
This is a repository copy of CSP methods for identifying atomic actions in the design of
fault tolerant concurrent systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/971/

Article:

Tyrrell, A.M. orcid.org/0000-0002-8533-2404 and Carpenter, G.F. (1995) CSP methods for
identifying atomic actions in the design of fault tolerant concurrent systems. IEEE
Transactions on Software Engineering. pp. 629-639. ISSN 0098-5589

https://doi.org/10.1109/32.392983

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21, NO. 7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJULY 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA629

CSP Methods for IdentiQing Atomic Actions
in the Design of Fault Tolerant Concurrent Systems

Andrew M. Tyrrell, Member, IEEE, and Geof F. Carpenter

Abstract-Limiting the extent of error propagation when faults
occur and localizing the subsequent error recovery are common
concerns in the design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof fault tolerant parallel processing sys-
tems. Both activities are made easier if the designer associates
fault tolerance mechanisms with the underlying atomic actions of
the system. With this in mind, this paper has investigated two
methods for the identification of atomic actions in parallel proc-
essing systems described using CSP. Explicit trace evaluation
forms the hasis of the first algorithm, which enables a designer to
analyze interprocess communications and thereby locate atomic
action boundaries in a hierarchical fashion. The second method
takes CSP descriptions of the parallel processes and uses struc-
tural arguments to infer the atomic action boundaries. This
method avoids the difficulties involved with producing full trace
sets, but does incur the penalty of a more complex algorithm.

Index Term-Atomic actions, concurrent systems, CSP, fault
tolerance.

I. INTRODUCTION

DISTRIBUTED processing system, comprising a set of dis- A crete processing units, offers the user not only the pros-
pect of increased efficiency and throughput through parallel-
ism, but its inherent redundancy might also be exploited to
enhance reliability. To do so requires a properly designed fault

tolerance infrastructure which maintains the integrity of the
system under fault conditions. This paper describes CSP-based
methods which facilitate the placement of fault tolerance soft-
ware structures across a distributed system to ensure safe op-
erations in the presence of faults.

Notwithstanding the use of standards and guidelines [l], [2],
[3] in the design of software-based real-time systems for
safety-critical applications, and the concomitant adoption of
formal methods, it is probable that faults will still be intro-
duced into a design either explicitly as part of a particular
component or implicitly through the omission of a particular

feature. It is unrealistic to expect all software design faults to
be detected during design and testing, and latent faults may
persist into system use [4].

Fault tolerance [5] is often incorporated into a design as a
ruggedization process to protect a process or set of processes
regarded as critical to safe system operation. The fault toler-
ance mechanisms are required to recognize faults by the errors
they cause and to prevent error migration from the faulty proc-

Manuscript received June 1993; revised August 1994.
A.M. Tyrrell is with the Department of Electronics, University of York,

Heslington, York, YO1 5DD, UK; e-mail: amt@ohm.york.ac.uk.
G.F. Carpenter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis with the Department of Electrical and Electronic Engi-

neering and Applied Physics, Aston University, Aston Triangle, Birmingham,
8 4 7ET, UK.

IEEECS Log Number S95020.

ess to elsewhere in the system, so that error recovery is local-
ized. The extent of the error recovery operation can be limited
if a boundary can be identified within the state-space of the
distributed system across which error propagation by inter-
process communication is impossible; it must include all proc-
esses which interact with the function being protected and ex-
clude all processes that do not interact with it. In other words,
the state-space of the system has to be partitioned into a hier-
archy of atomic actions [6]. It is then possible to introduce a
distributed error detection and recovery mechanism around the
atomic action [7] which ensures that all the processes affected

by the fault cooperate in recovery. This localization of fault
tolerance simplifies the design and can help to meet timing
constraints in real-time systems [8].

Methods for determining hierarchical sets of atomic actions
are not widely known. This paper describes methods which use
the mathematically based notation of Communicating Sequen-
tial Processes (CSP) [9] to describe the operation of a distrib-
uted system, and the interactions between the processes. The
analysis allows the designer to identify hierarchical sets of
atomic actions within the design. The model of the system can
then be used to place fault tolerance software structures, cor-
rectly including all participants.

II. ATOMIC ACTIONS AND FAULT-TOLERANCE

To an external observer the activity of a process is defined
by its sequence of external interactions; any internal actions
(of which there may be many) can not affect the extemal ob-
server, at least until the next extemal interaction. This allows
the concept of an atomic action to be derived [6]: the activity
of a set of processes is defined as an atomic action if there are
no interactions between that set of processes and the rest of the
system for the duration of that activity. The extension to hier-

archically nested atomic actions is straightforward. These con-
cepts are well-known in distributed transaction processing [lo]
from which field many other attributes of atomic actions, such
as serializability, failure atomicity and permanence of effect
can be defined.

The process of identifying the atomic actions within a parallel
system design brings into clear focus the structure of interproc-
ess interactions and thus the route by which errors might propa-
gate under fault conditions. All common mechanisms for provid-
ing fault tolerance in parallel systems, such as forward error re-
covery [l l], N-version programming [12], conversations [l l] ,
consensus recovery blocks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[131 and distributed recovery blocks
[14], have to cope with error confinement and achieve this by
imposing logic structures “around” atomic actions [151.

0098-5589/95$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1995 IEEE

630 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21, NO. 7, JULY 1995

A generalized fault tolerant mechanism could be considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as a coordinated set of recoverable blocks, with one recoverable
block in each interacting process, allowing distributed error de-
tection and recovery. The mechanism is bounded by an entry
line, an exit line and two side walls which completely enclose
the set of interacting processes which are party to the mecha-
nism, and across which interprocess interactions are prohibited.
The structure is indicated diagramatically in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.

The enhy line defmes the start of the atomic action and con-
sists of a coordinated set of recovery points for the participating
processes. The exit line comprises a coordinated set of accept-
ability tests. Only if all participating processes pass their respec-
tive acceptability tests is the mechanism deemed successful and
all processes exit, in synchronism, from the action. If any ac-
ceptability test is failed, recovery is initiated and processing
“passed” to another set of recoverable processes. Thus all proc-

esses in the atomic action cooperate in error detection.
The duality of atomic actions and recovery mechanisms has

been discussed at length in [lo]. Atomic actions can be viewed
as modeling an “object-action’’ type of system where atomic

actions operate on objects. Expressed graphically as an action
diagram (Fig. 2) circles represent actions, and arcs show the
dependencies between actions. Thus, in Fig. 2, action A2 uses
objects “x” and “y” released by action Al. Similarly, action Ad
uses “y” when it has been released by action A2. A comparison
with Fig. 1 shows that the recovery mechanism is the dual of
the action and the process is the dual of the object; a mecha-
nism Ci is replaced by action Ai with an arc connecting Ai with
Aj if Ci and C, have processes in common. Thus, Fig. 2b and
Fig. 2c can be regarded as duals. In the context of this paper,
for example, action A3 provides a fault tolerant function op-
erating on processes P, Q, and R.

Any attempt to incorporate an entry line and an exit line at
arbitrary locations in a concurrent system is unlikely to lead to
a properly formed recovery mechanism. It is necessary to
identify a boundary within the state space of the complete set
of processes across which error propagation by communication
is prevented. Clearly, this boundary will be the boundary of an

atomic action, since such a boundary of necessiQ prohibits the
passing of information to any process not involved in the
atomic action and similarly embraces all interacting processes
within the atomic action. Recovery mechanisms can be nested

Atomic action
boundary

J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+*--&I I I I I : I I II I I : 1 - - -:
[AT - acceptability tests] R S T

Fig. 1 . The structure of a fault tolerant mechanism involving processes R, S,
and T.

systematically in the same hierarchical fashion as atomic ac-
tions. If this duality is not imposed, then should the system
attempt to backtrack and recover in response to a fault, pro-
gressive collapse by the domino effect [1 I] can occur.

In the literature, strategies for implementing fault tolerance
in parallel systems [16], [17], [18], [19] and for handling
problems which occur if the chosen mechanism is incorrectly
located, have received more detailed attention than the funda-
mental problem of placing the mechanisms correctly. Correctly
placed mechanisms, coincident with atomic action boundaries,
avoid error propagation problems. This paper is concemed
with the analysis of a prototype design for atomic actions.
Ideally, a design method would incorporate the requisite, ap-

propriately placed, atomic actions and the associated fault tol-
erance infrastructure into a system with a minimal amount of
reanalysis and redesign, and an eventual goal is to define such
a design method. However, the techniques are still insufi-
ciently mature for this to be achieved and consequently this
paper retains the normal design practice in which fault toler-
ance mechanisms are superimposed upon selected atomic ac-
tions and the new designs subjected to reanalysis.

111. STATE SPACE METHODS FOR IDENTIFYING

ATOMIC ACTIONS

Substantial work has been performed on the ability to model
systems, and to reason about their behavior, using state space
representations such as Petri nets or GMB [20], [21]. In the
Petri net approach, each process state can be associated with a
Petri net place, and each state transition with a Petri net transi-
tion [22]. Process execution is simulated by allowing marking
tokens to flow through the Petri net. From the formulation of a
reachability graph, the behavior of the Petri net, and therefore
of the modeled system, can be analyzed.

Experience with occam [23] as a design language for
loosely-coupled real-time concurrent systems [24], [25] has
led to Petri net methods for identifying atomic actions. By only
permitting synchronous, atomic, communications, occam

forces communicating processes into mutual synchronization
at communication points. This not only imposes a strict dis-
cipline on the designer (because errors in the synchronization
logic can lead to deadlock) but also leads to a system more

J‘
(3

S R o P

(a) (b) (C)

Fig. 2. (a) an action diagram; (b) a process-recovery diagram; (c) the action
diagram dual of Fig. 2b.

TYRRELL AND CARPENTER CSP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMETHODS FOR IDENTIFYING ATOMIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN THE DESIGN OF FAULT TOLERANT CONCURRENT SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA63 I

amenable to analysis. The system is designed using the re-

quirement specification and modeled as a Petri net. Examina-
tion of the state reachability graph permits the designer to
identify the boundaries of atomic actions. Inspection deter-
mines which atomic action boundary encloses which system

function, and an appropriate error detection and recovery
mechanism to protect any chosen system function can then be
incorporated at the level of the atomic action without disturb-
ing the constituent processes or their interprocess actions.

Although the method is effective, it requires: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) translation of an existing textual Occam design into a

2) translation between the graphical Petri net and set theory

3) translation of the identified atomic action entry and exit

which are made more difficult because:

4) for all but the simplest examples, there is a computational

Although automated tools exist for these translation proc-
esses, often error-prone manual methods are still involved. For

Petri-net-based methods the designer must be satisfied that the
translation steps 1-3 do not themselves introduce errors.

Occam has a mathematical basis in the theory of Communi-
cating Sequential Processes (CSP) [9]. CSP permits a funda-
mental description of a concurrent processing system in terms
of the component processes, the interactions between the proc-
esses, and interactions with the real-world environment. Since
a CSP description is directly amenable to mathematical analy-
sis, it is possible to decide behavioral properties, such as the
presence of reachability pathologies, without the need for er-
ror-prone translation into a complementary representation. The
ability to reason about timeliness in recent extensions to CSP
[26] should further promote its use in the design of time-
critical and safety critical systems.

The trace of a CSP process is a record of the sequence of
events in which a process could engage and indicates directly a
possible execution behavior of that process [27]. During the
design phase it would be advantageous to determine all the
possible traces which a process might produce. This procedure
is termed trace evaluation in this paper. For any but the sim-
plest process there will be a number of possible traces; for a
set of concurrently executing processes the overall trace set
will be all permitted interleavings of the traces of the compo-

nent processes. If the processes interact only by synchronous
communications, then the processes are brought into synchro-
nism for the communication event. The communication event
will be in the alphabet of both the communicating processes
and will constrain the set of all possible traces.

It is not practicable to create the complete set of traces un-
less the set of processes is subject to certain constraints:

1) The processes must terminate, or arrive at a previously
reached state, in a finite number of steps, else the set of
traces becomes infinite.

2) Where program flow is made dependent on the value of
variable expressions, static analysis has to consider all

graphical Petri net;

or matrix-based methods for reachability analysis;

points back to the original Occam design;

explosion which could restrict the analysis.

possible values within the range of the variable expres-
sion, which may be infinite and lead to an infmite set of
traces.

3) No. 2) precludes from analysis classes of loops where trace
evaluation would have to evaluate loop guards, and also
the use of subscripted communication channels where the
subscript is determined by a variable expression.

4)Guarded choice (and thus nondeterminism) can be in-
cluded provided the truth value of the guard is reflected
in the trace set. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5) Interprocess communications occurring in loop con-
structs pose major problems for trace evaluation; in par-
ticularly if the loop iteration is controlled by a variable
expression which is even indirectly determined by the
real-world environment, then analysis can only be per-
formed for special cases, i.e., where a subset of these
environmental values are considered.

6)Certain commonly occurring forms of loop can be
handled; for example, if the loop is executed a prede-
fined number of times (e.g., the conventional FOR loop)
and the number of communications in both processes
exactly match, or if both communicating processes have
matched loops which iterate synchronously in both
processes (as in the real world robot example).

Trace evaluation can be tedious and error-prone if per-
formed manually, but it may be readily automated. An auto-
mated tool, termed CoPla, has been built at the University of
York within an X-Windows environment [28].

Iv. CSP AND ATOMIC ACTION IDENTIFICATION

Trace analysis can be used to identify atomic actions within
a CSP design and to infer a hierarchical arrangement of these
atomic actions. The technique presented here is inspired by the
successful Petri net methods [29]; it requires the designer to
evaluate all the possible execution traces for the CSP design
and then to analyze process execution for events which are
interprocess communications. By definition, the activity of a
set of processes constituting an atomic action is such that no
interactions take place between that set of processes and the
rest of the system. Consequently the boundary of the atomic
action can then be used for the proper incorporation of coordi-
nated error detection and error recovery mechanisms within
CSP designs.

Conventionally the complete set of possible traces for a

process, P, is designated by

where

traces(P) = {tl, tz, ..., tk}

t, = <e,,, e,Z, ..., e,,, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ>
and the event e,, corresponds to the jth event in the ith possible
trace t,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ is the successful termination event. (Strictly speak-

ing, <e,l>, <e,l, e,p, and all intermediary event sequences are
also members of traces(P) as well as <e,l, e,*, ..., e,,, ..., ,/ >;
this paper only consider traces

The algorithm for trace evaluation is a straightforward ap-
plication of continuous simplification. Given P, all the events

the termination event.)

632 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21. NO. 7, JULY 1995

eil which can be the first element of the trace are extracted, to
yield a simpler process P/eil (P after engaging in eil zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA), thus:

traces(P) = traces(e,, A (P / ell))Utraces(ezl A(P / ez,))u . . .

=Utraces(eil A (P / ~ ~ ~))
i=l

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the catenation operator. The function

traces(eil A (P/ei2)) can then be evaluated in a similar fashion.
Consider N processes in concurrent execution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F = PI 11 ... 11 pn 11 ... 11 PN

As before, for each component process, P,:

where
traces(P,) = {ti, tz, ..., tkl

t i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc e:,,ei, ..., e:, . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ" >

Note, a superscript character is added to show that e{ and

J'" occur within process P, . Each event may be further cate-

gorized, either as being local to its constituent process (thus,

I:, appearing only in the alphabet of process, Pn) or as being a

communication event (thus, c:" , appearing in the alphabets of

both processes P., P,, which participate in the communication,
and thereby forcing synchronization). For each process P,, the

local events 1: form the set L, and the communication events

c: form the set C.; thus:

.(P,)= L, uc,
1: EL"

c: EC,

The traces of the set of processes Pwill be all permitted inter-
leavings of the traces of the component processes, Written as:

where

traces(23) = {tl, t2, ..., k)

t i = < g 11, g 12, ..., gij, ...) J '
Here, the event g,, corresponds to the jth event in the ith

possible trace ti of traces(23). This general event gij is either an
element from the alphabet of one of the constituent processes

if it is a local event; otherwise it must appear in the alphabet of
exactly two processes as a communication event. Thus:

3n: g, E a(PJ

(g,, E L,Jv(gi, E C,Agi, E C,A n+m>

The method for identifying hierarchically nested atomic ac-
tions is defined in algorithms 1 and 2. Algorithm 1 defines
how the entry and exit lines to the atomic action are identified.

A. Algorithm 1

obvious extension to more than three processes):

Given three processes P,, P,, P, in parallel execution (with

1) Add before the start of each process the special events:

; recall that the last event in each e:, , e:,il, and
process is followed by Jp, ,P, and f, respectively.

2) Select a sequence of consecutive events

e,9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 . . . - > e$ -5 . . . -> e:.

within P, which are to be constituents of the atomic ac-
tion. The sequence must enclose fully any parallel or se-

lection constructs within the sequence. Note that e$i,

and JP will not be part of this sequence.

3) Defme the empty sets S, F, K, J.

S := {}; F := {}; K := {}; J := { }

4) Generate traces(F), (including e$$ and Jp).

5) For each trace t, in traces(?), locate gi, = er, . Add gi(m.l)

to set S.

(t/tl)l (tl E traces(F))

(vgim 1) (gim E t l) ~ (gim = G) + gi(m-1)

6) For each trace ti in traces(lp), locate gin =e:,, . Add gi(n+l)

to set F.

(tl E tJaces(F))

(vgin)l(gin ~ t l) ~ (g i n =a) -j F:=FUgi(n+I)

7) Compute the set difference K = S-F. This defines the
complete set of events which must immediately precede
the start of the atomic action.

8) Compute the set difference J = F-S. This defines the
complete set of events which must immediately follow
the end of the atomic action.

B. Justification of Algorithm 1

Initially, before algorithm 1 is executed:

K = O , J = O . S = O , F = O

The sequence of events in P, which are to be constituents of
the atomic action are described as:

e,9 -> . . . - > e$ -> . . . -> e:,,

If all e; E L, then no interprocess communications occur.

Since the trace evaluation determines all possible traces, the sets
S and F will both contain all possible events (in other processes)

which may interleave with the events e:, -> . . . -> e:,, and de-

termining the set difference will eliminate all these events. As
expected, the atomic action is local to process P,.

If any e$ E C, then interprocess communications do occur

and will synchronize both parties to the communication (since

e$ E C, or e$ E C, , as well as C,). Suppose the communica-

tion event concems processes P, and P,. The interprocess
communication must be intemal to the atomic action. The syn-
chronization it causes will be evident in the trace evaluation.
Again since the trace evaluation determines all possible traces,
the set S will contain those events in the other process P,
(equivalently P,) which can immediately precede the first
communication with P, but cannot contain any event which
must follow it. Likewise, the set F will contain those events in

TYRRELL AND CARPENTER CSP METHODS FOR IDENTIFYING ATOMIC ACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN THE DESIGN OF FAULT TOLERANT CONCURRENT SYSTEMS 633 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fects they have in the trace evaluation and are constrained to

be intemal to the atomic action. It is argued above that the sets
K and J contain the events which must precede and which must
follow the atomic action and identifying the host process for

process P, (equivalently Pr) which can immediately follow the
last communication with P, but cannot contain any event which
must precede it. Consequently, the set difference operations to
give K and J will identify the events in other processes which
form the entry line to and the exit line from the atomic action.
(Note: the notation J, K, F, S follows from [29])

Algorithm 2 can be used to determine which processes are
party to the atomic action.

!P=(PI I IFqP3)
where

PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (al->cI!->a2->c2?->a3->SKIP)
FZ = (bl ->cl?->b2->~3!->b3->c4?->b->c2!->bS->SKIP)
P3 = (dl-x3?->d2->vl!->d3->SKIP)

J = F-S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{a2, b2} defines those events which should im-
mediately follow the end of the atomic
action

AAP = {Pl, P2}

Hence the atomic action enclosing event c l includes proc-
esses P1 and P2, begins immediately after event a1 in process
P1 and event bl in process P2, and terminates immediately
before event a2 in process P1 and event b2 in process P2.

P3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp: AAP

proceed. The trace evaluation proceeds to yield the eventual
expansion given in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.

EXAMPLE 1
Suppose it is decided to protect event c l . Then analysis de-

termines:

where, in summary:
t l = interleavings of ainit ,binit, a l , bl

t4 = interleavings of a,”,, ,b,.,,, d,,,, a l , b l , dl
t5 = interleavings of d,.,,, a2, b2, dl
t6 = interleavings of a2, b2

- or interleavings of ,bmr, di.,t,al, b l

S = {al, bl , d l} since always precedes al, etc. i.e.,
the set of all possible immediately pre-
ceding “events”
i.e., the set of all possible immediately F = {a2, b2, d l}

t7=lnterleavingsof dImb2, dl
t8 = ‘nterleavlngs Of b3, d2
t9 = interleavings of a2, b3, d2
111 = interleavings of a2, b4, d3
t i 2 = Interleavines of a2, b4,

following “events” 113 = interleavings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa3, b5, d3

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 7, JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 P2 11 P3)

where
PI = (al->cl !->a2->cZ?->a3->~3?->a4->SKIP)
P2 = (b I ->cl?->b2->cZ!->b3->c4!->b4->SKIP)
P3 = (dl ->c4?->d2->~3!->d3->SKIP)

which gives:

<t2,cl,t4,c2,b3,c4,t8,c3,tlI,JaII
<t2,cl,t4.c2,b3,c4,t9,c3,t12,Ja 11
<t2,cI,t4,c2,t5,c4,d2,c3,t12,Ja 11
<t2,Cl,t4,C2,t5,C4,tlO,C3,tl I,?
<t2,cl,t3,c2,t6,c4,t9,c3,t12,Ja 11
<t2,cl,t3,c2,t7,c4,d2,~3,tI2,$lI
...)

where, in summary:
tl = interleavings of ai.,,, binLt, d,,,, al,bl ,d l
t2 = interleavings of a,,, bj,,, a l ,b l or interleavings o f a d , b,.i,, din,t, al,bl
tl I = interleavings of a4 , d3
t l? = interleavines of a4 . M . d3

Fig. 5 . A further example with three intercommunicating processes; the ful
trace set comprises 1,488 traces.

P= (PI 11 P2 11 P3 I1 P4)
where

PI = (al->cl !->d->c2?->d->SKIP)
P2 = (bI->cl?->b2->~2!->b3->SKIP)
P3 = (d1->~3?->d2->~4!->d3->SKIP)
P4 = fel ->c~l->eZ->uZ?->e3->SKlPl

Fig. 6. Simple example with four parallel processes.

c3->d2->c4 in P3; traces(fl includes < ..., c3, t8, c4, ... > and
< ..., c3, t9, c4, ... > where t8 = interleavings of b3, d2, and
t9 = interleavings of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2, b3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2.
For d2 alone:

S = (a2, c3, b3)
F = (a2, b3, c4)

S = (a2, b2, d l)
F = {a2, b3, c4)

K = {c3)
J = (c4)

However, if the proposed boundary has to enclose c3->d2, then
K = (b2, dl}
J = {b3, c4)

and AAP = (P3)

and AAP = {P2, P3)

But if the proposed boundary has to include also the commu-
nication event c4, thus c3->d2->c4, then:

S = (a2, b2, d l)
F = (a2, b4, d3)

EXAMPLE 4
Consider now the example in Fig. 5. In this system P2 com-

municates with P3 using c4 and P3 replies to P1 across c3. Sup-
pose it is necessary to protect the sequence cl!->a2->c2?->a3
->c3? in process P1. Then:

K = (b2, dl}

J = (b4, d3) and AAP = {P2, P3)

S = { a l , b l , d l } K = S
F = (a4, b4, d3} J = F

EXAMPLE 5
Consider Fig. 6, where F'= (PI 11 P2 11 P3 (1 P4) = ((PI 1 1 P2)

1 1 (P3 11 P4)) and alphabets a (PI 11 P2) and 01 (P3 11 P4) have no
common event. Clearly, (PI 1 1 P2) is independent of (P3 11 P4).

Traces(2') must include all possible, arbitrary, interleaving of

traces(P1 (1 P2) and traces(P3IIP4). One possible trace in

and AAP = {Pl, P2, P3)

traces(?) must be <any trace fiom traces(P1 11 P2), any trace
from traces(P3 11 P4p . Likewise another possible trace must be
<any trace fiom traces(P3 1) P4), any trace fiom traces(P1 11 P2)>.
This can be determined by explicit trace evaluation.

For any combination of events in (PI (1 P2), both S and F must
include a trace 60m traces(P3 11 P4), i.e., a (P3 11 P4). Hence, the
set differences: K = S-F will eliminate cx (P3 11 P4), and J = F-S
will eliminate cx (P3 1 1 P4). Hence no events in (P3 11 P4) con-
tribute to an atomic action involving events solely in (P1)) P2).

E. Nested Atomic Actions

Atomic actions must be nested correctly and any method for
identifying atomic actions must recognize the proper nesting
1301. If a faulty identification is used in the design of software
fault tolerant structures, then the scope for error propagation
from one atomic action to another may not be eliminated,
making error recovery incomplete, or a process may leave an
atomic action prematurely making recovery impossible.

Consider two atomic actions AA, and AAb, with entry lines
defied by K, and & and exit lines defmed by J, and Jb , follow-

ing the defmitions of K and J above. Atomic action AA. encom-
passes the sequence of events between K, and J, and trace
evaluation allows the designer to reason about the relative se-
quence of events withii the different processes within AA,. Let
I denote a temporal precedence relationship within a trace.

1) If (Ja < Kb) then AA, happens before A A b , i.e., AA, < AAb.
2) If (Jb I K,J then happens before AA., i.e., A A b <AA,.
3) If (K, I Kb) A (Jb I J J then AAb is nested correctly in

4) If (Kb < K,) A (J, < Jb) then AA. is nested correctly in

These are the only conditions that constitute correctly nested
atomic actions. Any other set of conditions will produce incor-
rect nesting.

F. Justification of Nested Atomic Actions

Algorithm I produces sets K and J, which identify the events

in all the processes which form the entry line and the exit line
from the atomic action. In addition, algorithm 2 has been shown
to identify which processes are party to the atomic action. Thus,
any atomic action, whether nested or not, identified by these
algorithms will produce a correct and sufficient set of processes
and will identify the entry and exit lines for these actions. It must
therefore be the case that these algorithms, defined earlier, iden-
tify nested atomic actions correctly.

As an example of this, consider again the system described
in Fig. 3. Suppose it is required to identify two atomic actions
in this system:

AA,, i.e., AA, 2 AAb.

A&, i.e., AAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa AA..

1) to protect c 1 ->c2, in process P1, and
2) to protect c3->c4, in process P3.

This might be attempted (incorrectly) as shown in Fig. 7a.
However, by using the algorithms described, the atomic action
to protect c3->c4 is given by:

K = {b2, dl} and J = (b4, d3). (Example 3)

Similarly the atomic action to protect cl->c2 is given by:

TYRRELL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND CARPENTER CSP METHODS FOR IDENTIFYING ATOMIC ACTIONS IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE DESIGN OF FAULT TOLERANT CONCURRENT SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA635 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P I PZ P3 P i P2 P3

(a) (b)

Fig. 7. (a) Incorrect attempt to nest atomic actions; P3 could leave its “atomic
action” with P2 before P2 has completed the “atomic action” with P1;
(b) Correct nesting: the atomic action between P1 and P2 must include P3 and
P3 cmnot leave until the atomic action is complete.

K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {al, bl , d l} and J = {a3, d3, b5}. (Example 2c)

This actually gives the entry and exit lines shown in Fig. 7b.
Thus, the outer atomic action encloses the inner action com-

pletely, making the nesting correct.

VII. STRUCTURAL ARGUMENTS IN

ATOMIC ACTION IDENTIFICATION

The technique discussed so far requires full trace evalua-
tions to identify atomic action boundaries. However, even with
automated tools such as CoPla, the demands on system re-
sources may become too great to allow full trace evaluations.
For example CoPla requires 1.7MB of memory for the pro-
gram, plus approximately (24 x number of traces x average
length of trace) bytes for its data structures. Clearly, for real-
world systems some means of avoiding full trace evaluation is
advisable.

Structural arguments suggest that it is possible in many de-
signs to avoid a full trace evaluation and still recognize atomic
action boundaries. By and large the structure of the interproc-
ess communications determines the location of atomic action
boundaries. Local events (e.g., logical and arithmetic evalua-
tion, and assignments) are of no interest, nor are constructs
governing their sequence (such as loops and conditional selec-
tion constructs) if they contain no interprocess communication.

Thus, for example, during trace evaluation any sequence of
assignments can be collapsed into a single event, simplifying
the analysis. It is possible to generate the sets J and K (and
thus identify the boundaries) without the need for full trace
evaluations.

It is assumed, as earlier, that the designer has chosen a se-
quence of consecutive events in one process

(e$ - > . . .- > e& within process Pp). The sequence must be

chosen to enclose fully any internal parallel or selection con-
structs, and the description must be well-structured (in the
sense that it can be translated into an Occam implementation).
The designer wishes to determine where the atomic action
boundary which encloses this sequence must lie. More pre-
cisely, the question is which other processes are involved in
the atomic action and where does the boundary lie within these

processes. The following algorithm determines which events

must be included within the atomic action, thereby allowing
the designer to defme its boundary and to identify all other
processes which must be party to the atomic action, without
having to produce the complete trace set for the whole system.

A. Algorithm 3

The algorithm marks those events which must be party to the

atomic action. Let {e:l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe : , } , the set of the fist and last events

to be protected in process P,. a(Pp) has its usual meaning as the
alphabet of the process P,. Then, define the primitive functions:

TJX&J which determines whether its argument, “x,” is a
local event (localevent), a communication event (comm),
a sequential process (SEQ), a parallel process, a choice
process or a guarded choice process.
Value(x) which expects an event as argument and returns
its value (i.e., its name).
Markedrx) which returns a BooIean indicating whether

the event or process, “x,” has already been recognized as
part of the atomic action.
InsertMark(x) will cause Marked(x) to return TRUE on
its next call.
Llst(N) which is an ordered list of the events in the proc-
ess given as its argument (effectively the trace restricted
to the events in process N).

The following auxiliary functions simplify the analysis:

Markraj modifies the marked attribute of its argument, “a,”
setting it to the value TRUE; if the element is a communi-
cation event then the other participant is also marked.
Mark(a):

(MarkeW) + (q (x E (4.)))
1) InsertMark(x);
2) (Type(x) = comm)-> (y := Partner(x));

Mark@);
3) result := TRUE;

ment, returns the other participant.

Partner0

Partnerral, given a communication event “a” as argu-

(3x) I (x E (a(P)))

(Type(x) = comm)A(Value(x)

= Value(a))A(x # a)->result := x;

SequentiallyPostDependent(a, b. N) determines whether
event “b” is sequentially post dependent on “a”; in other
words whether “b” must necessarily occur after “a” has
finished. (x>y means that “x” occurs after ‘‘y” in the or-
dered list of N).

SeauentiallvPostDeDendent (a, b. N):
(a E a(N))A(b E W)) A

(W I (x E (List@)))

(a E (~ X)) N J E (a(x)))->
result := SequentiallyPostDependent (a, b, x)

(a E (EX(X)))A(b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (a(x)))~(Type@) = S E Q P

(Type@) # localevent)A(Type(N) f comm)->

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, JULY 1995

(3Y) I (Y E (LiSt(N)))A((b E a(y))A(X'Y))-'
result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:= TRUE;

Then the function FindAA:
Step 1) Marks all the events in the set of events E

which have to be protected.

Step2) Ensures that all events between any two
events that have to be executed in sequence
are included within the boundary. For each
marked event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx in P, for each marked event y
which is sequentially post dependent on x,
mark all the events which are sequentially
between x and y.

Step 3) Ensures that all processes can exit at the same
time.
For each marked event x in P:
(a) define the empty set H. Insert into H all

nonmarked communication events y that
are sequentially post dependent of x. In-
clude both participants.

For each element y of the set H, for each event
z that is sequentially post dependent of y:

(b) if z is marked then mark y. If there has
been any newly marked event then reit-
eration of step 2 is needed.

(c) if z is not marked and it is a communication
event then if z or its partner do not belong
to H include them and reiterate step 3b.

FindAA():

Step 1) (Vx) 1 (x E E)+Mark(x)

Step 2)

a) (Vx) I (x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a(P)))
(VY) I (Y E (W)))

(Marked(x)) ~(Marked(y))~

(SequentiallyPostDependent (y, x, P))+

(V-4 I (z E (a(P)))
(SequentiallyPostDependent(z, x, P))A

(SequentiallyPostDependent(y, z, P))+

(Mark(z))+goto2 := TRUE;

Step 3) (Vx) I (x E (a(P))) A (Marked(x))

b) (goto2)+go to step 2a

a) H : = {};

(VY) I (Y E ("

(Marked(y)) A (Type(y) = CO")A

(SequentiallyPostDependent(y, x, P))+
H := H U y U Partner(y);

b) (VY) I (Y E (HN (Vz) I (z E (Oc(P)))

(SequentiallyPostDependent(z, y, P)) A

(Marked(z))+Mark(y)&goto2 := TRUE;

c) (VY) I (Y E (H)) (Vz) I (z E (Oc(P)N
(SequentiallyPostDependent(z, y, P))A

(Marked(z)) A (Type(z) = CO") A ((z G H) v

(Partner(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe H))+H := H U z U Partner(z);

goto3.b := TRUE;

d) (goto3.b)+go to step 3.b

Step 4) (goto2)+go to step 2

The algorithm seeks out communication pattems amongst
the set of processes in an iterative fashion and deliberately
examines the sequential dependence of communications in the

system. It uses this sequential dependence to examine not only
all direct communications with the original sequence requiring
protection, between the events in set E, but also any subse-
quent communications (set H) from processes with which
events in E have had contact. It determines whether these sub-
sequent communications have structural implications which
require their inclusion in the atomic action. The algorithm'it-
erates until no further events are identified for inclusion in the

atomic action.
The algorithm progressively marks those events in the

complete set of processes which should be included in the
atomic action. The final step is to generate the set AAe which
identifies the events constituting the atomic action, and the set
AAP to determine which processes are necessarily party to the
atomic action.

1. Define the empty set AAe

2. Add each marked event to AAe
AAe := { }

(Vx) I (x E (NP))) A (Marked(x))->

AAe := AAe U x
3. Define the empty set AAP

AAP := (}
4. For each event x in AAe, for all processes P,,

if e E NP,) then add P, to set AAP.
(Ve) (VP,) I (e E AAe)A(e = a(Pp))->
AAP := AAP U P,

These structural algorithms have been applied to a large
number of examples.

VIII. EXAMPLES

Consider again the set of processes given in Fig. 3:

P=(Pl IIPzIIP3)
where

P 1 = (al->cl !->aZ->c2?->d->SKIP)

P2 = (bl ->c I?->b2->~3!->b3->~4?->M->c2!->b5->SKIP)

P3 = (dl ->c3?->dZ->d!->d3->SKlP)

Atomic actions can be readily identified without the need to
evaluate the traces given in Fig. 4.

EXAMPLE 1 REVISITED
Suppose it is decided to protect event c l . Hence E = (cl}.

Then step 1 causes the following marking of events zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0
indicates marked events).

PI = (a l - > m ->aZ->c2?->d->SKIP)

P2 = (b l - > a ->b2->~3!->b3->d?->b4->~2!->bS->SKlP)

P3 = (dl->c3?->d2->~4!->d3->SKIP)

TYRRELL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND CARPENTER: CSP METHODS FOR IDENTIFYING ATOMIC ACTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN THE DESIGN OF FAULT TOLERANT CONCURRENT SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA631 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Step 2 leads to no new markings, and consequently the al-

gorithm gives AAe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {cl) and AAP = {PI, P2). In other
words the atomic action enclosing event c l includes only the
event c l in both processes P1 and P2. This is consistent with
the earlier analysis that the atomic action begins immediately
after event a1 in process P1 and event b l in process P2, and
terminates immediately before event a2 in process PI and
event b2 in process P2.

EXAMPLES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2A, 28,2C REVISITED

In a similar way, these produce analogous results to those
produced earlier using algorithm 1.

EXAMPLE 3 REVISITED

Here the designer has the opportunity of selecting to protect
either d2 alone, but to include other events in the sequence c3
-> d2->c4 in P3. For E = {d2), algorithm 3 quickly terminates
with AAe = {d2) as the sole constituent of the atomic action.
However, if E = {c3, d2) were selected, then step 1 would
cause the following marking:

PI = (al->cl!->a2->~2?->a3->SKIP)

P2 = (bl->cl?->b2->m ->b3->c4?->b4->~2!->bS->SKIP)

P3 = (d l - > v l ->c4!->d3->SKIP)

giving AAe = {c3, d2) and AAP = {P2, P3).

cause the following marking:
Likewise, if E = {d2, c4) were selected, then step 1 would

PI = (a1 ->cl !->a2->~2?->a3->SKIP)

P2 = (b I - > c l ? - > b 2 - > ~ 3 ! - > b 3 - > ~ ->b4->~2!->bS->SKlP)

P3 = (dI->c3?->= ->d3->SKIP)

giving AAe = {d2, c4) and AAP = {P2, P3).
However, if E = {c3, c4) were selected, then step 1 and step 2

would cause the following marking:

PI = (al->cl!->a2->~2?->a3->SKIP)

P2 = (bl->cl?->b2->lc3!->b3->c4?1 ->b4-%2!->bS->SKIP)

P3 = (dI->lc3?->dZ->c4!1 ->d3->SKIP)

giving AAe = {c3, d2, c4, b3) and AAP = {P2, P3).

EXAMPLE 4 REVISITED

This example concems the set of processes:

P= (PI 11 P2 11 P3)

where

P 1 = (a I ->c I !->a2->~2?->a3->~3?->a4->SKIP)

P2 = (bl->cI?->b2->~2!->b3->~4!->b4-->SKIP)

P3 = (dl->c4?->d2->~3!->d3->SKIP)

As before, suppose it is decided to protect the sequence
cl!->a2->~2?->a3->~3? in process P1, i.e., E = {cl, c3). Then

step 1 causes the marking:

PI = (a l - > m ->a2->c2?->a3->a ->a4->SKIP)

P2 = (b l - > a ->b2->~2!->b3->~4!->b4-->SKIP)

P3 = (dl->c4?->d2->m ->d3->SKIP)

Step 2 now causes the marking:

PI = (al->l cl!->a2->~2?->a3->~3?1 ->a4->SKIP)

P2 = (bl->m - > b 2 - > m ->b3->~4!->b4-->SKIP)

P3 = (dI->ul?->d2->m ->d3->SKIP)

This step is reiterated, since new events were marked:

P1 = (al->l cI!->a2->~2?->a3->~3?1 ->a4->SKIP)

P2 = (bl->lcl?->b2->c2!1 ->b3->d!->b4-->SKIP)

P3 = (d I - > d ? - > d 2 - > m ->d3->SKIP)

Now step 3a looks at the unmarked communications events,

to form the set H = {c4!, c4?). Step 3b would discover that c3!
in process P3 is marked and sequentially post dependent,
leading to the marking:

PI = (al->l cl!->a2-~2?->a3->~3?1 ->a4->SKIP)

P2 = (bl->lcl?->bZ->c2!1 - > b 3 - > m ->b4-->SKIP)

P3 = (dl->@ - > d 2 - > m ->d3->SKIP)

Reiteration of step 2 then leads to the marking:

PI = (al->[cl!->a2->~2?->a3->~3?I ->a4->SKIP)

P2 = (bl->l cl?->b2->~2!->b3->~4!I ->b4-->SKIP)

P3 = (dl->[c4?->d2->c3!1 ->d3->SKIP)

No further markings are generated by the remaining steps,
leading to the conclusion that AAe = {a2, a3, c l , c2, c3, c4,

b2,b3,d2) andAAP= {pl,p2,p3).

B. Complexity of the Algorithms

The full trace algorithm (algorithm 1) would show expo-

nential complexity with the number of processes during trace
production if there were no synchronizing communications
present. When communications are added, each communica-
tion forces synchronization between two processes, eliminates
part of the trace set, and thus reduces complexity. Every com-
munication reduces the size of the trace set significantly, and
similarly the time required to search. Thus:

Given n processes, each with m events, and 0 comms:

Given n processes, each with m events, and 1 comms:

Given n processes, each with m events, and p comms:

Searching is approximately linear with the size of the trace
set, since the algorithm is simply scanning the trace sets.

In algorithm 3, this initial complexity does not appear as
traces are not explicitly produced. Instead, complexity arises in
searching across communication links to identify atomic action
boundaries. Algorithm 3 shows a near linear complexity, but
whenever sequential post dependency forces backtracking the
analysis becomes less obvious. If there were no backtracking,
then the complexity would be linearly dependent on the num-
ber of events (n*m). Every time the algorithm has to back-
track, it is effectively analogous to regenerating a further set of
traces to search. Thus, if there are q backtracking occurrences,
then the complexity increases to n*m*q.

require about nm traces.

require about 2.nmI2 traces.

require about 2P.nm’p traces.

638 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P= (SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ S2 I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS3 I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS4 I1 Kp I1 Kv II M II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB /I C II G II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAARM I1 INPUT)
{here

SI = *(al->(cl? jl c2? 11 c3?)->a2->c4!->a3->SKIP)
S2 = *(bl->(c5?l/c6?)->b2->~7!->b3->SKIP)

S4 = *(el->(cl l?)~c12?~~~13?~/~14?)-~e2->~15!->e3->SKIP)
Kp = *(fl->clO?->fZ->c2!->f3->SKIP)
Kv = *(gl->c7?->gZ->c3!->g3->SKIP)
M = *(hl->(c4?llcl6?)->h2->cI I!->h3->SKIP)
B = *(i l->(cl7?~~cl8?)->j2->~14!->j3->SKIP)
C = *(k 1 ->(c 19?11~20?)->kZ->c I3 !->!&>SKIP)
G = *(11->~21?->12->~12!->13->SKIP)
ARM = tnO->(c16!~~~17!~~cI 8 ! ~ ~ ~ 1 9 ! ~ ~ ~ 2 0 ! ~ ~ ~ 2 1 ! ~ ~ ~ 6 ! ~ ~ ~ 9 !) - >

S 3 = ‘(dl ->(~8?(/~9?)->d2->cl O!->d3->SKIP)

*(ml->cl S?->m2->
(c16!~~c17!~~c18!~~c19!~~c2O!~jcZ1!~~c6!~~c9!)-~m3-~SKIP)

INPUT = *(nl ->(c I !IlcS!llcX!)->n2->SKIP)

, where * represents a loop

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 7, JULY 1995

Fig. 8. Model of a robot arm manipulator.

IX. A REAL WORLD EXAMPLE

Simple examples as shown above can have their trace se-

quences evaluated “by hand” and boundary identification can
be achieved by inspection of the trace sets. For larger, more
realistic examples manual methods become manageably
complex. The CoPla software tool has been used to produce
trace sets for a number of more complex systems and then used
to identify atomic action boundaries. One application, a robot
arm manipulator, (Fig. 8) has been modeled [25] and imple-
mented as a set of 12 parallel processes. A slightly simplified
version expressed in CSP is shown in Fig. 9; following initiali-
zation, each process engages in an infinite loop, all synchro-
nized by communications. (The CSP description expands to an

actual implementation comprising about 10,000 lines of occam
code). Automated analysis reveals 184,900 possible traces;
CoPla then allows the user to propose entry and exit points for
an atomic action within one of the processes and uses the al-
gorithms described earlier to determine the proper boundaries
of the atomic action.

For example, consider the requirement to locate an atomic
action boundary which encloses c15 to c9 inclusively in proc-
ess ARM. CoPla gives the following results:

En2=(c6) ES1=(c9) ESr=(c15) E ~ = (c l 6)
Ee = (~ 1 7 , CIS) Ec = (~ 1 9 , ~ 2 0) & = (~ 2 1)
EARM= (c15, m2, c16, c17, c18, c19, c20, c21, c6, c9)

allowing the sets K and J to be derived as:

K = {bl, d l , e2, h l , j l , k l , 11);
events which must precede the atomic action boundary,
and

events which must follow the atomic action boundary.
J = (b2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2, e3, h2, j2, k2,12};

X. CONCLUSIONS

This paper has proposed two methods for identifying atomic
actions in systems described using CSP. If explicit trace evalua-
tion is tractable, then algorithms 1 and 2 provide the designer

with a systematic method of locating atomic action boundaries in
a hierarchical fashion, essentially by analyzing the possible se-
quences of interprocess communications within the trace sets.
The second method (algorithm 3) takes the original CSP de-
scriptions of the system and uses structural arguments to identify
the atomic action boundaries; this method does not suffer the
drawbacks involved in full trace evaluation, but does incur the
penalty of a more complex algorithm.

Both techniques identify those events which are constitu-
ent to a proposed atomic action and eliminate all processes
that are disjoint from the atomic action; both techniques al-

low nested atomic actions to be identified correctly. How-
ever, an analysis based on structural arguments has a number
of attractions. By avoiding a full trace evaluation or a full
reachability analysis, the method is more economical on
computational time and memory resources. But, it depends
implicitly on the ability to analyze the sequence in which
events could occur, which is akin to the ability to generate
the complete set of traces. It cannot therefore be used with
an arbitrary set of communicating processes; the designer is
restricted to processes formed solely from sequential, paral-
lel, conditional and general choice constructs of simple
events and communications. Nevertheless, the algorithms
have been applied to systems which include restricted forms
of program loops. For example, the robot manipulator arm
processes are normally invoked from within an infinite con-
trol loop, but since the iterations begin and end synchro-
nously, the analysis can be applied without prejudice.

In the examples shown in the paper the processes only
have one trace. However, multiple traces (and thus some
form of nondeterminism) are easily included into the design
by considering each altemative individually, although this
will obviously increase the overall number of traces that will

639 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATYRRELL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAM) CARPENTER CSP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMETHODS FOR IDENTIFYING ATOMIC ACTIONS IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE DESIGN OF FAULT TOLERANT C O N C W N T SYSTEMS

be produced. When the problem of atomic action placement
is addressed, for such situations, the main point is that the
complete “nondeterministic” structure (such as an Occam
ALT) must be included in the atomic action.

Both methods operate directly on the CSP description of
the system. They require no error prone translation of a de-
veloped program into graphical form, nor is there an implied
simulation of program execution based on the graphical
structures. Furthermore, translation of the CSP design to an
occam implementation is generally straightforward (since
problematic features such as interrupts are excluded) because
of the close family relationship between Occam and CSP, or
alternatively, hardware implementations can be developed
directly from the CSP design with only modest difficulty.

The underlying motivation of this research is to develop a
mechanism for introducing software fault tolerance struc-
tures in a systematic, proper, fashion. Atomic action identifi-
cation is just the first, crucial, step in that process.

ACKNOWLEDGMENTS

The authors would like to thank Oscar Saiz for his work on
implementing some of the algorithms presented in this paper.
Thanks also to the anonymous reviewers for their constructive

comments which have helped improve the paper.

REFERENCES

MOD(UK) Interim Defence Standards 00-55 and 00-56, no. 1, Apr. 1991.
“Software considerations in airbome systems and equipment certifica-
tion,” RTCA/D, 178A RTCA, Washington, DC, 1985.
“Software for computers in the application of industrial safety-related
systems,” IEC drafl standard 65A (Secretariat) 94, Document 89/33006,
BSI, 1989.
A. Avizienis, and J.P.J. Kelly, “Fault tolerance by design diversity:
Concepts and experiments,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Computer, vol. 17, no. 8, pp. 67-80, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*..” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n o r rws. l70Y.

P.A. Lee, and T. Anderson, Fault Tolerance: Principles and Practice.
Springer Verlag, 1991
B.H Liskov and R. Scheifler, “Guardians and actions: Linguistic support
for robust, distributed programs,’’ ACM Trans. Program. Lang. Syst.,
vol. 5 , no. 3, pp. 3 8 1 4 0 4 , July 1983.
P. Jalote and R.H. Campbell, “Atomic actions for fault tolerance using
CSP,” IEEE Trans. Software Engineering, vol. 12, no. 1, pp. 59-68,
Jan. 1986.
T. Anderson and J.C. Knight, “A framework for soflware fault tolerance
in real-time systems,” IEEE Trans. Software Engineering, vol. 9,
no. 12, pp. 355-364, May 1983.
C.A.R. Hoare, Communicafing SequentialProcesses. F’rentice Hall, 1985.

[IO] L.V. Mancini, and S.K. Shrivastava, “Replication within atomic actions
and conversations: A case study in fault-tolerance duality,” FTCS-19,
Chicago, pp. 4 5 4 4 6 1 , June 1988.

[l l] B. Randell, “System structure for software fault tolerance,” IEEE Trans.
Software Engineering, vol. 1, pp. 22&232, June 1975.

[I21 A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE
Trans. Soflware Engineering, vol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, no. 12, pp. 1,491-1,501, Dec. 1985.

[13] R.K. Scott, J.W. Gault, and D.F. McAllister, ”Fault-tolerant software
reliability modeling.” IEEE Trans. Software Enaineerinz, vol. 13, no. 5 ,
pp. 583-592, May-1987.

[I41 K.H. Kim, and H.O. Welch, “Distributed execution of recovery blocks:
An aooroach for uniform treatment of hardware and software faults in ..
real-time applications,” IEEE Trans. Computers, vol. 38, no. 5, pp.
626-636, May 1989.

[I51 E. Best, and B. Randell, “A formal model of atomicity in asynchronous
systems,” Acta Informutica, vol 16, pp. 93-124, 1981.

[I61 K.H. Kim, S.M. Yang, and M.H. Kim, “Implementation of concurrent
programming language facilities supporting conversation structuring,”
Proc. IEEE COMPSAC ‘85, pp. 4 4 5 4 5 3 , 1985.

[I 71 K.H. Kim, “Programmer-bansparent coordination of recovering concurrent
processes: philosophy and rules for efficient implementation,” IEEE Tram.
Sofhare Engineering, vol 14, no. 6, pp. 810-821, June 1988.

[IS] K.H. Kim and S.M. Yang, “Performance impact of look-ahead execu-
tion the conversation scheme,” IEEE Trans. Computers, vol. 38, no. 8,
pp. 118-1,202, Aug. 1989.

[I91 R.H. Campbell, T. Anderson, and B. Randell, “Practical fault tolerant
software for asynchronous systems,’’ Proc. SAFECOM ‘83, Cambridge,
pp. 5 9 4 5 , 1 9 8 3 .

[ZO] G.F. Carpenter, “The use of Occam and Petri nets in the simulation of logic
structures for the control of loosely coupled distributed systems,” Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UKSC Conference on Compuler Simulation (UKSC-87), Bangor, Sept.
1987. Pub. Soc. Computer Simulation, pp. 3&31, Sept. 1987.

[21] G.F. Carpenter and A.M. Tyrrell, “The use of GMB in the design of
robust sofhvare for distributed systems,” Software Engineering J., vol.
4, pp. 268-282, Sept. 1989.

[22] J.L. Peterson, Petri Ne1 Theory and the Modeling ofSystems. Prentice
Hall, 1981.

[23] Inmos, Occam 2 Reference Manual. Prentice Hall, 1988.
[24] A.M. Tyrrell, and A.C.A. Smith, “A parallel module for fault tolerant

industrial control applications,” IFAC Symp. Parallel and Distributed
Computing, Greece, pp. 205-210, June 1991.

[25] A.M. Tyrrell, and I.P.W. Sillitoe, “Evaluation of fault tolerant software
structures for parallel systems in industrial control,” IEE Int. Con/:
CONTROL ’91, Edinburgh, pp. 393-398, Mar. 1991

[26] G.M. Reed, and A.W. Roscoe, “A timed model for CSP,” Theoreficol
Computer Science, vol. 58, pp. 249-261, 1987.

[27] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Chaochen, “The consistency of the calculus of total correctness for
communicating processes,” Oxford Univ. Research Group Monograph
PRG 26, Feb. 1982.

[28] O.J. Saiz, and A.M. Tyrrell, “Analysis tool for parallel systems,” Proc.
First Euromicro In1 ‘ I Workshop on Parallel and Distributed Process-
ing, Gran Canaria, Jan. 27-29, 1993, IEEE Computer Society Press, pp.
499-505, Jan., 1993

[29] A.M. Tyrrell, and D.J. Holding, “Design of reliable software in distrih-
uted systems using the conversation scheme,” IEEE Trans. Sofmare
Engineering, vol. 12, no. 7, pp. 921-928, Sept. 1986.

[30] K.H. Kim, “Approaches to mechanization of the conversation scheme
based on monitors,” IEEE Trans. Software Engineering, vol. 8, pp.
189-197, May 1982.

Andrew M. Tyrrell received a first class honors
degree in 1982 and a PhD in 1985, both in electrical
and electronic engineering. He joined the Electron-
ics Department at York University in April 1990.
Previous to that, he was a senior lecturer at Coventry
Polytechnic Between August 1987 and August
1988 he was visiting research fellow at Ecole Poly-
technic, Lausanne, Switzerland, where he was re-
searching into the evaluation and performance of
multiprocessor systems From September 1973 to
September 1979 he worked for STC at Paignton

Devon on the design and development of high frequency devices. He is cur-
rently head of the Parallel and Signal Processing Research Group at York.

His main research interests are in the design of parallel systems, fault
tolerant design, software for distributed systems, parallel systems for numeri-
cal problems, real-time simulation using parallel computers and real-time
systems. In the last five years he has published over 40 papers in these areas,
and has attracted funds in excess of €250,000.

Dr. Tyrrell is a member of the IEE, the IEEE and the ACM.

Geof F. Carpenter is a lecturer in the Department
of Electronic Engineering and Applied Physics at
Aston University His long-standing research inter-
ests in the design of real-time, distributed computlng
systems have been directed towards applications
where high reliability and safety are essential re-
quirements, such as in high-speed flexible manufac-
turing systems Since appointment to Aston Uni-
versity in 1980, Dr Carpenter has been involved in
a large number of courses in information systems
engineering, and he now has wide responsibility for

handling undergraduate admissions to, and student progression through,
degree programs in electronics and computing Dr Carpenter is a chattered
engineer, and a member of the Institution of Electrical Engineers and the
British Computer Society

