapping of the localized molecular orbitals in the

domain-specific basis set to the small basis calculation. The computational time for the

additional HF calculation is negligible compared to the CCSD(T) calculation for the domain.

The environment of a domain is included in an incremental calculation to avoid artificial

errors in the wave function. The reduction of the virtual space using a small environmental

basis introduces errors in the incremental correlation energies, but we can effectively correct

this using the incremental MP2 error. With the newly optimized DSBSenv basis sets, we

use a minimal basis for the environment and want to investigate the influence of a larger

virtual space reduction on the accuracy and computation time of the incremental scheme.

In addition to improving computational speed performance, smaller environmental basis sets

enable the use of high quality basis sets for the correlation treatment.
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MP2 Error Correction

The domain-specific basis set approach introduces an error in the CCSD(T)(F12*)14,15,92

energy. The leading contributions to these errors can be subtracted using the relatively

cheap MP2 method, computed in the target basis

E inc
corr(CCSD(T)(F12*)|MP2-F12)

= E inc
corr(CCSD(T)(F12*))−

(

E inc
corr(MP2-F12)− Ecorr(MP2-F12)

)

(3)

The MP2 error correction allows us to truncate the incremental expansion at second order

for water clusters and at third order for organic systems, for both open-shell and closed-shell

systems.79,80,82,93

Basis Set Development

In the following, we present the development of the DSBSenv OBS and ABS basis sets for

the atoms of the first three periods of the periodic table, i.e. period 1 (H and He), period 2

(Li–Ne) and period 3 (Na–Ar).

The DSBSenv Orbital Basis Sets

The DSBSenv OBS was constructed by recontracting the def-SV basis set primitives of

Ahlrichs and co-workers87,94 to form a minimal basis with a segmented contraction scheme.

For this purpose, we used the atomic orbital (AO) coefficients from symmetry adapted

HF calculations on atomic ground-states carried out using the MCSCF program in MOL-

PRO.95,96 For the H and He atoms, the 4s functions are contracted to 1s function, for the

atoms Li–Ne 7s4p to 2s1p, and for the atoms Na–Ar 10s7p to 3s2p. The final composition of

the basis sets are shown in Table 1, along with the composition of the matched auxiliary basis

sets. The DSBSenv basis sets (including ABSs) can be found in the Supporting Information

(SI).
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Table 1: Composition of the DSBSenv orbital and the auxiliary MP2Fit and
CABS basis sets for the elements H–Ar.

Element OBS MP2Fit CABS

H,He (4s) → [1s] (4s3p) → [3s2p] (4s4p2d)
Li,Be (7s4p) → [2s1p] (9s5p3d) → [5s5p1d] (6s6p5d3f)
B–Ne (7s4p) → [2s1p] (8s6p5d) → [5s5p4d] (6s6p5d3f)
Na,Mg (10s6p) → [3s2p] (10s8p5d) → [5s5p2d] (6s6p5d3f)
Al–Ar (10s7p) → [3s2p] (10s7p7d) → [5s5p5d] (6s6p5d3f)

The DSBSenv/MP2Fit Auxiliary Basis Sets

Auxiliary basis sets for use in density fitting of two-electron integrals (suffixed MP2Fit)

matched to the DSBSenv basis have been optimized using a methodology based on that

of Hättig and Weigend et al.88,97 The functional δDF is minimized for neutral ground-state

atoms using the analytical ABS gradients provided by the ricc2 module88,97–99 of TURBO-

MOLE:100

δDF =
1

4

∑

aibj

(〈ab||ij〉DF − 〈ab||ij〉)2

ǫa − ǫi + ǫb − ǫj
(4)

where the antisymmetrized two electron integrals are defined as 〈ab||ij〉 = (ai|bj)− (aj|bi).

The integrals are in chemists notation, with i, j denoting occupied orbitals, a, b virtual or-

bitals and ǫx the HF orbital energies. Full details of the optimization can be found in the SI,

but briefly the ABS uses the exponents of the def-SV(P)/MP2Fit ABS88,97 primitives with

a reoptimization of the contraction coefficients to produce a new, smaller contraction pattern.

The accuracy of the optimized MP2Fit auxiliary basis sets has been investigated at the

molecular level with a test set of 104 small- to medium-sized systems derived from Kritikou’s

extension of Weigend’s test set.101,102 The noble gas atoms have been removed from the

test set as the minimal basis means they have no virtual orbitals to allow a correlation

treatment. The 101 remaining systems of the test set do possess virtual orbitals due to the
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linear combination of AOs (LCAO). The statistics of the ∆DF error, defined as the absolute

error in the MP2 correlation energy, for the test set are shown in Table 2, along with an

estimate of the conventional MP2/DSBSenv BSIE. The latter is assessed by using MP2-

F12/cc-pVQZ-F12 correlation energies as a simple estimate of the complete basis set limit.

These F12 calculations used the (R)MP2-F12 method103,104 with the 3C(FIX) Ansatz,105 a

geminal Slater exponent of 1.0 and correlation consistent basis sets optimized specifically

for use with F12 methods.106,107 It can be seen from Table 2 that the density fitting error is

three to four orders of magnitude smaller than the conventional BSIE, indicating that the

errors introduced in the density fitting are negligible. As it is envisaged that the DSBSenv

basis will be used in explicitly correlated calculations, Table 2 also contains an estimate

of the MP2-F12/DSBSenv BSIE, and it is evident that the BSIE is reduced by a factor of

roughly 2–5 through the use of explicit correlation. A comparison of the MP2-F12 BSIE

and ∆DF shows that the density fitting error is roughly three orders of magnitude smaller

than this measure of BSIE and hence the MP2Fit ABS developed in this work should also

be appropriate for density fitting in the explicitly correlated context.

Table 2: DSBSenv frozen-core correlation energy errors (µEh, per correlated
electron) relative to the MP2-F12/cc-pVQZ-F12 energy for the test set of 101
molecules. ∆DF evaluates the MP2 density fitting error using the optimized
MP2Fit ABS and ∆RI gives the MP2-F12 error of the optimized OptRI ABS
relative to the large even-tempered sets.

Error Type µ σ MAX

BSIE (MP2) 27309.75 8619.67 40179.23
BSIE (MP2-F12) 6041.94 2725.67 25659.05
∆DF (MP2Fit) 7.08 9.35 50.28
∆RI (OptRI) 14.24 14.57 60.57

The DSBSenv/OptRI Complementary Auxiliary Basis Sets

RMP2-F12103,104 calculations with the diagonal 3C(D) Ansatz and a geminal slater exponent

of 1.4 were used to optimize the exponents of the ABS to be used in the CABS procedure.
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For this purpose, either the Broyden-Fletcher-Goldfarb-Shanno (BFGS)108 or Nelder-Mead

simplex algorithm109 were used. The optimizations were performed with a locally modified

version of MOLPRO and use the diagonal elements of the intermediate V and B matrices,

which appear in F12 theory.103 The resulting ABSs follow the OptRI design philosophy of

Peterson and co-workers, with the exponents optimized by minimizing the objective function

δRI,
110 where the superscript ref indicates a large, almost complete, RI basis.

δRI =
∑

ij

(

V RI
ij,ij − V RIref

ij,ij

)2

∣

∣

∣
V RIref
ij,ij

∣

∣

∣

+

(

BRI
ij,ij − BRIref

ij,ij

)2

∣

∣

∣
BRIref

ij,ij

∣

∣

∣

(5)

δRI has units of energy and is always positive. The value ∆RI is also introduced to indicate

the energetic error due to using an incomplete ABS in the RI.

∆RI =
∣

∣EOptRI
corr − Eref

corr

∣

∣ (6)

Large even-tempered basis sets of Hill107,111 were used as reference RI ABS. These uncon-

tracted sets have 21s18p14d12f10g8h6i functions for H and He, 28s26p22d22f20g18h15i

functions for Li–Ne, and 29s27p23d20f18g17h15i functions for Na–Ar. Additionally the

aug-cc-pV5Z/MP2Fit112 and cc-pV5Z/JKFit101,113 ABS were used in the density fitting of

the two-electron integrals, and the Fock and exchange matrices. Additional optimization

details are included in the SI.

Table 3: RI errors in the frozen-core correlation energy (per correlated electron,
relative to a large even-tempered reference set) at the MP2-F12 level for the
atoms H–Ar. ∆RI illustrates the error in the absolute energy.

∆RI [µEh] δRI [nEh]
Element µ σ MAX µ σ MAX

H2, He 1.67 1.92 3.03 0.33 0.03 0.35
Li–Ne 9.64 7.87 20.58 1.77 2.24 7.17
Na–Ar 9.55 8.99 22.03 6.16 4.15 10.69

H–Ar 8.72 8.10 22.03 3.56 3.88 10.69
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The statistics of the δRI and ∆RI atomic errors are shown in Table 3, where it can be seen

that the average energetic error per correlated electron is less then 10 µEh. The period two

and three elements have the same composition for the OptRI basis and therefore, the small

increase in the statistical errors in the optimization criteria δRI are not entirely surprising. It

is noted in passing that the DSBSenv/OptRI ABSs are almost equivalent in size to cc-pVDZ-

F12/OptRI (the latter have fewer spd functions, but require higher angular momentum g-

type functions). This is presumably due to the unified OBS and ABS needing to span a

specific space in order to accurately reproduce the RI integrals, and in the present case the

relatively large CABS compensates for the minimal nature of the OBS. The optimized OptRI

ABS are also analyzed in terms of molecular error using the same test set as above for density

fitting errors, with results displayed in Table 2. The error related to using the OptRI ABSs

is once again insignificant compared to the MP2-F12 BSIE, as it is two to three orders of

magnitude smaller. The reader is reminded at this stage that the main goal of this basis set

development is to provide an efficient environmental basis set for the domain-specific basis

set approach in order to increase the computational speed performance of the incremental

scheme.

The reduced DSBSenv Auxiliary Basis Sets

The domain-specific basis set approach is the most important approximation within our

incremental scheme to decrease the computation time and enable local correlation with

large basis sets. Therefore, the use of minimal basis sets for the environment is preferable,

but one has to take account of the errors introduced. The reduction of the virtual space

using the DSBSenv OBS introduces a larger error than the density fitting. The DSBSenv

minimal OBS is used for the environment of a domain, which is an insufficient description

of the environment with regard to the large target basis used for the main part of a domain.

This unbalanced basis leads to HF orbitals different to those of the target basis. Thus,

the incremental scheme in combination with the domain-specific basis set approach has
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different HF orbital spaces for every domain calculation.63 We can assess this error with

the incremental MP2 error, as shown in previous studies.79 It is expected that the density

fitting in the environment has a negligible error compared to the use of a minimal basis (see

Tab. 7). Therefore, we try to improve the computational speed performance of the domain-

specific basis incremental scheme by removing the highest angular momentum functions from

the MP2Fit and OptRI ABSs matched to the DSBSenv basis set. All other exponents and

contraction coefficients remain fixed at their optimized values. These ABSs are referred to

as rDSBSenv, which are used in conjunction with the DSBSenv OBS. The compositions of

the MP2Fit and OptRI rDSBSenv ABSs are shown in Table 4.

Table 4: Composition of the auxiliary reduced DSBSenv (rDSBSenv) MP2Fit
and CABS basis sets for the elements H–Ar. The rDSBSenv ABSs use the
DSBSenv OBSs.

Element MP2Fit CABS

H,He (4s) → [3s] (4s4p)
Li,Be (9s5p) → [5s5p] (6s6p5d)
B–Ne (8s6p) → [5s5p] (6s6p5d)
Na,Mg (10s8p) → [5s5p] (6s6p5d)
Al–Ar (10s7p) → [5s5p] (6s6p5d)

Application in the Incremental Scheme

The TURBOMOLE 6.6 program package100 was used for all reference and incremental cal-

culations to investigate the computation time and accuracy of the above optimized DSB-

Senv basis sets. For the density-fitted explicitly correlated calculations MP2-F12114 and

CCSD(T)(F12*),14,15,92 the optimized cc-pVDZ-F12 basis sets106,107 were used. All calcula-

tions used the frozen core approximation. Therefore, the 1s electrons of the Be–Al atoms,

and the 1s2s2p electrons of the Si–Ar atoms are excluded from the correlation treatment.

Third-order incremental MP2-F12 [i3MP2-F12], CCSD(T)(F12*) [i3CC(F12*)] and MP2-

F12 corrected CCSD(T)(F12*) [i3CC(F12*)|MP2]79,80,82,93 calculations were performed with
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our fully automated implementation.73–80 For the small basis in the domain-specific basis

approach,91 we employed either the SV basis and the SV(P) auxiliary basis sets or the newly

optimized DSBSenv basis sets for all atoms. The distance threshold used to specify the

atoms belonging to a domain was tmain = 3.0 a0, as recommended in previous work.80,93 The

calculations employed an order-dependent distance threshold tdist(i), set using the truncation

parameter f = 30 a0 as recommended previously.79

tdist(i) =
f

(i− 1)2
(7)

All incremental computations were performed on a cluster of 71 nodes connected by stan-

dard gigabit Ethernet. Each node is equipped with an Intel Xeon E3-1270 3.4 GHz Quad-core

CPU, 8 GB RAM, and a single hard disk of 1TB.

For the following investigations a test set was optimized which contains all elements of

the first, second and third periods of the periodic table. The structures were optimized

with the BP86/def2-TZVP88,94 method or were taken from the literature.79,115 The noble

gas structures were optimized with a dispersion correction116 (BP86-D3/def2-TZVPP). The

test set contains 37 systems and is divided into two subsets. Subset I consists of neutral and

ionic cluster structures (10 systems), for which the incremental scheme has an outstanding

accuracy with the old environmental basis sets. For the noble gas structures, i.e. He10,

Ne10, and Ar14, we chose every atom as a domain. Subset II exists of diverse covalent bound

systems (27 systems) with aromatic π systems as critical tests for the incremental scheme.

Additionally, the test set can be divided into a subset containing only elements from periods

one and two (period 2 subset) and a subset containing elements from periods one, two and

three (period 3 subset). The structures investigated are displayed in Figure 1.
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I, period 2 II, period 3 II, period 3

II, period 2 II, period 2 II, period 2

II, period 2 II, period 2 II, period 2

II, period 2 II, period 2 II, period 3

II, period 2 II, period 2 II, period 3

II, period 3 II, period 3 II, period 3

II, period 3 II, period 3 I, period 3
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II, period 3 II, period 3 II, period 3

I, period 3 I, period 2 II, period 3

I, period 2 I, period 2 II, period 3

II, period 3 I, period 3 II, period 2

II, period 3 I, period 2 I, period 3

I, period 2

Figure 1: Structures of the systems in the test set. The structures are ordered according
to increasing correlation energy. Additionally their sub groups are mentioned: neutral and
ionic clusters (I), organic and organic aromatic systems (II), containing elements only from
periods one and two (period 2), and containing elements from periods one, two and three
(period 3).
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Computation Time

For all incremental calculations, the thresholds given above are used. The reference calcula-

tions were done on one of the above mentioned nodes. Only the calculations for the (HF)12

and Ar14 structures needed to be done on a larger node with 12 cores and 64GB RAM. All in-

cremental calculations were done with one core for the incremental server and 10 clients with

4 cores to carry out the calculations. This ensures a comparable communication between the

server and the clients. The advantage of our incremental scheme is the high parallelization

of the clients. The clients can use the parallelization of the TURBOMOLE suite to increase

the speed performance and additionally one can use as many clients as calculations needed

to be done to decrease the wall-time, i.e. the wall-time is as long as the longest incremental

calculation. In this work, we concentrate on the better comparable CPU-time, which delivers

us the real time savings in the incremental calculations.

In the framework of the domain-specific basis set, the small environmental basis set is used

for an automatic generation of the one-site domains. The orbitals of the domain in the

domain-specific basis set are identified with the charge centers of the localized molecular

orbitals (LMOs). For this purpose, we use the Boys localization in combination with our

template localization for a unique mapping.91 The second orthogonal transformation is nec-

essary, since the Boys localization has more than one maximum, e.g. for aromatic π systems.

Due to the re-contraction of the basis functions of the new DSBSenv OBS, the LMOs can

be different to the ones of the SV OBS, which can lead to a different number of one-site

domains as well as different one-site domains. In a few cases, i.e. the 4-methyl-pyrazol

and 5-methyl-imidazol, the DSBSenv OBS led to more domains than the SV OBS using the

default parameters. In such cases, we defined the domains to be equal by hand, in order to

retain a one to one comparability.

The test set contains structures with different atoms and spatial distribution. This in-

troduces many parameters which makes a systematically analysis very difficult. There-

fore, we give exemplary structures with the lowest and the highest time savings when the
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Table 5: CPU-times for the third-order incremental MP2-F12 corrected
CCSD(T)(F12*) energies. The structures with the lowest (CH2

−−CHCOCl) and
the highest (HSiEt3) time savings, and the largest structure ((HF)12) of the test
set are listed as well as the number of domains (#dom). The percentage time
savings reflect the time savings using the DSBSenv or rDSBSenv basis sets in-
stead of the SV basis sets. In the last line the arithmetic mean µ of the time
savings for the whole test set are added. In general, the time savings increase
with the system size.

CPU-time [h] time savings [%]
#dom. ref. SV DSBSenv rDSBSenv DSBSenv rDSBSenv

CH2
−−CHCOCl 4 1.1 2.3 2.2 2.2 2.5 2.1

HSiEt3 6 27.7 67.0 41.2 46.6 38.5 30.5
(HF)12 12 537.3a 93.4 58.4 44.6 37.0 52.2

mean savings 15.4 19.4

a The canonical reference calculation was performed on a node with 12 cores and 64 GB RAM,
since it was not computable on the other nodes.

smaller DSBSenv basis sets are used instead of the old SV/SV(P) basis sets in Table 5. The

CH2
−−CHCOCl structure is partitioned into 4 domains for the incremental correlation treat-

ment. For such small-sized molecules, we do not expect large time savings (2.5 or 2.1 %).

Also the smaller rDSBSenv ABSs have nearly no influence on the computation time. The

difference of 0.4 % is due to the implementation of the incremental scheme. There are dif-

ferent procedures which needs to fulfill convergence criteria, e.g. the template localization.

The template localization has no parallel implementation and is done for every domain cal-

culation. This can lead to different number of cycles until a given threshold is reached. The

HSiEt3 structure is divided into 6 domains and has the largest percentage time savings with

38.5% for the full calculation. As discussed before, we used the incremental scheme with the

default parameters as black box method. In this case, the screening of small increments with

the order-dependent distance threshold79 neglects more incremental calculations for the old

SV environmental basis sets than the new DSBSenv ones, but the latter still has a much

better speed performance. Without screening of small increments, the HSiEt3 structure is

calculated six first-order, 15 second-order and 20 third-order incremental domains. Using

screening, three and one third-order domains are screened for the SV and DSBSenv basis
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sets, respectively. It should be mentioned that the third-order domains have the highest

computational demand, as they are merged from the first-order domains. This illustrates

that a straightforward discussion of the computation time improvement is quite difficult,

since we do not want to make further assumptions for the incremental scheme. The (HF)12

structure has the largest correlation energy of the test set. The screening of small increments

neglects the same calculations for both environmental OBS. In this case we save 35 h and

48.8 h CPU-time for the DSBSenv and rDSBSenv basis sets, respectively. Moreover, the

canonical calculation needed to be done on a larger node with 12 cores and 64GB RAM.

The larger amount of memory should make the calculation additionally much faster. Com-

paring the CPU-times, we can see that both incremental calculations are much faster than

the reference calculation on nodes with less memory. In summary, the newly optimized DS-

BSenv OBSs and ABSs as well as the rDSBSenv ABSs improve the speed performance in

all test cases without significant loss of accuracy (see discussion below). The He10 system is

the only exception, but due to the fast canonical CCSD(T)(F12*)/cc-pVDZ-F12 calculation

(264 seconds CPU-time), the application of the incremental scheme to this system is not

required using the cc-pVDZ-F12 basis. The application will be more interesting for basis

sets with higher ζ level, i.e. cc-pVXZ-F12 with X = T, Q. For the investigated test set,

we save an average of 15.4 % or 19.4% of the incremental calculation time when using the

DSBSenv or rDSBSenv basis sets instead of the SV OBSs combined with SVP ABSs.

The analysis focuses on the computation time using the cc-pVDZ-F12 basis set as target

basis. We expect the time savings for this basis to be very small, since the canonical im-

plementation is quite fast. Nevertheless, to obtain energies close to the CCSD(T) CBS

limit, one has to use the cc-pVTZ-F12 or cc-pVQZ-F12 basis sets in combination with the

CCSD(T)(F12*) method. These calculations are much more time consuming and not fea-

sible for large systems. We use the Na(H2O) +
6 structure to illustrate the increasing CPU-

and wall-times for the CCSD(T)(F12*) method using the cc-pVDZ-F12 and cc-pVTZ-F12

basis sets.
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Table 6: Computation times for the Na(H2O) +
6 structure with different methods

using the cc-pVDZ-F12 and cc-pVTZ-F12 basis sets. The use of the optimized
and reduced DSBSenv basis sets improve the speed performance of the incre-
mental scheme with respect to the SV basis sets. Using the incremental scheme
for calculations with larger basis sets (higher ζ level in the correlation consistent
basis sets), the speed performance increases for the new DSBSenv basis sets and
the calculations are much faster than the canonical ones.

cc-pVDZ-F12 cc-pVTZ-F12
Method CPU-time wall-time #proc CPU-time wall-time #proc

RHF 0.1 h 0.5 min 12 0.8 h 0.1 h 12
DF-MP2-F12 4 h 19.9 min 12 37.2 h 3.1 h 12
DF-CCSD(T)(F12*) 46.6 h 233.2 min 12 404.1 h 33.7 h 12
i3CC(F12*)|MP2/SV 10.1 h 18.4 min 41 37.4 h 0.6 h 161
i3CC(F12*)|MP2/DSBSenv 9.7 h 16.4 min 41 31.6 h 0.5 h 161
i3CC(F12*)|MP2/rDSBSenv 7.6 h 13.8 min 41 28.9 h 0.5 h 161

For the Na(H2O) +
6 structure, the CPU-time increase from 46.6 h to 404.1 h (about a

factor of 9) for the CCSD(T)(F12*) method, when the cc-pVTZ-F12 basis is used instead of

cc-pVDZ-F12 (see Table 6). In contrast to this, the CPU-time of the incremental methods

increase about a factor of 3 to 4. This illustrates that the incremental scheme makes the

CCSD(T)(F12*) method applicable to larger basis sets and achieve a higher computational

speed performance. Additionally, the new environmental DSBSenv basis sets lead to a

larger decrease of the CPU-times in the cc-pVTZ-F12 basis. Moreover, using the reduced

rDSBSenv ABSs saves 3 h of CPU-time compared to the optimized ones. The incremental

calculations using the cc-pVTZ-F12 as target basis were carried out on 41 nodes (1 for the

server and 40 for the clients), so that every domain calculation is performed in parallel. This

massive parallelization of the calculations reduces the wall-time from 33.7 h for the canonical

calculation to 28min using the reduced DSBSenv basis sets.

Evaluation of the Accuracy in the Absolute Energy

In the following section the influence of the DSBSenv basis sets as environmental basis in

the framework of the domain-specific basis set is analyzed within the errors in the absolute

and reaction energies.
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Table 7: Errors in the absolute correlation energy [kJ/mol] for the third-order incremental MP2-F12 [i3MP2-
F12], CCSD(T)(F12*) [i3CC(F12*)] and MP2-F12 corrected CCSD(T)(F12*) [i3CC(F12*)|MP2] methods for
the test set.

subset I
SV DSBSenv reduced DSBSenv

system i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2 i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2 i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2

Al(H2O) 3+
6

-0.82 -1.51 -0.69 -1.93 -4.01 -2.08 -1.61 -3.69 -2.08
(Ar)14 -0.16 -3.15 -2.98 -0.17 -1.10 -0.93 -0.22 0.15 0.37

Be(H2O) 2+
6

0.25 0.20 -0.05 0.52 0.34 -0.18 0.52 0.34 -0.18
(H2O)6 0.01 -0.02 -0.03 -0.05 -0.05 0.01 -0.05 -0.05 0.01
(He)10 0.02 0.02 0.00 0.02 0.02 0.00 0.01 0.02 0.00
(HF)12 0.20 -0.06 -0.26 -0.17 -0.44 -0.27 -0.14 -0.41 -0.27

Li(H2O) +
6

0.26 0.27 0.01 0.27 0.34 0.06 0.28 0.34 0.07

Mg(NH3) 2+
6

-0.85 -1.51 -0.66 -1.72 -2.37 -0.65 -1.54 -2.20 -0.66

Na(H2O) +
6

0.19 0.35 0.16 0.21 0.42 0.20 0.22 0.43 0.21
(Ne)10 -0.02 -0.04 -0.02 -0.02 -0.04 -0.02 -0.02 -0.04 -0.02

µ -0.09 -0.54 -0.45 -0.30 -0.69 -0.38 -0.26 -0.51 -0.26
σ 0.41 1.14 0.94 0.83 1.44 0.69 0.73 1.35 0.70
MAX 0.85 3.15 2.98 1.93 4.01 2.08 1.61 3.69 2.08

subset II
SV DSBSenv reduced DSBSenv

system i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2 i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2 i3MP2-F12 i3CC(F12*) i3CC(F12*)|MP2

4-methyl−pyrazol -0.17 -1.27 -1.10 -6.53 -7.45 -0.91 -6.08 -7.15 -1.07
5-methyl−imidazol 0.74 0.70 -0.04 1.37 1.36 -0.02 1.40 1.37 -0.03
B3H6N3 -0.01 -0.06 -0.04 -0.42 -0.43 -0.01 -0.42 -0.43 -0.01
B3O3H3 0.04 0.02 -0.02 -0.92 -1.21 -0.29 -0.89 -1.19 -0.30
BOEt3 -0.58 -1.20 -0.62 -2.13 -2.87 -0.73 -2.12 -2.86 -0.73
C2H5COOH 0.01 -0.05 -0.05 0.57 0.36 -0.21 0.59 0.37 -0.21
C3H4S2COOH -0.81 -1.62 -0.81 -7.72 -9.33 -1.60 -7.70 -9.32 -1.63
C3H7SH -0.25 -1.13 -0.87 -0.01 -0.79 -0.77 -0.01 -0.78 -0.77
C4H9SO2H -3.00 -4.19 -1.19 -5.30 -6.00 -0.70 -5.22 -5.94 -0.72
C4H9SO3H -1.28 -2.02 -0.74 -2.28 -3.20 -0.92 -2.21 -3.13 -0.92
CH2CHCOCl 0.34 0.15 -0.19 1.02 0.53 -0.49 1.02 0.53 -0.49
CH2CHCOOH 0.18 0.09 -0.09 0.70 0.43 -0.28 0.70 0.43 -0.28
CH3−C−−−C−C4H9 -0.66 -0.82 -0.16 -2.04 -2.54 -0.50 -2.03 -2.53 -0.50
CH3−CH−−CH−C4H9 -0.17 -0.41 -0.24 -2.00 -2.29 -0.29 -2.00 -2.29 -0.29
ClEtPO3H2 0.45 -0.05 -0.50 0.20 -0.36 -0.56 0.23 -0.33 -0.56
ClSiEt3 -1.37 -1.42 -0.04 -2.33 -2.56 -0.24 -2.31 -2.55 -0.24
(Me3Si)2O -0.38 -0.73 -0.35 -0.58 -1.00 -0.42 -0.57 -0.99 -0.42
C7H16 -0.01 -0.07 -0.06 -1.68 -2.31 -0.63 -1.67 -2.31 -0.64
HSiEt3 -0.84 -0.92 -0.08 -0.14 -0.67 -0.54 -0.13 -0.67 -0.54
norbornan -1.80 -1.15 0.65 -4.44 -4.02 0.42 -4.42 -4.02 0.40
OPMe(OMe)2 0.05 -0.02 -0.06 4.12 4.50 0.38 4.14 4.52 0.38
PhCCl3 -0.68 0.21 0.89 2.01 -0.15 -2.16 2.33 0.03 -2.29
PhCOCl -1.01 -2.74 -1.73 -3.28 -6.69 -3.42 -3.18 -6.63 -3.45
PhNCS 1.10 0.06 -1.04 -3.09 -6.04 -2.95 -2.75 -5.82 -3.07
PhNHCl 0.29 0.80 0.51 -0.81 -4.28 -3.47 0.19 -3.64 -3.84
PhSO2F -0.41 0.01 0.41 2.51 0.40 -2.11 3.05 0.76 -2.29
Si2Cl6 -0.70 -1.27 -0.57 -2.65 -4.22 -1.57 -2.59 -4.14 -1.55

µ -0.40 -0.71 -0.30 -1.33 -2.25 -0.93 -1.21 -2.17 -0.97
σ 0.83 1.09 0.59 2.70 3.06 1.06 2.71 3.03 1.12
MAX 3.00 4.19 1.73 7.72 9.33 3.47 7.70 9.32 3.84
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The incremental errors in the absolute energy are listed in Table 7 for the whole test

set. It is expected that the use of the DSBSenv basis sets as environmental basis in the

domain-specific basis set introduce larger errors in the i3MP2-F12 and i3CC(F12*) energies.

For the cluster subset (subset I) the error only increase slightly, as the standard deviation

of the i3MP2-F12 method increase from 0.41 to 0.83 or 0.73 kJ/mol changing the SV/SVP

basis sets with the DSBSenv or rDSBSenv basis sets. In the same manner, the i3CC(F12*)

method has a small increase in error. The MP2-F12 error correction leads to an improvement

of all errors and statistical values. Although the statistical errors of the i3MP2-F12 and

i3CC(F12*) methods are increased using the optimized and reduced DSBSenv basis sets, the

i3CC(F12*)|MP2 method has nearly the same accuracy within the absolute energy for the

three environmental basis sets. Thus, the small DSBSenv basis sets decrease the computation

time of the incremental scheme without significant loss of accuracy for cluster structures and

the reduced DSBSenv ABS have a negligible influence on the accuracy.

For subset II the change of the ad hoc environmental basis to the DSBSenv basis sets

also increases the errors of the i3MP2-F12 and i3CC(F12*) methods. The influence of the

environmental basis for organic systems, especially aromatic π systems can be seen, e.g. for

the PhNCS system where the error of the i3CC(F12*) method is increased from 0.06 to

-6.04 kJ/mol. The MP2-F12 correction is important to assess the local error and achieve

chemical accuracy for such systems.

Figure 2 shows the normal distributions of the old SV and the new DSBSenv environ-

mental basis sets for the full test set. Comparing the i3MP2-F12 normal distributions, the

error increases by about a magnitude of 1.6 kJ/mol in the standard deviation when using

the smaller DSBSenv basis sets. Also the arithmetic mean errors µ shift slightly from the

origin. It can be concluded that the smaller DSBSenv basis introduces a larger error in the

incremental correlation energies, but in combination with the MP2-F12 correction the loss

of accuracy is negligible compared to the old environmental basis. Moreover, the removal of

the highest angular momentum functions of the DSBSenv ABSs introduces a negligible error,
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Figure 2: Normal distributions of the incremental error in the correlation energy [kJ/mol] for
the test set. The deviations of the third-order incremental MP2-F12 [i3MP2-F12], the incre-
mental CCSD(T)(F12*) [i3CC(F12*)] and incremental MP2-F12 corrected CCSD(T)(F12*)
[i3CC(F12*)|MP2] are shown for the different environmental basis sets, SV (a) and the two
DSBSenv (b). The R illustrates the normal distributions of the reduced DSBSenv ABSs.
The gray highlighted area illustrates the 1 kcal/mol accuracy interval.
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while increasing speed performance. In Figure 2b, the normal distributions of the reduced

DSBSenv and DSBSenv basis sets are almost identical. For i3CC(F12*)|MP2 method, the

difference in the statistical errors are well below 1 kcal/mol.

The diversity of the test set shows that the environmental DSBSenv basis sets work well

for all different types of structures. The statistical errors are analyzed within the sub groups

and the elements contained in the structures. Therefore, the normal distributions of the error

in the absolute correlation energy for the subsets are illustrated in Figure 3. The statistical

errors of the DSBSenv and the reduced DSBSenv are nearly the same. This illustrates that

the reduction of the ABSs used for the environment of a domain introduces only a small

error compared to the use of a minimal OBS. For all environmental basis sets, the standard

deviations for the period 2 and period 3 subsets are nearly the same. The accuracy for

organic systems (subset II) decreased when using the DSBSenv basis sets. For the cluster

subset (subset I), the standard deviation of the DSBSenv improves about 0.3 kJ/mol with

respect to the old SV environmental basis sets.

It is also important to compare the local error due to the domain-specific basis set incremental

scheme with the intrinsic error of the method used. Therefore, the statistical errors of the

incremental correlation energies for the CCSD(T)(F12*)/cc-pVDZ-F12 method are given in

kJ/mol per correlated electron for the full test set and the subsets in Table 8.

Comparing the statistical errors of the subsets in Table 8, we see that for all environmental

basis sets, the statistical errors are smaller for subset II than subset I and for the period 2

subset than the period 3 subset. Thus, the DSBSenv minimal basis sets for the environment

of a domain have the same behavior as the SV basis sets for different types of systems.

Also we can see that for the cluster subset (subset I) and the period 2 subset, the new

environmental DSBSenv basis sets have nearly the same standard deviations as the old SV

basis sets, and differ only by 0.05 kJ/mol per correlated electron. For the subset II and

the period 3 subset, the DSBSenv basis sets have larger standard deviations. A possible

reason for this is due to the optimized DSBSenv/OptRI ABSs. For the explicitly correlated
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Figure 3: Normal distributions of the errors in the absolute energies [kJ/mol] using the in-
cremental MP2-F12 corrected CCSD(T)(F12*) [i3CC(F12*)|MP2] method with the different
small environmental basis sets, SV (a), DSBSenv and reduced DSBSenv (b). The normal
distributions are given for the subset I (I), subset II (II), the period 2 subset and the period
3 subset. The error for the reduced DSBSenv auxiliary basis sets is negligible, since the
Gaussians are very close to those of the DSBSenv.
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Table 8: Incremental errors in the absolute correlation energy of the MP2-F12
corrected CCSD(T)(F12*) [i3CC(F12*)|MP2] method [kJ/mol per correlated
electron] to the canonical CCSD(T)(F12*)/cc-pVDZ-F12 energies using differ-
ent basis sets for the environment of the domain-specific basis. The errors are
analyzed concerning their subsets and atom types of the structures. The intrin-
sic error of the CCSD(T)(F12*)/cc-pVDZ-F12 method to the CCSD(T)/CBS
limit is 0.130 kJ/mol per correlated electron.14,15,117,118

SV DSBSenv reduced DSBSenv
Test Set µ σ MAX µ σ MAX µ σ MAX

subset I -0.006 0.009 0.027 -0.007 0.014 0.043 -0.006 0.014 0.043
subset II -0.008 0.014 0.038 -0.021 0.023 0.083 -0.022 0.025 0.091

period 2 subset -0.003 0.010 0.034 -0.006 0.009 0.029 -0.006 0.009 0.033
period 3 subset -0.011 0.015 0.038 -0.027 0.025 0.083 -0.027 0.027 0.091

full test set -0.007 0.013 0.038 -0.017 0.022 0.083 -0.017 0.023 0.091

methods, the union of OBS and corresponding CABS is built for the calculation. The

optimized DSBSenv/OptRI ABS have the same number of functions for period two and

three elements. This leads to slightly larger RI errors (δRI) for the period three elements

(see Table 3). All statistical errors due to the local approximations of the incremental

scheme are smaller than the BSIE of the CCSD(T)(F12*)/cc-pVDZ-F12 method. A standard

deviation of 0.130 kJ/mol per correlated electron relative to the CCSD(T)/CBS energies was

found for this method.14,15,117,118 In summary, the smaller environmental DSBSenv basis

sets introduce a negligible error to the canonical correlation energy and these errors are only

slightly different to the old environmental SV basis sets, which were used as starting guess for

the application of the domain-specific basis set approach.91 The local error is much smaller

than the BSIE of the CCSD(T)(F12*)/cc-pVDZ-F12 method for both environmental basis

sets.

Evaluation of the Accuracy in the Relative Energies

In previous work, the incremental scheme shows high accuracy in relative energies, resulting

from the small error in the absolute energies.79 Therefore, the change in accuracy for different
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environmental basis sets has been tested. The reactions are divided into two sets, one set

contains structures from the subset I and the second set contains only structures of subset

II. The reactions of subset I are:

Al3+ + 6H2O Al(H2O) 3+
6 (8)

Be2+ + 6H2O Be(H2O) 2+
6 (9)

Li+ + 6H2O Li(H2O) +
6 (10)

Na+ + 6H2O Na(H2O) +
6 (11)

6H2O (H2O)6 (12)

12HF (HF)12 (13)

Mg2+ + 6NH3 Mg(NH3)
2+

6 (14)

10He (He)10 (15)

10Ne (Ne)10 (16)

14Ar (Ar)14 (17)

The set of reactions that contain structures of subset II is:

B(OH)3 + 3EtOH B(OEt)3 + 3H2O (18)

3B2H6 + 6NH3 2B3H6N3 + 12H2 (19)

HSiEt3 + Cl2 ClSiEt3 +HCl (20)

H2C−−CHCOOH+ PhCCl3 H2C−−CHCOCl + PhCOCl + HCl (21)

H3C−C−−−C−C4H9 +H2 H3C−CH−−CH−C4H9 (22)

H3C−CH−−CH−C4H9 +H2 C7H16 (23)

H3C−C−−−C−C4H9 + 2H2 C7H16 (24)
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The reaction energies for the canonical CCSD(T)(F12*)/cc-pVDZ-F12 method are presented

in Table 9, along with the errors in the i3CC(F12*)|MP2 reaction energies using the SV,

DSBSenv and reduced DSBSenv basis sets as environmental basis in the framework of the

domain-specific basis set. In general, all environmental basis sets have small errors and all

errors are within chemical accuracy of 1 kcal/mol relative to the reference energies. The

largest deviations are in reaction (8) with the Al(H2O) 3+
6 system and reaction 17 containing

the (Ar)14 system. The standard deviations are 0.95, 0.64 and 0.63 kJ/mol for the SV,

optimized and reduced DSBSenv basis sets, respectively. For this test set of reactions, the

statistical errors in the reaction energies are nearly the same for all of the environmental basis

sets, and both the optimized DSBSenv and reduced DSBSenv basis sets slightly improve

the accuracy in addition to the efficiency. Furthermore, the incremental error is negligible

compared to the intrinsic error for CCSD(T)(F12*)/cc-pVDZ-F12 reaction energies.

Further investigations of the errors have been performed by analyzing the subsets of the

reactions. The first subset I (containing ionic and neutral cluster structures) is where the

incremental scheme is expected to perform with an outstanding accuracy as documented

in previous work.80,81 The second subset contains organic systems, especially aromatic π

systems, which are a challenging task for the incremental scheme. Figure 4 illustrates the

error of the i3CC(F12*)|MP2 reaction energies relative to the canonical calculations on

the CCSD(T)(F12*)/cc-pVDZ-F12 level. It can be seen that the optimized and reduced

DSBSenv basis sets have a slightly better accuracy, since the standard deviations for the two

subsets and the full set of reactions are smaller than those of the SV basis sets.

Local Treatment for Large Systems

Within the old environmental basis it was possible to calculate the incremental CCSD(T)

correlation energy for the Al(H2O) 3+
25 system at a quintuple-ζ quality.81 The acronym

aCVXZ’ basis represents the cc-pwCVXZ basis for Al, cc-pVXZ for H, and aug-cc-pVXZ

26



−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

Deviation [kJ/mol]

G
(x
)

I
II
full

µ σ

I -0.44 0.94
II -0.46 1.04
full -0.45 0.95

(a) SV

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

Deviation [kJ/mol]

G
(x
)

I
II
full

I/R

II/R

full/R

µ σ

I -0.37 0.69
II -0.31 0.60
full -0.35 0.64
I/R -0.24 0.70
II/R -0.30 0.57
full/R -0.26 0.63

(b) DSBSenv & rDSBSenv (R)

Figure 4: Normal distributions of the errors in the reaction energies [kJ/mol] using the incre-
mental MP2-F12 corrected CCSD(T)(F12*) [i3CC(F12*)|MP2] method with two different
small environmental basis sets, SV (a) and DSBSenv and reduced DSBSenv (b). The normal
distributions are given for reactions, containing structures of subset I (I), subset II (II) or
all reactions (full). The shape of the Gaussian distributions indicates chemical accuracy.
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Table 9: Reaction energies of all test reactions using the canonical
CCSD(T)(F12*)/cc-pVDZ-F12 method (∆Eref) [kJ/mol] and the incremental
errors of the MP2-F12 corrected CCSD(T)(F12*) [i3CC(F12*)|MP2] method
with the SV (∆∆ESV

inc ), the DSBSenv (∆∆EDSBSenv
inc ) and the reduced DSBSenv

(∆∆ErDSBSenv
inc ) basis as environmental basis in the framework of the domain-

specific basis set.

Reaction ∆Eref ∆∆ESV
inc ∆∆EDSBSenv

inc ∆∆ErDSBSenv
inc

Eq. (8) -2938.04 -0.69 -2.08 -2.08
Eq. (9) -1870.95 -0.05 -0.18 -0.18
Eq. (10) -560.32 0.01 0.06 0.07
Eq. (11) -173.89 -0.03 0.01 0.01
Eq. (12) -435.90 0.16 0.20 0.21
Eq. (13) -404.97 -0.11 -0.12 -0.12
Eq. (14) -1437.18 -0.66 -0.65 -0.66
Eq. (15) -0.46 0.00 0.00 0.00
Eq. (16) -2.57 -0.02 -0.02 -0.02
Eq. (17) -53.35 -2.98 -0.93 0.37
Eq. (18) -16.63 -0.62 -0.73 -0.73
Eq. (19) -652.82 -0.09 -0.02 -0.02
Eq. (20) -296.45 0.03 0.30 0.30
Eq. (21) -28.61 -2.73 -1.47 -1.37
Eq. (22) -187.13 -0.25 0.04 0.04
Eq. (23) -148.68 0.35 -0.17 -0.17
Eq. (24) -335.81 0.10 -0.13 -0.13

µ -0.45 -0.35 -0.26
σ 0.95 0.64 0.63
MAX 2.98 2.08 2.08

for O (X=D,T,Q,5). The incremental scheme enabled the 4–5 complete basis set extrapo-

lation [CBS(45)] on CCSD(T) level using the extrapolation of Helgaker for the correlation

energy.2,5 For this large system, we want to illustrate the increased computational speed

performance and the accuracy with the system size using the reduced DSBSenv basis sets.

The second-order incremental scheme with the MP2 corrected CCSD(T) [i2CC|MP2] method

as well as the domain based local pair natural orbital CCSD(T) of Neese including the T0

approximation which is default in ORCA119 [DLPNO-CCSD(T0)]
39 was used to calculate
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the interaction energy with respect to

Al3+ + 25H2O Al(H2O) 3+
25 (25)

Using DLPNO-CCSD(T), it is required to set tight thresholds for the PNOs describing

non-covalent interactions. Therefore, both the normalPNO and tightPNO thresholds were

used.119 Table 10 details the correlation contribution to the interaction energy. On the above

mentioned hardware, it was not possible to calculate the DLPNO-CCSD(T0) correlation

energy with higher level than triple-ζ quality. The correlation energy with the DLPNO-

CCSD(T0)/aCVTZ’ method and normalPNO and tightPNO thresholds could be computed

on a node with 64 GB RAM and a RAID with 4 times 1TB disks for a fast data transfer.

Table 10: Correlation contribution to the interaction energies [kJ/mol] for the
Al(H2O) 3+

25 system using different post-HF methods. The domain based local
pair natural orbital CCSD(T) [DLPNO-CCSD(T0)] with normal (normalPNO)
and tight (tightPNO) thresholds, the second-order incremental MP2 corrected
CCSD(T) [i2CC|MP2] and density fitted MP2 [DF-MP2], the site-site functional
counterpoise correction120 on MP2 level [DF-MP2+SSFC], and explicitly corre-
lated MP2 [MP2-F12] methods were used. The CBS(45) extrapolated energies
for the DF-MP2 and i2CC|MP2 methods are added as benchmark.

DLPNO-CCSD(T0) i2CC|MP2 DF-MP2 MP2-F12
Basis normalPNO tightPNO SV rDSBSenv +SSFC

aCVDZ’ -451.4 -475.6 -506.1 -504.2 -518.8 -357.4 cc-pVDZ-F12 -532.6
aCVTZ’ -476.3 -497.6 -532.0 -529.7 -534.3 -447.9 cc-pVTZ-F12 -518.1
aCVQZ’ - - -531.8 -530.2 -532.8 -488.8
aCV5Z’ - - -528.9 -526.6 -530.2 -

CBS(23) -486.8 -506.9 -543.0 -540.5 -540.8 -486.0
CBS(34) - - -531.6 -530.5 -531.8 -518.7
CBS(45) - - -525.8 -522.9 -527.4 -

The i2CC|MP2 energies with the two different environmental basis sets differ by around

2 kJ/mol for both the aCVDZ’ and aCVTZ’ basis, indicating that the reduced DSBSenv

basis sets introduce practically negligible errors. The use of the new environmental basis

sets reduces the CPU-time for the aCVDZ’ calculation by 66% (from 417.4 to 140.4 h), and

aCVTZ’ by 63% (from 864.8 to 320.7 h). It can be seen from Table 10 that the incremen-
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tal scheme recovers significantly more correlation energy than DLPNO-CCSD(T0) for this

system. Furthermore, with a CPU-time of 13.4 days, the incremental scheme with the re-

duced DSBSenv basis sets is faster than tightPNO DLPNO-CCSD(T0) (19.4 days) for the

aCVTZ’ basis. Reducing the DLPNO-CCSD(T0) thresholds to normalPNO settings results

in a CPU-time of 2.3 days, but this introduces an additional error of around 20 kJ/mol, con-

sistent with the recommendation of only using tightPNO settings for such a system.119 Due

to the inherent parallelization of the incremental scheme (using 1 processor for the server and

100 as clients) the wall-time for the aCVTZ’ calculation is only 5.8 h, rising to just 3.3 days

for the large aCV5Z’ calculation.

Conclusions

In this work DSBSenv minimal basis sets and matching auxiliary basis sets have been de-

veloped for H–Ar for use as the environmental basis in the framework of the domain-specific

basis set approach of the incremental scheme. These basis sets increase the computational

speed performance of the incremental scheme and achieve a comparable accuracy to the pre-

vious ad hoc choice of environmental basis. Using the DSBSenv/MP2Fit ABS, the density

fitting for the evaluation of the two-electron integrals are three to four orders of magnitude

smaller than the BSIE of the DSBSenv OBS. Also the CABS approach to the RI with the

DSBSenv/OptRI ABS introduces errors about two to three orders of magnitude smaller than

the BSIE.

In combination with the domain-specific basis set approach, the environmental DSBSenv

basis sets save 2.5–38.5 % CPU-time compared to the old def-SV OBS combined with the

def-SV(P) ABS. Exchanging the environmental SV with the DSBSenv OBS, the standard

deviation for the incremental MP2-F12 corrected CCSD(T)(F12*) method of the error in

the absolute correlation energy increase slightly from 0.69 to 0.99 kJ/mol. Moreover, the

DSBSenv basis sets have a slightly better accuracy for reaction energies, as the standard
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deviation decreases from 0.95 to 0.64 kJ/mol. To further decrease the computation time, the

highest angular momentum functions are removed from every DSBSenv ABS. This reduced

DSBSenv leads to significantly lower CPU-times for the test set, saving 19.4% compared

to the old environmental basis, with standard deviations of the error in the absolute and

reaction energies of 1.06 and 0.63 kJ/mol, respectively. These values are close to those of the

fully-optimized DSBSenv basis sets, thus it is recommended to use the reduced DSBSenv as

environmental basis for the domain-specific basis incremental scheme.

The use of the reduced DSBSenv basis sets in the second-order domain-specific basis in-

cremental scheme reduces the CPU-time for the Al(H2O) 3+
25 system from 17.4 to 5.8 days

in the aCVDZ’ basis and from 36.0 to 13.4 days in the aCVTZ’ basis. For this system,

the incremental scheme is more accurate and faster than the tightPNO DLPNO-CCSD(T0)

method using basis sets with higher level than double ζ quality.
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Normal distributions
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F12 corrected CCSD(T)(F12*) method.
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