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CSP Methods for IdentiQing Atomic Actions 
in the Design of Fault Tolerant Concurrent Systems 

Andrew M. Tyrrell, Member, IEEE, and Geof F. Carpenter 

Abstract-Limiting the extent of error propagation when faults 
occur and localizing the subsequent error recovery are common 
concerns in the design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof fault tolerant parallel processing sys- 
tems. Both activities are made easier if the designer associates 
fault tolerance mechanisms with the underlying atomic actions of 
the system. With this in mind, this paper has investigated two 
methods for the identification of atomic actions in parallel proc- 
essing systems described using CSP. Explicit trace evaluation 
forms the hasis of the first algorithm, which enables a designer to 
analyze interprocess communications and thereby locate atomic 
action boundaries in a hierarchical fashion. The second method 
takes CSP descriptions of the parallel processes and uses struc- 
tural arguments to infer the atomic action boundaries. This 
method avoids the difficulties involved with producing full trace 
sets, but does incur the penalty of a more complex algorithm. 

Index Term-Atomic actions, concurrent systems, CSP, fault 
tolerance. 

I. INTRODUCTION 

DISTRIBUTED processing system, comprising a set of dis- A crete processing units, offers the user not only the pros- 
pect of increased efficiency and throughput through parallel- 
ism, but its inherent redundancy might also be exploited to 
enhance reliability. To do so requires a properly designed fault 

tolerance infrastructure which maintains the integrity of the 
system under fault conditions. This paper describes CSP-based 
methods which facilitate the placement of fault tolerance soft- 
ware structures across a distributed system to ensure safe op- 
erations in the presence of faults. 

Notwithstanding the use of standards and guidelines [l], [2], 
[3] in the design of software-based real-time systems for 
safety-critical applications, and the concomitant adoption of 
formal methods, it is probable that faults will still be intro- 
duced into a design either explicitly as part of a particular 
component or implicitly through the omission of a particular 

feature. It is unrealistic to expect all software design faults to 
be detected during design and testing, and latent faults may 
persist into system use [4]. 

Fault tolerance [5] is often incorporated into a design as a 
ruggedization process to protect a process or set of processes 
regarded as critical to safe system operation. The fault toler- 
ance mechanisms are required to recognize faults by the errors 
they cause and to prevent error migration from the faulty proc- 
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ess to elsewhere in the system, so that error recovery is local- 
ized. The extent of the error recovery operation can be limited 
if a boundary can be identified within the state-space of the 
distributed system across which error propagation by inter- 
process communication is impossible; it must include all proc- 
esses which interact with the function being protected and ex- 
clude all processes that do not interact with it. In other words, 
the state-space of the system has to be partitioned into a hier- 
archy of atomic actions [6]. It is then possible to introduce a 
distributed error detection and recovery mechanism around the 
atomic action [7] which ensures that all the processes affected 

by the fault cooperate in recovery. This localization of fault 
tolerance simplifies the design and can help to meet timing 
constraints in real-time systems [8]. 

Methods for determining hierarchical sets of atomic actions 
are not widely known. This paper describes methods which use 
the mathematically based notation of Communicating Sequen- 
tial Processes (CSP) [9] to describe the operation of a distrib- 
uted system, and the interactions between the processes. The 
analysis allows the designer to identify hierarchical sets of 
atomic actions within the design. The model of the system can 
then be used to place fault tolerance software structures, cor- 
rectly including all participants. 

II. ATOMIC ACTIONS AND FAULT-TOLERANCE 

To an external observer the activity of a process is defined 
by its sequence of external interactions; any internal actions 
(of which there may be many) can not affect the extemal ob- 
server, at least until the next extemal interaction. This allows 
the concept of an atomic action to be derived [6]: the activity 
of a set of processes is defined as an atomic action if there are 
no interactions between that set of processes and the rest of the 
system for the duration of that activity. The extension to hier- 

archically nested atomic actions is straightforward. These con- 
cepts are well-known in distributed transaction processing [lo] 
from which field many other attributes of atomic actions, such 
as serializability, failure atomicity and permanence of effect 
can be defined. 

The process of identifying the atomic actions within a parallel 
system design brings into clear focus the structure of interproc- 
ess interactions and thus the route by which errors might propa- 
gate under fault conditions. All common mechanisms for provid- 
ing fault tolerance in parallel systems, such as forward error re- 
covery [ l l ], N-version programming [12], conversations [ l l ] ,  
consensus recovery blocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131 and distributed recovery blocks 
[14], have to cope with error confinement and achieve this by 
imposing logic structures “around” atomic actions [ 151. 
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A generalized fault tolerant mechanism could be considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as a coordinated set of recoverable blocks, with one recoverable 
block in each interacting process, allowing distributed error de- 
tection and recovery. The mechanism is bounded by an entry 
line, an exit line and two side walls which completely enclose 
the set of interacting processes which are party to the mecha- 
nism, and across which interprocess interactions are prohibited. 
The structure is indicated diagramatically in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

The enhy line defmes the start of the atomic action and con- 
sists of a coordinated set of recovery points for the participating 
processes. The exit line comprises a coordinated set of accept- 
ability tests. Only if all participating processes pass their respec- 
tive acceptability tests is the mechanism deemed successful and 
all processes exit, in synchronism, from the action. If any ac- 
ceptability test is failed, recovery is initiated and processing 
“passed” to another set of recoverable processes. Thus all proc- 

esses in the atomic action cooperate in error detection. 
The duality of atomic actions and recovery mechanisms has 

been discussed at length in [lo]. Atomic actions can be viewed 
as modeling an “object-action’’ type of system where atomic 

actions operate on objects. Expressed graphically as an action 
diagram (Fig. 2) circles represent actions, and arcs show the 
dependencies between actions. Thus, in Fig. 2, action A2 uses 
objects “x” and “y” released by action Al. Similarly, action Ad 
uses “y” when it has been released by action A2. A comparison 
with Fig. 1 shows that the recovery mechanism is the dual of 
the action and the process is the dual of the object; a mecha- 
nism Ci is replaced by action Ai with an arc connecting Ai with 
Aj if Ci and C, have processes in common. Thus, Fig. 2b and 
Fig. 2c can be regarded as duals. In the context of this paper, 
for example, action A3 provides a fault tolerant function op- 
erating on processes P, Q, and R. 

Any attempt to incorporate an entry line and an exit line at 
arbitrary locations in a concurrent system is unlikely to lead to 
a properly formed recovery mechanism. It is necessary to 
identify a boundary within the state space of the complete set 
of processes across which error propagation by communication 
is prevented. Clearly, this boundary will be the boundary of an 

atomic action, since such a boundary of necessiQ prohibits the 
passing of information to any process not involved in the 
atomic action and similarly embraces all interacting processes 
within the atomic action. Recovery mechanisms can be nested 

Atomic action 
boundary 

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+*--&I I I I I : I I II I I : 1 - - -:  
[AT - acceptability tests] R S  T 

Fig. 1 .  The structure of a fault tolerant mechanism involving processes R, S, 
and T. 

systematically in the same hierarchical fashion as atomic ac- 
tions. If this duality is not imposed, then should the system 
attempt to backtrack and recover in response to a fault, pro- 
gressive collapse by the domino effect [ 1 I ]  can occur. 

In the literature, strategies for implementing fault tolerance 
in parallel systems [16], [17], [18], [19] and for handling 
problems which occur if the chosen mechanism is incorrectly 
located, have received more detailed attention than the funda- 
mental problem of placing the mechanisms correctly. Correctly 
placed mechanisms, coincident with atomic action boundaries, 
avoid error propagation problems. This paper is concemed 
with the analysis of a prototype design for atomic actions. 
Ideally, a design method would incorporate the requisite, ap- 

propriately placed, atomic actions and the associated fault tol- 
erance infrastructure into a system with a minimal amount of 
reanalysis and redesign, and an eventual goal is to define such 
a design method. However, the techniques are still insufi- 
ciently mature for this to be achieved and consequently this 
paper retains the normal design practice in which fault toler- 
ance mechanisms are superimposed upon selected atomic ac- 
tions and the new designs subjected to reanalysis. 

111. STATE SPACE METHODS FOR IDENTIFYING 

ATOMIC ACTIONS 

Substantial work has been performed on the ability to model 
systems, and to reason about their behavior, using state space 
representations such as Petri nets or GMB [20], [21]. In the 
Petri net approach, each process state can be associated with a 
Petri net place, and each state transition with a Petri net transi- 
tion [22]. Process execution is simulated by allowing marking 
tokens to flow through the Petri net. From the formulation of a 
reachability graph, the behavior of the Petri net, and therefore 
of the modeled system, can be analyzed. 

Experience with occam [23] as a design language for 
loosely-coupled real-time concurrent systems [24], [25] has 
led to Petri net methods for identifying atomic actions. By only 
permitting synchronous, atomic, communications, occam 

forces communicating processes into mutual synchronization 
at communication points. This not only imposes a strict dis- 
cipline on the designer (because errors in the synchronization 
logic can lead to deadlock) but also leads to a system more 

J‘ 
(3 

S R o P  

(a) (b) (C) 

Fig. 2. (a) an action diagram; (b) a process-recovery diagram; (c) the action 
diagram dual of Fig. 2b. 
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amenable to analysis. The system is designed using the re- 

quirement specification and modeled as a Petri net. Examina- 
tion of the state reachability graph permits the designer to 
identify the boundaries of atomic actions. Inspection deter- 
mines which atomic action boundary encloses which system 

function, and an appropriate error detection and recovery 
mechanism to protect any chosen system function can then be 
incorporated at the level of the atomic action without disturb- 
ing the constituent processes or their interprocess actions. 

Although the method is effective, it requires: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) translation of an existing textual Occam design into a 

2) translation between the graphical Petri net and set theory 

3) translation of the identified atomic action entry and exit 

which are made more difficult because: 

4) for all but the simplest examples, there is a computational 

Although automated tools exist for these translation proc- 
esses, often error-prone manual methods are still involved. For 

Petri-net-based methods the designer must be satisfied that the 
translation steps 1-3 do not themselves introduce errors. 

Occam has a mathematical basis in the theory of Communi- 
cating Sequential Processes (CSP) [9].  CSP permits a funda- 
mental description of a concurrent processing system in terms 
of the component processes, the interactions between the proc- 
esses, and interactions with the real-world environment. Since 
a CSP description is directly amenable to mathematical analy- 
sis, it is possible to decide behavioral properties, such as the 
presence of reachability pathologies, without the need for er- 
ror-prone translation into a complementary representation. The 
ability to reason about timeliness in recent extensions to CSP 
[26] should further promote its use in the design of time- 
critical and safety critical systems. 

The trace of a CSP process is a record of the sequence of 
events in which a process could engage and indicates directly a 
possible execution behavior of that process [27]. During the 
design phase it would be advantageous to determine all the 
possible traces which a process might produce. This procedure 
is termed trace evaluation in this paper. For any but the sim- 
plest process there will be a number of possible traces; for a 
set of concurrently executing processes the overall trace set 
will be all permitted interleavings of the traces of the compo- 

nent processes. If the processes interact only by synchronous 
communications, then the processes are brought into synchro- 
nism for the communication event. The communication event 
will be in the alphabet of both the communicating processes 
and will constrain the set of all possible traces. 

It is not practicable to create the complete set of traces un- 
less the set of processes is subject to certain constraints: 

1) The processes must terminate, or arrive at a previously 
reached state, in a finite number of steps, else the set of 
traces becomes infinite. 

2) Where program flow is made dependent on the value of 
variable expressions, static analysis has to consider all 

graphical Petri net; 

or matrix-based methods for reachability analysis; 

points back to the original Occam design; 

explosion which could restrict the analysis. 

possible values within the range of the variable expres- 
sion, which may be infinite and lead to an infmite set of 
traces. 

3) No. 2) precludes from analysis classes of loops where trace 
evaluation would have to evaluate loop guards, and also 
the use of subscripted communication channels where the 
subscript is determined by a variable expression. 

4)Guarded choice (and thus nondeterminism) can be in- 
cluded provided the truth value of the guard is reflected 
in the trace set. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5) Interprocess communications occurring in loop con- 
structs pose major problems for trace evaluation; in par- 
ticularly if the loop iteration is controlled by a variable 
expression which is even indirectly determined by the 
real-world environment, then analysis can only be per- 
formed for special cases, i.e., where a subset of these 
environmental values are considered. 

6)Certain commonly occurring forms of loop can be 
handled; for example, if the loop is executed a prede- 
fined number of times (e.g., the conventional FOR loop) 
and the number of communications in both processes 
exactly match, or if both communicating processes have 
matched loops which iterate synchronously in both 
processes (as in the real world robot example). 

Trace evaluation can be tedious and error-prone if per- 
formed manually, but it may be readily automated. An auto- 
mated tool, termed CoPla, has been built at the University of 
York within an X-Windows environment [28]. 

Iv. CSP AND ATOMIC ACTION IDENTIFICATION 

Trace analysis can be used to identify atomic actions within 
a CSP design and to infer a hierarchical arrangement of these 
atomic actions. The technique presented here is inspired by the 
successful Petri net methods [29]; it requires the designer to 
evaluate all the possible execution traces for the CSP design 
and then to analyze process execution for events which are 
interprocess communications. By definition, the activity of a 
set of processes constituting an atomic action is such that no 
interactions take place between that set of processes and the 
rest of the system. Consequently the boundary of the atomic 
action can then be used for the proper incorporation of coordi- 
nated error detection and error recovery mechanisms within 
CSP designs. 

Conventionally the complete set of possible traces for a 

process, P, is designated by 

where 

traces(P) = {tl, tz, ..., tk} 

t, = <e,,, e,Z, ..., e,,, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ> 
and the event e,, corresponds to the jth event in the ith possible 
trace t,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ is the successful termination event. (Strictly speak- 

ing, <e,l>, <e,l, e,p,  and all intermediary event sequences are 
also members of traces(P) as well as <e,l, e,*, ..., e,,, ..., ,/ >; 
this paper only consider traces 

The algorithm for trace evaluation is a straightforward ap- 
plication of continuous simplification. Given P, all the events 

the termination event.) 
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eil which can be the first element of the trace are extracted, to 
yield a simpler process P/eil (P after engaging in eil zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA), thus: 

traces(P) = traces(e,, A (P / ell))Utraces(ezl A(P / ez,))u . . . 

=Utraces(eil A ( P / ~ ~ ~ ) )  
i=l 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the catenation operator. The function 

traces(eil A (P/ei2)) can then be evaluated in a similar fashion. 
Consider N processes in concurrent execution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F =  PI 11 ... 11 pn 11 ... 11 PN 

As before, for each component process, P,: 

where 
traces(P,) = {ti, tz, ..., tkl 

t i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc e:,,ei, ..., e:, . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ" > 

Note, a superscript character is added to show that e{ and 

J'" occur within process P, . Each event may be further cate- 

gorized, either as being local to its constituent process (thus, 

I:, appearing only in the alphabet of process, Pn) or as being a 

communication event (thus, c:" , appearing in the alphabets of 

both processes P., P,, which participate in the communication, 
and thereby forcing synchronization). For each process P,, the 

local events 1: form the set L, and the communication events 

c: form the set C.; thus: 

.(P,)= L, uc, 
1: EL"  

c: EC, 

The traces of the set of processes Pwill be all permitted inter- 
leavings of the traces of the component processes, Written as: 

where 

traces(23) = {tl, t2, ..., k) 

t i = < g  11, g 12, ..., gij, ...) J ' 
Here, the event g,, corresponds to the jth event in the ith 

possible trace ti of traces(23). This general event gij is either an 
element from the alphabet of one of the constituent processes 

if it is a local event; otherwise it must appear in the alphabet of 
exactly two processes as a communication event. Thus: 

3n: g, E a(PJ 

(g,, E L,Jv(gi, E C,Agi, E C,A n+m> 

The method for identifying hierarchically nested atomic ac- 
tions is defined in algorithms 1 and 2. Algorithm 1 defines 
how the entry and exit lines to the atomic action are identified. 

A. Algorithm 1 

obvious extension to more than three processes): 

Given three processes P,, P,, P, in parallel execution (with 

1) Add before the start of each process the special events: 

; recall that the last event in each e:, , e:,il, and 
process is followed by Jp, ,P, and f, respectively. 

2) Select a sequence of consecutive events 

e,9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 . . . - > e$ -5 . . . -> e:. 

within P, which are to be constituents of the atomic ac- 
tion. The sequence must enclose fully any parallel or se- 

lection constructs within the sequence. Note that e$i, 

and JP will not be part of this sequence. 

3) Defme the empty sets S, F, K, J. 

S := {}; F := {}; K := {}; J := { }  

4) Generate traces(F), (including e$$ and Jp). 

5 )  For each trace t, in traces(?), locate gi, = er, . Add gi(m.l) 

to set S. 

(t/tl)l (tl E traces(F)) 

(vgim 1) (gim E t l ) ~  (gim = G) + gi(m-1) 

6) For each trace ti in traces(lp), locate gin =e:,, . Add gi(n+l) 

to set F. 

(tl E tJaces(F)) 

(vgin)l(gin ~ t l ) ~ ( g i n  =a) -j F:=FUgi(n+I) 

7) Compute the set difference K = S-F. This defines the 
complete set of events which must immediately precede 
the start of the atomic action. 

8) Compute the set difference J = F-S. This defines the 
complete set of events which must immediately follow 
the end of the atomic action. 

B. Justification of Algorithm 1 

Initially, before algorithm 1 is executed: 

K = O ,  J = O .  S = O ,  F = O  

The sequence of events in P, which are to be constituents of 
the atomic action are described as: 

e,9 -> . . . - > e$ -> . . . -> e:,, 

If all e; E L, then no interprocess communications occur. 

Since the trace evaluation determines all possible traces, the sets 
S and F will both contain all possible events (in other processes) 

which may interleave with the events e:, -> . . . -> e:,, and de- 

termining the set difference will eliminate all these events. As 
expected, the atomic action is local to process P,. 

If any e$ E C, then interprocess communications do occur 

and will synchronize both parties to the communication (since 

e$ E C, or e$ E C, , as well as C,). Suppose the communica- 

tion event concems processes P, and P,. The interprocess 
communication must be intemal to the atomic action. The syn- 
chronization it causes will be evident in the trace evaluation. 
Again since the trace evaluation determines all possible traces, 
the set S will contain those events in the other process P, 
(equivalently P,) which can immediately precede the first 
communication with P, but cannot contain any event which 
must follow it. Likewise, the set F will contain those events in 
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fects they have in the trace evaluation and are constrained to 

be intemal to the atomic action. It is argued above that the sets 
K and J contain the events which must precede and which must 
follow the atomic action and identifying the host process for 

process P, (equivalently Pr) which can immediately follow the 
last communication with P, but cannot contain any event which 
must precede it. Consequently, the set difference operations to 
give K and J will identify the events in other processes which 
form the entry line to and the exit line from the atomic action. 
(Note: the notation J, K, F, S follows from [29]) 

Algorithm 2 can be used to determine which processes are 
party to the atomic action. 

!P=(PI I IFqP3)  
where 

PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (al->cI!->a2->c2?->a3->SKIP) 
FZ = (bl ->cl?->b2->~3!->b3->c4?->b->c2!->bS->SKIP) 
P3 = (dl-x3?->d2->vl!->d3->SKIP) 

J = F-S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a2, b2} defines those events which should im- 
mediately follow the end of the atomic 
action 

AAP = {Pl,  P2} 

Hence the atomic action enclosing event c l  includes proc- 
esses P1 and P2, begins immediately after event a1 in process 
P1 and event bl  in process P2, and terminates immediately 
before event a2 in process P1 and event b2 in process P2. 

P3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: AAP 

proceed. The trace evaluation proceeds to yield the eventual 
expansion given in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

EXAMPLE 1 
Suppose it is decided to protect event c l .  Then analysis de- 

termines: 

where, in summary: 
t l  = interleavings of ainit ,binit, a l ,  bl 

t4 = interleavings of a,”,, ,b,.,,, d,,,, a l ,  b l ,  dl 
t5 = interleavings of d,.,,, a2, b2, dl 
t6 = interleavings of a2, b2 

- or interleavings of ,bmr, di.,t,al, b l  

S = {al, bl ,  d l}  since always precedes al, etc. i.e., 
the set of all possible immediately pre- 
ceding “events” 
i.e., the set of all possible immediately F = {a2, b2, d l}  

t7=lnterleavingsof dImb2, dl 
t8 = ‘nterleavlngs Of b3, d2 
t9 = interleavings of a2, b3, d2 
111 = interleavings of  a2, b4, d3 
t i 2  = Interleavines of a2, b4, 

following “events” 113 = interleavings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3, b5, d3 
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P= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 P2 11 P3) 

where 
PI = (al->cl !->a2->cZ?->a3->~3?->a4->SKIP) 
P2 = (b I ->cl?->b2->cZ!->b3->c4!->b4->SKIP) 
P3 = (dl ->c4?->d2->~3!->d3->SKIP) 

which gives: 

<t2,cl,t4,c2,b3,c4,t8,c3,tlI,JaII 
<t2,cl,t4.c2,b3,c4,t9,c3,t12,Ja 11 
<t2,cI,t4,c2,t5,c4,d2,c3,t12,Ja 11 
<t2,Cl,t4,C2,t5,C4,tlO,C3,tl I,? 
<t2,cl,t3,c2,t6,c4,t9,c3,t12,Ja 11 
<t2,cl,t3,c2,t7,c4,d2,~3,tI2,$lI 
... ) 

where, in summary: 
tl = interleavings of ai.,,, binLt, d,,,, al,bl ,d l  
t2 = interleavings of a,,, bj,,, a l ,b l  or interleavings o f a d ,  b,.i,, din,t, al,bl 
tl I = interleavings of a4 , d3 
t l?  = interleavines of a4 . M . d3 

Fig. 5 .  A further example with three intercommunicating processes; the ful 
trace set comprises 1,488 traces. 

P= (PI 11 P2 11 P3 I1 P4) 
where 

PI = (al->cl !->d->c2?->d->SKIP) 
P2 = (bI->cl?->b2->~2!->b3->SKIP) 
P3 = (d1->~3?->d2->~4!->d3->SKIP) 
P4 = fel ->c~l->eZ->uZ?->e3->SKlPl 

Fig. 6. Simple example with four parallel processes. 

c3->d2->c4 in P3; traces(fl includes < ..., c3, t8, c4, ... > and 
< ..., c3, t9, c4, ... > where t8 = interleavings of b3, d2, and 
t9 = interleavings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2, b3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2. 
For d2 alone: 

S = (a2, c3, b3) 
F = (a2, b3, c4) 

S = (a2, b2, d l )  
F = {a2, b3, c4) 

K = {c3) 
J = (c4) 

However, if the proposed boundary has to enclose c3->d2, then 
K = (b2, dl}  
J = {b3, c4) 

and AAP = (P3) 

and AAP = {P2, P3) 

But if the proposed boundary has to include also the commu- 
nication event c4, thus c3->d2->c4, then: 

S = (a2, b2, d l )  
F = (a2, b4, d3) 

EXAMPLE 4 
Consider now the example in Fig. 5. In this system P2 com- 

municates with P3 using c4 and P3 replies to P1 across c3. Sup- 
pose it is necessary to protect the sequence cl!->a2->c2?->a3 
->c3? in process P1. Then: 

K = (b2, dl}  

J = (b4, d3) and AAP = {P2, P3) 

S = { a l , b l , d l }  K = S  
F = (a4, b4, d3} J = F 

EXAMPLE 5 
Consider Fig. 6, where F'= (PI 11 P2 11 P3 (1 P4) = ((PI 1 1  P2) 

1 1  (P3 11 P4)) and alphabets a (PI 11 P2) and 01 (P3 11 P4) have no 
common event. Clearly, (PI 1 1  P2) is independent of (P3 11 P4). 

Traces(2') must include all possible, arbitrary, interleaving of 

traces(P1 ( 1  P2) and traces(P3IIP4). One possible trace in 

and AAP = {Pl, P2, P3) 

traces(?) must be <any trace fiom traces(P1 11 P2), any trace 
from traces(P3 11 P4p .  Likewise another possible trace must be 
<any trace fiom traces(P3 1) P4), any trace fiom traces(P1 11 P2)>. 
This can be determined by explicit trace evaluation. 

For any combination of events in (PI (1 P2), both S and F must 
include a trace 60m traces(P3 11 P4), i.e., a (P3 11 P4). Hence, the 
set differences: K = S-F will eliminate cx (P3 11 P4), and J = F-S 
will eliminate cx (P3 1 1  P4). Hence no events in (P3 11 P4) con- 
tribute to an atomic action involving events solely in (P1 ) )  P2). 

E. Nested Atomic Actions 

Atomic actions must be nested correctly and any method for 
identifying atomic actions must recognize the proper nesting 
1301. If a faulty identification is used in the design of software 
fault tolerant structures, then the scope for error propagation 
from one atomic action to another may not be eliminated, 
making error recovery incomplete, or a process may leave an 
atomic action prematurely making recovery impossible. 

Consider two atomic actions AA, and AAb, with entry lines 
defied by K, and & and exit lines defmed by J, and Jb , follow- 

ing the defmitions of K and J above. Atomic action AA. encom- 
passes the sequence of events between K, and J, and trace 
evaluation allows the designer to reason about the relative se- 
quence of events withii the different processes within AA,. Let 
I denote a temporal precedence relationship within a trace. 

1) If (Ja < Kb) then AA, happens before A A b ,  i.e., AA, < AAb. 
2) If (Jb I K,J then happens before AA., i.e., A A b  <AA,. 
3) If (K, I Kb) A (Jb I J J  then AAb is nested correctly in 

4) If (Kb < K,) A (J, < Jb) then AA. is nested correctly in 

These are the only conditions that constitute correctly nested 
atomic actions. Any other set of conditions will produce incor- 
rect nesting. 

F. Justification of Nested Atomic Actions 

Algorithm I produces sets K and J, which identify the events 

in all the processes which form the entry line and the exit line 
from the atomic action. In addition, algorithm 2 has been shown 
to identify which processes are party to the atomic action. Thus, 
any atomic action, whether nested or not, identified by these 
algorithms will produce a correct and sufficient set of processes 
and will identify the entry and exit lines for these actions. It must 
therefore be the case that these algorithms, defined earlier, iden- 
tify nested atomic actions correctly. 

As an example of this, consider again the system described 
in Fig. 3. Suppose it is required to identify two atomic actions 
in this system: 

AA,, i.e., AA, 2 AAb. 

A&, i.e., AAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa AA.. 

1) to protect c 1 ->c2, in process P1, and 
2) to protect c3->c4, in process P3. 

This might be attempted (incorrectly) as shown in Fig. 7a. 
However, by using the algorithms described, the atomic action 
to protect c3->c4 is given by: 

K = {b2, dl} and J = (b4, d3). (Example 3) 

Similarly the atomic action to protect cl->c2 is given by: 
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P I  PZ P3 P i  P2 P3 

(a) (b) 

Fig. 7. (a) Incorrect attempt to nest atomic actions; P3 could leave its “atomic 
action” with P2 before P2 has completed the “atomic action” with P1; 
(b) Correct nesting: the atomic action between P1 and P2 must include P3 and 
P3 cmnot leave until the atomic action is complete. 

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {al,  bl ,  d l}  and J = {a3, d3, b5}. (Example 2c) 

This actually gives the entry and exit lines shown in Fig. 7b. 
Thus, the outer atomic action encloses the inner action com- 

pletely, making the nesting correct. 

VII. STRUCTURAL ARGUMENTS IN 

ATOMIC ACTION IDENTIFICATION 

The technique discussed so far requires full trace evalua- 
tions to identify atomic action boundaries. However, even with 
automated tools such as CoPla, the demands on system re- 
sources may become too great to allow full trace evaluations. 
For example CoPla requires 1.7MB of memory for the pro- 
gram, plus approximately (24 x number of traces x average 
length of trace) bytes for its data structures. Clearly, for real- 
world systems some means of avoiding full trace evaluation is 
advisable. 

Structural arguments suggest that it is possible in many de- 
signs to avoid a full trace evaluation and still recognize atomic 
action boundaries. By and large the structure of the interproc- 
ess communications determines the location of atomic action 
boundaries. Local events (e.g., logical and arithmetic evalua- 
tion, and assignments) are of no interest, nor are constructs 
governing their sequence (such as loops and conditional selec- 
tion constructs) if they contain no interprocess communication. 

Thus, for example, during trace evaluation any sequence of 
assignments can be collapsed into a single event, simplifying 
the analysis. It is possible to generate the sets J and K (and 
thus identify the boundaries) without the need for full trace 
evaluations. 

It is assumed, as earlier, that the designer has chosen a se- 
quence of consecutive events in one process 

(e$ - > . . .- > e& within process Pp). The sequence must be 

chosen to enclose fully any internal parallel or selection con- 
structs, and the description must be well-structured (in the 
sense that it can be translated into an Occam implementation). 
The designer wishes to determine where the atomic action 
boundary which encloses this sequence must lie. More pre- 
cisely, the question is which other processes are involved in 
the atomic action and where does the boundary lie within these 

processes. The following algorithm determines which events 

must be included within the atomic action, thereby allowing 
the designer to defme its boundary and to identify all other 
processes which must be party to the atomic action, without 
having to produce the complete trace set for the whole system. 

A. Algorithm 3 

The algorithm marks those events which must be party to the 

atomic action. Let {e:l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe : , } ,  the set of the fist  and last events 

to be protected in process P,. a(Pp) has its usual meaning as the 
alphabet of the process P,. Then, define the primitive functions: 

TJX&J which determines whether its argument, “x,” is a 
local event (localevent), a communication event (comm), 
a sequential process (SEQ), a parallel process, a choice 
process or a guarded choice process. 
Value(x) which expects an event as argument and returns 
its value (i.e., its name). 
Markedrx) which returns a BooIean indicating whether 

the event or process, “x,” has already been recognized as 
part of the atomic action. 
InsertMark(x) will cause Marked(x) to return TRUE on 
its next call. 
Llst(N) which is an ordered list of the events in the proc- 
ess given as its argument (effectively the trace restricted 
to the events in process N). 

The following auxiliary functions simplify the analysis: 

Markraj modifies the marked attribute of its argument, “a,” 
setting it to the value TRUE; if the element is a communi- 
cation event then the other participant is also marked. 
Mark(a): 

(MarkeW)  + (q (x E (4.))) 
1) InsertMark(x); 
2) (Type(x) = comm)-> (y := Partner(x)); 

Mark@); 
3) result := TRUE; 

ment, returns the other participant. 

Partner0 

Partnerral, given a communication event “a” as argu- 

(3x) I (x E ( a(P))) 

(Type(x) = comm)A(Value(x) 

= Value(a))A(x # a)->result := x; 

SequentiallyPostDependent(a, b. N) determines whether 
event “b” is sequentially post dependent on “a”; in other 
words whether “b” must necessarily occur after “a” has 
finished. (x>y means that “x” occurs after ‘‘y” in the or- 
dered list of N). 

SeauentiallvPostDeDendent (a, b. N): 
(a E a(N))A(b E W ) ) A  

(W I (x E (List@))) 

(a E ( ~ X ) ) N J  E (a(x)))-> 
result := SequentiallyPostDependent (a, b, x) 

(a E (EX(X)))A(b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (a(x)))~(Type@) = S E Q P  

(Type@) # localevent)A(Type(N) f comm)-> 
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(3Y) I (Y E (LiSt(N)))A((b E a(y))A(X'Y))-' 
result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:= TRUE; 

Then the function FindAA: 
Step 1) Marks all the events in the set of events E 

which have to be protected. 

Step2) Ensures that all events between any two 
events that have to be executed in sequence 
are included within the boundary. For each 
marked event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx in P, for each marked event y 
which is sequentially post dependent on x, 
mark all the events which are sequentially 
between x and y. 

Step 3) Ensures that all processes can exit at the same 
time. 
For each marked event x in P: 
(a) define the empty set H. Insert into H all 

nonmarked communication events y that 
are sequentially post dependent of x. In- 
clude both participants. 

For each element y of the set H, for each event 
z that is sequentially post dependent of y: 

(b) if z is marked then mark y. If there has 
been any newly marked event then reit- 
eration of step 2 is needed. 

(c) if z is not marked and it is a communication 
event then if z or its partner do not belong 
to H include them and reiterate step 3b. 

FindAA(): 

Step 1) (Vx) 1 (x E E)+Mark(x) 

Step 2) 

a) (Vx) I (x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a(P))) 
(VY) I (Y E ( W ) ) )  

(Marked(x)) ~(Marked(y))~ 

(SequentiallyPostDependent (y, x, P))+ 

(V-4 I (z E (a(P))) 
(SequentiallyPostDependent(z, x, P))A 

(SequentiallyPostDependent(y, z, P))+ 

(Mark(z))+goto2 := TRUE; 

Step 3) (Vx) I (x E (a(P))) A (Marked(x)) 

b) (goto2)+go to step 2a 

a) H : =  {}; 

(VY) I (Y E (" 

(Marked(y)) A (Type(y) = CO")A 

(SequentiallyPostDependent(y, x, P))+ 
H := H U y U Partner(y); 

b) (VY) I (Y E (HN (Vz) I (z E (Oc(P))) 

(SequentiallyPostDependent(z, y, P)) A 

(Marked(z))+Mark(y)&goto2 := TRUE; 

c) (VY) I (Y E (H)) (Vz) I (z E (Oc(P)N 
(SequentiallyPostDependent(z, y, P))A 

(Marked(z)) A (Type(z) = CO") A ((z G H) v 

(Partner(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe H))+H := H U z U Partner(z); 

goto3.b := TRUE; 

d) (goto3.b)+go to step 3.b 

Step 4) (goto2)+go to step 2 

The algorithm seeks out communication pattems amongst 
the set of processes in an iterative fashion and deliberately 
examines the sequential dependence of communications in the 

system. It uses this sequential dependence to examine not only 
all direct communications with the original sequence requiring 
protection, between the events in set E, but also any subse- 
quent communications (set H) from processes with which 
events in E have had contact. It determines whether these sub- 
sequent communications have structural implications which 
require their inclusion in the atomic action. The algorithm'it- 
erates until no further events are identified for inclusion in the 

atomic action. 
The algorithm progressively marks those events in the 

complete set of processes which should be included in the 
atomic action. The final step is to generate the set AAe which 
identifies the events constituting the atomic action, and the set 
AAP to determine which processes are necessarily party to the 
atomic action. 

1. Define the empty set AAe 

2. Add each marked event to AAe 
AAe := { }  

(Vx) I (x E (NP))) A (Marked(x))-> 

AAe := AAe U x 
3. Define the empty set AAP 

AAP := (} 
4. For each event x in AAe, for all processes P,, 

if e E NP,) then add P, to set AAP. 
(Ve) (VP,) I (e E AAe)A(e = a(Pp))-> 
AAP := AAP U P, 

These structural algorithms have been applied to a large 
number of examples. 

VIII. EXAMPLES 

Consider again the set of processes given in Fig. 3: 

P=(Pl IIPzIIP3) 
where 

P 1 = (al->cl !->aZ->c2?->d->SKIP) 

P2 = (bl ->c I?->b2->~3!->b3->~4?->M->c2!->b5->SKIP) 

P3 = (dl ->c3?->dZ->d!->d3->SKlP) 

Atomic actions can be readily identified without the need to 
evaluate the traces given in Fig. 4. 

EXAMPLE 1 REVISITED 
Suppose it is decided to protect event c l .  Hence E = (cl}. 

Then step 1 causes the following marking of events zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 
indicates marked events). 

PI = ( a l - > m  ->aZ->c2?->d->SKIP) 

P2 = ( b l - > a  ->b2->~3!->b3->d?->b4->~2!->bS->SKlP) 

P3 = (dl->c3?->d2->~4!->d3->SKIP) 
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Step 2 leads to no new markings, and consequently the al- 

gorithm gives AAe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {cl)  and AAP = {PI, P2). In other 
words the atomic action enclosing event c l  includes only the 
event c l  in both processes P1 and P2. This is consistent with 
the earlier analysis that the atomic action begins immediately 
after event a1 in process P1 and event b l  in process P2, and 
terminates immediately before event a2 in process PI and 
event b2 in process P2. 

EXAMPLES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2A, 28,2C REVISITED 

In a similar way, these produce analogous results to those 
produced earlier using algorithm 1. 

EXAMPLE 3 REVISITED 

Here the designer has the opportunity of selecting to protect 
either d2 alone, but to include other events in the sequence c3 
-> d2->c4 in P3. For E = {d2), algorithm 3 quickly terminates 
with AAe = {d2) as the sole constituent of the atomic action. 
However, if E = {c3, d2) were selected, then step 1 would 
cause the following marking: 

PI = (al->cl!->a2->~2?->a3->SKIP) 

P2 = (bl->cl?->b2->m ->b3->c4?->b4->~2!->bS->SKIP) 

P3 = ( d l - > v l  ->c4!->d3->SKIP) 

giving AAe = {c3, d2) and AAP = {P2, P3). 

cause the following marking: 
Likewise, if E = {d2, c4) were selected, then step 1 would 

PI = (a1 ->cl !->a2->~2?->a3->SKIP) 

P2 = ( b I - > c l ? - > b 2 - > ~ 3 ! - > b 3 - > ~  ->b4->~2!->bS->SKlP) 

P3 = (dI->c3?->= ->d3->SKIP) 

giving AAe = {d2, c4) and AAP = {P2, P3). 
However, if E = {c3, c4) were selected, then step 1 and step 2 

would cause the following marking: 

PI = (al->cl!->a2->~2?->a3->SKIP) 

P2 = (bl->cl?->b2->lc3!->b3->c4?1 ->b4-%2!->bS->SKIP) 

P3 = (dI->lc3?->dZ->c4!1 ->d3->SKIP) 

giving AAe = {c3, d2, c4, b3) and AAP = {P2, P3). 

EXAMPLE 4 REVISITED 

This example concems the set of processes: 

P= (PI 11 P2 11 P3) 

where 

P 1 = (a I ->c I !->a2->~2?->a3->~3?->a4->SKIP) 

P2 = (bl->cI?->b2->~2!->b3->~4!->b4-->SKIP) 

P3 = (dl->c4?->d2->~3!->d3->SKIP) 

As before, suppose it is decided to protect the sequence 
cl!->a2->~2?->a3->~3? in process P1, i.e., E = {cl, c3). Then 

step 1 causes the marking: 

PI = ( a l - > m  ->a2->c2?->a3->a ->a4->SKIP) 

P2 = ( b l - > a  ->b2->~2!->b3->~4!->b4-->SKIP) 

P3 = (dl->c4?->d2->m ->d3->SKIP) 

Step 2 now causes the marking: 

PI = (al->l cl!->a2->~2?->a3->~3?1 ->a4->SKIP) 

P2 = (bl->m - > b 2 - > m  ->b3->~4!->b4-->SKIP) 

P3 = (dI->ul?->d2->m ->d3->SKIP) 

This step is reiterated, since new events were marked: 

P1 = (al->l cI!->a2->~2?->a3->~3?1 ->a4->SKIP) 

P2 = (bl->lcl?->b2->c2!1 ->b3->d!->b4-->SKIP) 

P3 = ( d I - > d ? - > d 2 - > m  ->d3->SKIP) 

Now step 3a looks at the unmarked communications events, 

to form the set H = {c4!, c4?). Step 3b would discover that c3! 
in process P3 is marked and sequentially post dependent, 
leading to the marking: 

PI = (al->l cl!->a2-~2?->a3->~3?1 ->a4->SKIP) 

P2 = (bl->lcl?->bZ->c2!1 - > b 3 - > m  ->b4-->SKIP) 

P3 = (dl->@ - > d 2 - > m  ->d3->SKIP) 

Reiteration of step 2 then leads to the marking: 

PI = (al->[ cl!->a2->~2?->a3->~3?I ->a4->SKIP) 

P2 = (bl->l cl?->b2->~2!->b3->~4!I ->b4-->SKIP) 

P3 = (dl->[c4?->d2->c3!1 ->d3->SKIP) 

No further markings are generated by the remaining steps, 
leading to the conclusion that AAe = {a2, a3, c l ,  c2, c3, c4, 

b2,b3,d2) andAAP= {pl,p2,p3).  

B. Complexity of the Algorithms 

The full trace algorithm (algorithm 1) would show expo- 

nential complexity with the number of processes during trace 
production if there were no synchronizing communications 
present. When communications are added, each communica- 
tion forces synchronization between two processes, eliminates 
part of the trace set, and thus reduces complexity. Every com- 
munication reduces the size of the trace set significantly, and 
similarly the time required to search. Thus: 

Given n processes, each with m events, and 0 comms: 

Given n processes, each with m events, and 1 comms: 

Given n processes, each with m events, and p comms: 

Searching is approximately linear with the size of the trace 
set, since the algorithm is simply scanning the trace sets. 

In algorithm 3, this initial complexity does not appear as 
traces are not explicitly produced. Instead, complexity arises in 
searching across communication links to identify atomic action 
boundaries. Algorithm 3 shows a near linear complexity, but 
whenever sequential post dependency forces backtracking the 
analysis becomes less obvious. If there were no backtracking, 
then the complexity would be linearly dependent on the num- 
ber of events (n*m). Every time the algorithm has to back- 
track, it is effectively analogous to regenerating a further set of 
traces to search. Thus, if there are q backtracking occurrences, 
then the complexity increases to n*m*q. 

require about nm traces. 

require about 2.nmI2 traces. 

require about 2P.nm’p traces. 
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P= (SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ S2 I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3 I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS4 I1 Kp I1 Kv II M II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB /I C II G II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAARM I1 INPUT) 
{here 

SI = *(al->(cl? jl c2? 11 c3?)->a2->c4!->a3->SKIP) 
S2 = *(bl->(c5?l/c6?)->b2->~7!->b3->SKIP) 

S4 = *(el->(cl l?)~c12?~~~13?~/~14?)-~e2->~15!->e3->SKIP) 
Kp = *(fl->clO?->fZ->c2!->f3->SKIP) 
Kv = *(gl->c7?->gZ->c3!->g3->SKIP) 
M = *(hl->(c4?llcl6?)->h2->cI I!->h3->SKIP) 
B = *(i l->(cl7?~~cl8?)->j2->~14!->j3->SKIP) 
C = *(k 1 ->(c 19?11~20?)->kZ->c I3 !->!&>SKIP) 
G = *(11->~21?->12->~12!->13->SKIP) 
ARM = tnO->(c16!~~~17!~~cI 8 ! ~ ~ ~ 1 9 ! ~ ~ ~ 2 0 ! ~ ~ ~ 2 1 ! ~ ~ ~ 6 ! ~ ~ ~ 9 ! ) - >  

S 3  = ‘(dl ->(~8?(/~9?)->d2->cl O!->d3->SKIP) 

*(ml->cl S?->m2-> 
(c16!~~c17!~~c18!~~c19!~~c2O!~jcZ1!~~c6!~~c9!)-~m3-~SKIP) 

INPUT = *(nl ->(c I !IlcS!llcX!)->n2->SKIP) 

, where * represents a loop 
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Fig. 8. Model of a robot arm manipulator. 

IX. A REAL WORLD EXAMPLE 

Simple examples as shown above can have their trace se- 

quences evaluated “by hand” and boundary identification can 
be achieved by inspection of the trace sets. For larger, more 
realistic examples manual methods become manageably 
complex. The CoPla software tool has been used to produce 
trace sets for a number of more complex systems and then used 
to identify atomic action boundaries. One application, a robot 
arm manipulator, (Fig. 8) has been modeled [25] and imple- 
mented as a set of 12 parallel processes. A slightly simplified 
version expressed in CSP is shown in Fig. 9; following initiali- 
zation, each process engages in an infinite loop, all synchro- 
nized by communications. (The CSP description expands to an 

actual implementation comprising about 10,000 lines of occam 
code). Automated analysis reveals 184,900 possible traces; 
CoPla then allows the user to propose entry and exit points for 
an atomic action within one of the processes and uses the al- 
gorithms described earlier to determine the proper boundaries 
of the atomic action. 

For example, consider the requirement to locate an atomic 
action boundary which encloses c15 to c9 inclusively in proc- 
ess ARM. CoPla gives the following results: 

En2=(c6) ES1=(c9) ESr=(c15) E ~ = ( c l 6 )  
Ee = ( ~ 1 7 ,  CIS) Ec = ( ~ 1 9 ,  ~ 2 0 )  & = ( ~ 2 1 )  
EARM= (c15, m2, c16, c17, c18, c19, c20, c21, c6, c9) 

allowing the sets K and J to be derived as: 

K =  {bl, d l ,  e2, h l , j l ,  k l ,  11); 
events which must precede the atomic action boundary, 
and 

events which must follow the atomic action boundary. 
J = (b2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2, e3, h2, j2, k2,12}; 

X. CONCLUSIONS 

This paper has proposed two methods for identifying atomic 
actions in systems described using CSP. If explicit trace evalua- 
tion is tractable, then algorithms 1 and 2 provide the designer 

with a systematic method of locating atomic action boundaries in 
a hierarchical fashion, essentially by analyzing the possible se- 
quences of interprocess communications within the trace sets. 
The second method (algorithm 3) takes the original CSP de- 
scriptions of the system and uses structural arguments to identify 
the atomic action boundaries; this method does not suffer the 
drawbacks involved in full trace evaluation, but does incur the 
penalty of a more complex algorithm. 

Both techniques identify those events which are constitu- 
ent to a proposed atomic action and eliminate all processes 
that are disjoint from the atomic action; both techniques al- 

low nested atomic actions to be identified correctly. How- 
ever, an analysis based on structural arguments has a number 
of attractions. By avoiding a full trace evaluation or a full 
reachability analysis, the method is more economical on 
computational time and memory resources. But, it depends 
implicitly on the ability to analyze the sequence in which 
events could occur, which is akin to the ability to generate 
the complete set of traces. It cannot therefore be used with 
an arbitrary set of communicating processes; the designer is 
restricted to processes formed solely from sequential, paral- 
lel, conditional and general choice constructs of simple 
events and communications. Nevertheless, the algorithms 
have been applied to systems which include restricted forms 
of program loops. For example, the robot manipulator arm 
processes are normally invoked from within an infinite con- 
trol loop, but since the iterations begin and end synchro- 
nously, the analysis can be applied without prejudice. 

In the examples shown in the paper the processes only 
have one trace. However, multiple traces (and thus some 
form of nondeterminism) are easily included into the design 
by considering each altemative individually, although this 
will obviously increase the overall number of traces that will 
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be produced. When the problem of atomic action placement 
is addressed, for such situations, the main point is that the 
complete “nondeterministic” structure (such as an Occam 
ALT) must be included in the atomic action. 

Both methods operate directly on the CSP description of 
the system. They require no error prone translation of a de- 
veloped program into graphical form, nor is there an implied 
simulation of program execution based on the graphical 
structures. Furthermore, translation of the CSP design to an 
occam implementation is generally straightforward (since 
problematic features such as interrupts are excluded) because 
of the close family relationship between Occam and CSP, or 
alternatively, hardware implementations can be developed 
directly from the CSP design with only modest difficulty. 

The underlying motivation of this research is to develop a 
mechanism for introducing software fault tolerance struc- 
tures in a systematic, proper, fashion. Atomic action identifi- 
cation is just the first, crucial, step in that process. 
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