
This is a repository copy of FENet: An SDN-based scheme for virtual network
management.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97050/

Version: Accepted Version

Proceedings Paper:
Liu, K, Wo, T, Cui, L et al. (2 more authors) (2014) FENet: An SDN-based scheme for
virtual network management. In: 20th IEEE International Conference on Parallel and
Distributed Systems. ICPADS, 16-19 Dec 2014, Hsinchu, Taiwan. IEEE , pp. 249-256.
ISBN 978-1-4799-7615-7

https://doi.org/10.1109/PADSW.2014.7097815

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

FENet: An SDN-Based Scheme for Virtual
Network Management

Kun Liu1, Tianyu Wo1, Lei Cui1, Bin Shi1, Jie Xu1,2

{liukun, woty, cuilei, shibin}@act.buaa.edu.cn, J.Xu@leeds.ac.uk
1State Key Laboratory of Software Development Environment

Beihang University
Beijing, China

2School of Computing
University of Leeds

Leeds, UK

Abstract—Virtual networking is vital to efficient resource
management in Clouds, and it is in fact one of the main
services provided by many Cloud Computing platforms.
Virtual network management needs to meet specific
requirements, including tenant isolation and adaption to
virtual machines’ lifecycle. Most of the existing schemes for
virtual network management are based on the use of overlay
networks in order to achieve a desirable degree of flexibility.
However, these schemes suffer from a common limit, i.e.
relatively high performance penalty due to a complicated
forwarding process. We address this performance concern
by developing a new management scheme, FENet, which
makes use of Software-Defined Networks (SDN) to create
virtual networks and manage them via the SDN controller
programs. We present the design of an SDN controller, with
the definition of flow entry rules based on the OpenFlow
protocol and the specification of a routing algorithm. The
results from our experimental evaluation show that our
SDN-based prototype can control virtual network
interconnections and tenant isolation appropriately. FENet
achieves about 30% better network performance than the
management scheme based on OpenVPN and lower latency
in comparison with the traditional bridging scheme.

Keywords—Cloud Computing; OpenFlow; SDN; tenant
isolation; virtual networks;

I. INTRODUCTION

Cloud Computing platforms provide services such as
computing, storage, networking and security. As more and
more distributed applications run on the Cloud Computing
virtualization platforms, virtual networks become very
important. The management of virtual networks differs
from the physical networks in some aspects. Firstly,
several virtual machines (VM) on the same host share the
physical hardware including network interface cards
(NIC), thus the management scheme needs to consider
either transferring the virtual network packets via physical
networks directly, or encapsulating them in the hosts’
packets to forward. Secondly, tenant isolation should be
supported as it is important to ensure security and
eliminate impacts among tenants. Thirdly, The
management scheme should flexibly adapt to the virtual
network topology’s changes that result from the VM
operations like starting, migrating and deleting.

Nowadays, the common management schemes of
virtual networks can be divided into two types. One is
based on traditional bridging (taken by OpenStack [1]),
which binds the VMs’ NICs with the physical NICs on a

virtual bridge, and transfers the virtual network packets
via the physical NICs. Though this transfer method
achieves good network performance, the virtual network
management lacks of flexibility , for example, lots of
configuration work is needed and tenant isolation is
constrained to limited number of tenants. The other type is
based on overlay networks [2, 3], which encapsulates the
virtual network packets into the hosts’ packets, and
forwards them by tunneling technique. This type of
scheme achieves flexible virtual network management,
however, the use of overlay networks leads to network
performance loss because of the complicated forwarding
process. It is hard to balance the trade-off between
flexible management and network performance by
traditional methods.

Over the past few years, Software-Defined Networks
(SDN) [4] has become a research hot spot in the area of
networking. SDN proposes separating the control plane
and data plane of the switches, and concentrating the
control planes into an uniform controller. The controller
manages the whole network and instructs the switches to
handle network packets. By leveraging the idea of SDN, it
is possible to achieve flexible control and good network
performance, because management logic in the devices
can be accomplished conveniently. SDN has been used to
develop improved solutions in areas like data center
networks [5] and traffic engineering [6], however,
research that aims at virtual network management is
incomplete. For examples, [7] proposes an SDN-based
method for tenant isolation, it enables communications
among VMs only while Internet access is ignored. Besides,
it does not consider how to handle broadcast packets.

This paper proposes FENet, which is an SDN-based
scheme for virtual network management. FENet creates
virtual networks upon the devices that support OpenFlow
protocol [8], and develops SDN controller programs to
manage them. The SDN controller responds to the VM
operations and controls virtual network interconnections
and tenant isolation. In addition, FENet provides packets
validation and improved routing algorithm to achieve
better network utilization. We develop a prototype of
FENet, and conduct experiments to evaluate its
effectiveness and performance. The experimental results
show the prototype can accurately control virtual network
interconnections and tenant isolation, besides, it achieves
about 30% better network performance than the
management scheme based on OpenVPN and lower
latency than the scheme based on traditional bridging.

The remainder of this paper is organized as follows:
Section II introduces the related work; Section III
describes the details of design and implementation;
Section IV presents the evaluation of the prototype with
functional and performance experiments; Section V
concludes the paper and describes the future work.

II. RELATED WORK

A. Management schemes based on traditional bridging

Management schemes based on traditional bridging
leverage virtual Ethernet bridge (Linux Bridge, Open
vSwitch [9]) to transfer the VMs’ network packets via the
host’s NICs, then the packets are delivered to the physical
networks. 802.1Q protocol is taken to achieve tenant
isolation. Tenants are allocated with different VLAN
identification numbers, and the network packets sent from
VMs belonging to a tenant are tagged with an unique
VLAN identification number, thus switches isolates the
packets according to the VLAN tags. However, the
VLAN tag in the Ethernet packets is only 12 bits long,
which means the isolation units are no more than 4096.
Methods like private VLAN [10] and VXLAN [11] are
proposed to address this issue. Private VLAN configures
the switches with two-level VLAN strategy and maintains
a VLANs’ mapping table, but its effect is not good as the
packets forwarding become more complicated and the
mapping table cannot be large enough. VXLAN is a kind
of overlay networks actually. Schemes based on
traditional bridging are not flexible enough as physical
switches need lots of configuration like VLAN strategy,
gateway and routing rules. Besides, VM migration is
restricted within a layer-2 network in order to keep the
network configuration of VMs unchanged.

B. Management schemes based on overlay networks

Overlay networks are logical networks that built upon
physical networks. Management schemes based on
overlay networks encapsulate the virtual network packets
into the hosts’ packets, and the encapsulation modules
take charge of the management issues, such as network
routing, tenant isolation and traffic measurement. The
related projects includes VNET [2], IPOP [3] and
OpenVPN [12]. In VNET, the virtual network packets are
encapsulated and sent to a host acting as proxy. The proxy
host will forward the packets to the host where the
destination VM locates. IPOP creates a virtual device and
binds it with the VMs’ NICs, thus the hosts’ programs
could capture the virtual network packets by executing
traditional read/write operations to the virtual device.
OpenVPN is open-source implementation of VPN, which
transfers network packets between different local area
networks by IP tunneling. Usually, tunneling is used to
extend the overlay networks across layer-3 networks.
Nowadays, many Cloud Computing solutions take this
type of scheme, such as VXLAN in VMware ESX,
NVGRE [13] in Windows Azure and Amazon VPC [14].

In these schemes, tenant isolation is indicated by
tunneling identification numbers, which is plenty enough
to meet the demand of large amount of isolation units.
Besides, these schemes have fewer constraints to VM
migration because the network packets are encapsulated.
However, the use of overlay networks suffers from higher

performance loss in comparison with schemes based on
bridging, because the virtual network packets will be
forwarded to the programs in the hosts firstly, and then
sent out as data contents in the physical packets. So the
total process takes twice copy operations between user
space and kernel space. In addition, the routing of virtual
network packets is handled by virtual routers on the hosts
rather than physical network devices. The common virtual
routers are acted by VMs with several NICs, which are
less efficient compared with physical routers.

C. Software-defined networks

Software-defined networks [4] could be used to
address issues like the network management becomes too
tough as the network scales up. The advantage of SDN is
that developers could manage the networks much more
flexibly and conveniently by designing the controller
programs, which maintain the network topology and
control the networks including routing, configuration and
flow control. OpenFlow [8] is now a famous protocol in
SDN that enables the communication between the
controller and network devices. The main contents of
OpenFlow protocol include the working process of
OpenFlow switch, the structure of flow tables and
message types between the controller and OpenFlow
switches.

The research of SDN is focused on the controller
design and improved methods of networking areas.
Researchers pay high attentions to the SDN controller’s
performance [15, 16] as well as reliability [17], and
advanced controllers likes Onix [18] are proposed to
further improve the SDN network performance. Besides,
SDN is applied to areas such as data center networks [5],
QoS [19] and network virtualization [20].

Nicira Network Virtualization Platform (NVP) [21]
proposes solutions aiming at virtual network management,
it combines SDN and IP tunneling to achieve virtual
network interconnections and isolation. However, IP
tunneling makes the transfer process more complicated,
which may result in performance loss. [7] proposes a
method of tenant isolation based on SDN, but it only
works when the hosts are in a layer-2 network, because it
replaces the packets’ destination MAC address with the
host’s MAC address while the destination IP address is
still the VM’s, so the packets cannot be routed across
physical layer-2 networks. Besides, this method does not
provide Internet access for the VMs. The OpenFlow
protocol is flexible and it is possible to realize more
management logic by flow entry rules.

III. DESIGNS AND IMPLEMENTATION

Since OpenFlow protocol defines flexible rules for the
network devices to handle packets, the virtual network
management can be accomplished efficiently if virtual
networks are created upon OpenFlow devices. On the one
hand, physical devices forward the virtual network
packets directly to achieve high network performance, on
the other hand, the SDN controller takes charge of the
virtual network management in a programmable way. In
OpenFlow supported networks, the SDN controller
instructs the network devices by sending OpenFlow flow
entries, thus the management scheme of virtual networks

should design special flow entry rules to provide features
like routing and tenant isolation. Besides, to adjust the
flow entry rules accurately, the management scheme also
needs to define interactive interfaces between the SDN
controller and virtualization platforms. FENet is a kind of
management scheme that designed according to above
ideas.

The virtual network structure in FENet is as Fig.1
shows. Hosts are connected to virtual networks and the
management network via two NICs, each host runs Open
vSwitch (also supports OpenFlow protocol) to connect
VMs. All the physical OpenFlow switches are connected
with the controller via the management network. Besides,
hosts are configured with NAT strategy for VMs’ Internet
access, and Open vSwitch acts as gateway for VMs.

Fig.1. The structure of SDN-based virtual networks

The SDN controller maintains the global view of
virtual networks. Once VM operations happen, the
OpenFlow switches will send messages to the controller,
which will handle the messages according to management

strategies. The general management strategies of virtual
networks are as follows:

 Routing: VMs belonging to the same tenant could
communicates with each other, no matter they are
in the same subnet or not;

 Tenant isolation: VMs that belong to different
tenants are isolated;

 Broadcast handling: ARP/DHCP requests from
VMs are handled by the controller directly rather
than broadcasting in the networks;

 Internet access: All the VMs can access the
Internet via their gateways;

A. OpenFlow flow entry rules

OpenFlow switches handle the network packets
according to the inside flow tables. To design reasonable
and accurate flow entry rules, we need to classify and
analyze the virtual network packets first. Network packets
from VMs include data-link layer broadcast packets, IP
layer broadcast packets, IP layer unicast packets, multicast
packets and so on. At present, FENet has supported ARP
broadcast packets, DHCP broadcast packets and regular
IP unicast packets. Other network packets will be
considered later. For example, multicast packets can be
supported by maintaining multicast groups in the SDN
controller. The classification of packets sent from/to VMs
are shown in Table 1 and Table 2.

Open vSwitch acts as access switch for the VMs, thus
the packets sent from VMs are firstly handled by Open
vSwitch. For ARP requests, Open vSwitch permits them
to transfer if the request’s source VM belongs to the same
tenant with the target VM/gateway, otherwise the request
packets are discarded. After passing the validation, the
ARP requests will be forwarded to the controller. As the
controller stores the VMs’ information, it can easily find
out the requested destination MAC address and send back
ARP reply packets to the Open vSwitch. By this way,
ARP broadcast packets will not be transferred in virtual
networks, which avoids network bandwidth occupied by
large amount of broadcast packets as the network scales.

TABLE 1. PACKETS SENT FROM VM

Packet Type Destination (address) Flag Permitted Handling

ARP Request Broadcast address Out_1
Yes̟ within the same tenant Forward to the controller
No˖other cases Discard

DHCP Request Broadcast address Out_2 Yes Forward to the controller

IP

VM (belongs to same tenant & same subnet) Out_3 Yes Forward to the VM
VM (belongs to same tenant & different subnet) Out_4 Yes Route & forward to the VM
Gateway (belongs to same tenant) Out_5 Yes Forward to the gateway
Other internal IP addresses (Reserved IP)
10.0.0.0/8 | 172.16.0.0/16 |192.168.0.0/24

Out_6 No Discard

Internet Out_7 Yes Forward to the gateway
Others (such as multicast address) Out_8 No (at present) Discard

TABLE 2. PACKETS SENT TO VM

Packet Type Source (address) Flag Permitted Handling
ARP Reply The controller In_1 Yes Forward to the VM or gateway

DHCP Reply The controller In_2 Yes Forward to the VM

IP

VM belongs to the same tenant In_3 Yes Forward to the VM
VM belongs to different tenants In_4 No Discard
Gateway In_5 Yes Forward to the VM
Internet In_6 Yes Forward to the VM
Others(such as multicast address) In_7 No (at present) Discard

VM-7

OpenFlow switch

Management network

Virtual networks

Open vSwitch

eth0

eth1

SDN Controller

VM-1 VM-2

Open vSwitch

eth0

eth1

VM-3 VM-4

M

Management network

Host-1 Host-2

M Management port

OpenFlow switch

OpenFlow switch

M

M

Open vSwitch

eth0

eth1

Host-3

VM-5 VM-6

app:ds:interactive
app:ds:interface

Besides, the packet validation filters spiteful ARP request
packets, thus the controller can efficiently respond to the
legal requests. The packet validation in Open vSwitch is
applied to IP packets and DHCP request packets as well.

FENet takes OpenFlow version 1.3.0 specification.
Switches supporting OpenFlow v1.3 handle the packets
by several steps in a pipeline, and each step is instructed
by a flow table. A special variable called metadata is
transferred between adjacent steps to carry additional
information. The flow table is a set of flow entries, and a
flow entry is one record that consists of several fields
including Match Fields, Priority, Counters and
Instructions. The Match Fields is a set of several field
types that refer to the outermost occurrence of the fields in
the packet headers, for examples, Field eth_dst refers to
the destination MAC address in the Ethernet packet
headers. If a packet matches one flow entry’s Match
Fields, the corresponding Counters updates and the switch
handles the packet as the Instructions indicates.

The OpenFlow flow entry rules in physical switches
are different from Open vSwitch’s, because Open vSwitch
acts as access switch and plays an important role in
validating the incoming packets, while the physical
switches just forward the packets to the right destination.
we select several match fields according to the OpenFlow
protocol specifications: eth_src identifies the source MAC
address, eth_dst identifies the destination MAC address,
ip_dst identifies the source IP address, arp_tpa identifies
the requested IP address in ARP request packets.

Assume that VMa (IP address is ip, MAC address is
mac, gateway is gw and belongs to tenant T1) is connected
to the Open vSwitch S on port P, the flow entry
installation for virtual networks is as follows:

1) To handle the packets sent out from VM a, install
one flow entry to the flow-table 0 (used in the
first step of the process pipeline) in all switches,
the Match Fields is ‘eth_src=mac’, the Priority
is 2 and the Instructions is ‘set metadata=T1 and
go to flow table 1 (used in the second step of the
pipeline)’.

2) To handle the packets sent to VM a, install two
flow entries in Open vSwitch S: one to flow-table
0 with the Match Fields is ‘eth_src=mac’, the
Priority is 1 and the Instructions is ‘Forward
packets to port P’; the other one to flow-table 1
with the Match Fields is ‘eth_src=mac,
metadata=T1’, the Priority is 4 and the
Instructions is ‘Forward packets to port P’;

3) To handle the packets sent to VM a in other
switches except from S, the controller computes
each switch Si’s routing path to VM a and gets the
next hop port number Pi, after that it installs one
flow entry to flow-table 1 in switch Si, the Match
Fields is ‘eth_src=mac, metadata=T1’, the
Priority is 1 and the Instructions is ‘Forword
packets to port Pi’;

Combining the rule 1 to 3 together enables VMs to
communicate with the ones belonging to the same tenant.

For example, as Fig.2 shows, when VM1 sends packets to
VM 2, the packets firstly match No.1 flow entry of switch
S1’s flow-table 0, and then match No.3 flow entry in flow-
table 1, so the packets are sent to switch S2. In switch S2,
the packets match No.1 flow entry of flow-table 0 firstly
and then match No.4 flow entry of flow-table1, and
eventually get to VM 2.

Switch S2' Flow-table 0Switch S1's Flow-table 0

eth_src=mac_1 Set metadata=T1, go to table 1

Switch S1' Flow-table 1

Flow entries installed when
VM 1 is connected

eth_dst=mac_2
metadata=T1

Forward packets to port P2

Flow entries installed when
VM 2 is connected

eth_src=mac_1 Set metadata=T1, go to table 1

Switch S2' Flow-table 1
eth_dst=mac_1
metadata=T1

Forward packets to port P2

eth_dst=mac_2
metadata=T1

Forward packets to port P1

eth_dst=mac_1
metadata=T1

Forward packets to port P1

Switch
 S1

Switch
 S2

P1 P2 P2 P1

VM 1

Tenant: T1
MAC: mac_1

VM 2

Tenant: T1
MAC: mac_2

1

3

4

1

3

4

Match FieldsMatch Fields InstructionsInstructionsNo.No. Match FieldsMatch Fields InstructionsInstructionsNo.No.

eth_src=mac_2 Set metadata=T1, go to table 12eth_src=mac_2 Set metadata=T1, go to table 12

Fig.2. An example of communication between VMs

4) Install default flow entry (Priority=1) for ARP
request packets with Instructions is ‘Drop’. And
for ARP request packets that request for VMa’s
MAC address, install a flow entry to flow table-1
in each switch, the Match Fields is ‘Packet type
is ARP request, arp_tpa=ip and metadata=T1’,
the Priority is 2 and the Instructions is ‘Forward
packets to the controller’. The controller will
handle the requests and send the ARP reply
packets back to the access switch. The flow entry
rule for VM a’s DHCP requests is similar.

5) To handle the packets sent from VM a to Internet,
the controller computes the routing path for VM a
to access its gateway, and install a flow entry to
switches along the path. The flow entry’s Match
Fields is ‘metadata=T1, eth_src=mac and
eth_dst=gw’, the Priority is 1 and the
Instructions is ‘Forward to the next hop port’.

6) When VMs that locate in other different subnets
send packets to VM a, the packets’ destionation IP
address is ip but destination MAC address is their
gateways’ address, so the controller install a flow
entry rewirting the destination’s MAC address to
mac into the Open vSwitch. The flow entry’s
Match Fields is ‘metadata=T1, ip_dst=ip and
eth_dst=gw’, the Priority is 3 and the
Instructions is ‘Write eth_dst=mac and forward
the packets to the next hop port’. This method
achieves efficient routing process.

7) To achieve tenant isolation, we appoint all the
VMs are configured with internal IP addresses
(marked as Reserved IP) [22]. A default flow
entry is installed to flow table-1 in each switch,
the Match Fields is ‘ip_dst=Reserved IP and
eth_dst=gw’, the Priority is 2 and the
Instructions is ‘Drop’.

To conclude above rules, there are two steps in the
process pipeline of Open vSwitch, and flow entries in
Open vSwitch will cover all the types of network packets
listed in Table 1 and Table 2. Assume that the number of
VMs is N, then the total number of flow entries in flow
table-0 is about 2N̍ thus FENet supports more than
32,000 VMs under the size limitation of flow table (in our
environment, 65535), and the tenant isolation units can be
as many as the number of VMs.

B. Routing algorithm in FENet

When a new VM is connected to the network, the
controller computes the routing path for every switch to
access the VM. The common method is the shortest path
algorithm that just takes the hop counts between switches
into consideration. Since the controller stores the network
topology, computing the routing path only once is very
efficient for the controller to respond to the flow entry
installation requests. However, the location of VMs
usually depends on the loads of the hosts, such as CPU
and memory, which means hop count-based routing may
lead to low network utilization and load unbalanced. To
address this problem, we choose to execute the routing
algorithm each time a new VM is connected, and the
routing algorithm will do its best to allocate loads evenly
within the entire network. Prediction of the network traffic
is a tough issue, so we identify a network link’s load by
the count of VMs that will send packets through it.

In FENet, we design several dictionary variables for
Switch objects. The variable nextHop refers to the links
established between switches, variable nextHopCount
refers to the count of VMs that send packets through
network links in nextHop, variable local_vm refers to the
VMs directly connected to the switch, and variable
remote_vm refers to the VMs that send packets through
the switch. The data structures of these variables are
shown in Table 3.

TABLE 3. DATA STRUCTURES OF DICTIONARY VARIABLES

Attributes Format
nextHop {‘port_num’ : ‘switch_addr’}
nextHopCount {‘port_num’ : ‘count’}
local_vm { ‘tenant_id’ : {‘vm_mac’: ‘port_num’} }
remote_vm { ‘tenant _id’ : {‘vm_mac’: ‘port_num’} }

FENet executes the routing algorithm by two stages.
The first stage is updating the load of each link because
the new VM may have access to VMs belonging to the
same tenant. Assume that all the Switch objects are stored
in array switch, a new VMa (belongs to tenant t1, MAC
address is mac) is connected to switch SA (stored in
switch[i]) at port P0. Algorithm 1 describes the procedure
of the first stage:

Algorithm 1 Updating the load of links when a new VM added

1. switch[i].local_vm[t1][mac] = P0
2. for mac, port in switch[i].remote_vm[t1].items():
3. sw = switch[i]
4. while sw.remote_vm[t1].has_key(mac) :
5. port_num = remote_vm[t1][mac]
6. // update the load of network link from one vertex:
7. sw.nextHopCount[port_num] += 1
8. sw = sw.switch[nextHop[port_num]]
9. // update the other vertex’s nextHopCount
10. end while
11. end for

The second stage of the algorithm selects the routing
path for every switch to access VMa , the selection process
is based on greedy strategy. We define the maximum load
of all the network links in one path as the path’s load.
Switches that to be routed are marked as unvisited, and the
algorithm maintains several variables for each unvisited
switch Si , including variable Popt(i) that stores the optimal
path for Si to VM a , load_count(i) that stores the load of
Popt(i). Besides, the load of link between Si and its
previous switch along Popt(i) is stored in previous_count(i),
and the hop count of Popt(i) is stored in distance(i), all
these three variables related to Popt(i) are the smaller the
better. Each round the algorithm selects the optimal Popt

from Popt(i) at a priority order of load_count >
previous_count > distance, and marks the corresponding
switch Si as visited Snew , which means the routing path for
Snew to access VM a is found. If Snew connects VMs that
belong to the same tenant as VM a , the algorithm needs to
update the previous_count of the switches on Popt and the
load_count of other affected Popt(i). The pseudo codes of
updating operations are as Algorithm 2 shows.

Algorithm 2 Updating affected load_count and previous_count

1. vm_count = Snew.local_vm[t1].count()
2. if vm_count > 0:
3. sw = Snew
4. // update the previous_count of switches till SA
5. // variable previous stores the previous switches on the path to SA:
6. while not sw == SA:
7. previous_count[sw] += vm_count
8. root_sw = sw
9. sw = previous[sw]
10. end while
11. // update the affected switches’ load_count
12. queue.push(root_sw)
13. while not queue.empty():
14. sw = queue.pop()
15. load_count[sw] += vm_count
16. // AFFECTED_SET is the set of switches whose Popt(i) contains
17. // sw and load_count(i) < load_count[sw] :
18. for switch in AFFECTED_SET:
19. queue.push(switch)
20. end for
21. end while
22. end if

At the end of each selection round, the algorithm
traverses Snew’s unvisited neighbor switches to check
whether there is any improvement of Popt(i) through Snew.
Assume that the number of switches is N, then the time
complexity of the total routing algorithm is O (N3).

C. VM operations handling processes

The SDN controller maintains the virtual network
topology, including the information of all the VMs and
switches. To ensure the consistency of relations between
VMs’ status and the switches’ flow entry rules, FENet
takes a series of VM operations handling processes
between the SDN controller and virtualization platforms.
By this way, FENet accurately adjusts the flow entry rules
and achieves flexible management. Usually virtualization
platforms provide a web interface (marked as portal) for
the users to access, thus we use portal to represent
virtualization platforms in the following description.

1) VM deploying
The portal sends the new VM ’s information (network

configuration and tenant ID) to the SDN controller, after

that the controller inserts a record of this VM into the
database, and sets the VM ’s status to deployed.

2) VM starting
When the VM starts, its access switch will report to

the controller about an OpenFlow message that a port
turns to UP status, and this message contains the access
device’s MAC address. The controller queries the
database to get the VM record and checks the status of the
VM. If the status is deployed or migrated, then the
controller will install new flow entries to the related
switches.

3) VM migrating
The portal sends the migrating operation details to the

controller, including information of the migrating VM and
the target host. Then the controller updates the migrating
VMs’ status to migrated and sets its access_switch to the
target switch. Once the VM starts on the target host, the
next handling process is similar with 2).

4) VM stopping
The portal sends the stopping operation details to the

controller, and the controller updates the target VM’s
status to stopped.

5) VM deleting
The portal sends the deleting operation details to the

controller, and then the controller updates the target VM ’s
status to deleted. When the target VM shuts down, the
controller will receive an OpenFlow message from the
access switch that a port turns to DOWN status, and it
queries the database to get the VM record that matches the
MAC address contained in the OpenFlow message. If the
VM ’s status is deleted, then the controller instructs all the
switches to delete flow entries related to the deleted VM,
and updates the load of network links.

IV. EXPERIMENTAL EVALUATIONS

The prototype of FENet is developed upon RYU [23],
which provides OpenFlow interfaces for developing SDN
controller programs. We conduct functional experiments
to validate the effectiveness of the prototype. Besides,
performance experiments are conducted to evaluate the
prototype, including the virtual network performance and
the scalability of virtual networks.

A. Virtual network interconnections and isolation

We build a virtual network as Fig. 4 shows. 2 hosts are
connected to an H3C S5820 OpenFlow switch, and each
host runs 4 VMs. The VMs are tagged with several
tenants’ ID, and some of them are configured with IP
addresses belonging to different subnets. Various
experiment conditions makes accurate validation of
virtual network interconnections and isolation.

Firstly, we take ping tests among the 8 VMs. The
partial results are shown in Table 4. As we expected, the
VMs belonging to the same tenant could communicate
each other, no matter their IP addresses are in the same
subnet or not. And the VMs belonging to different tenants
are isolated. The results verify that virtual network
interconnections and isolation are controlled accurately.
Secondly, we test the VMs to access the Internet. The
virtual network has 5 subnets, but there are only two true

Host-A

H3C OpenFlow Switch

hostname: VM 1

owner: T1

IP: 10.0.1.2/24
gateway: 10.0.1.1

Open vSwitch
IP: 10.0.1.1/24

hostname:VM 2

owner: T1
IP: 10.0.1.4/24
gateway: 10.0.1.1

hostname: VM 5

owner: T2
IP:10.1.1.2/24
gateway: 10.1.1.1

hostname: VM 6

owner: T3
IP: 10.2.1.2/24
gateway: 10.2.1.1

Host-B hostname: VM8

owner: T3
IP: 10.2.2.2/24
gateway: 10.2.2.1

Open vSwitch
IP: 10.1.1.1/24

hostname: VM 3

owner: T1
IP: 10.0.1.3/24
gateway: 10.0.1.1

hostname: VM4

owner: T1
IP: 10.0.2.3/24
gateway: 10.0.2.1

hostname: VM 7

owner: T2
IP: 10.1.1.3/24
gateway: 10.1.1.1

Fig.4. Network topology of functional experiments

gateway devices, thus VMs belonging to tenant T1 and
tenant T3 are mapped to gateway on host-A, while those
belonging to tenant T2 are mapped to gateway on host-B.
The results show all the VMs could communicate with
public IP addresses. This test verifies that different
subnets could share a gateway for accessing the Internet.
That’s valuable as in production environment the number
of virtual subnets increases dynamically while the hosts’
is usually fixed.

TABLE 4. PING TESTS RESULTS

Use Case
Conditions Expected

Result
Test

Result Same
tenant

Within
subnet

Same
Host

VM1VM2 Yes Yes Yes enabled enabled
VM1VM3 Yes Yes No enabled enabled
VM3VM4 Yes No Yes enabled enabled
VM2VM4 Yes No No enabled enabled
VM2VM5 No No Yes rejected rejected
VM6VM7 No No No rejected rejected

B. Virtual network performance

We realize the control of a 4 VMs’ virtual network by
3 types of schemes respectively, including scheme based
on OpenVPN, scheme based on traditional bridging and
FENet. All the three schemes use Open vSwitch-2.0.0 as
the VMs’ access switch. VM 1 and VM 2 run on the host-A,
and their IP addresses are configured in a same subnet.
VM 3 and VM 4 run the host-B, VM 3 is in the same subnet
with VM 1/VM 2 while VM 4 is in another subnet. These 4
VMs belong to the same tenant, thus they are able to
communicate with each other.

We measure the network performance between VMs
by Iperf and ping. The results are shown in Fig. 5 and Fig.
6. We use openvpn to identify the OpenVPN scheme, and
use bridging to identify the traditional bridging scheme.

Fig.5. Bandwidth of communication between VMs

VM 1 and VM2 communicate with each other via a
layer-2 network because they are connected with the same
Open vSwitch and their IP addresses are configured in the
same subnet, so the packet forwarding process of these
three schemes are similar, the result shows the bandwidth
of communication between VM1 and VM2 are about
400Mbits/s. Though VM 3 and VM4 run on the same host,
they are configured into different subnets, thus the packets
forwarding between them needs layer-3 routing. bridging
leverages physical layer-3 switches to accomplish routing,
the packets are sent out from host-B firstly and then sent
back to host-B after routing. FENet makes use of packet
headers rewriting to accomplish routing and the packets
are forwarded within host-B. openvpn runs a VM as
virtual router. The results show FENet and bridging
provide better bandwidth of communication between VM3
and VM4 than openvpn. FENet improves the bandwidth
further by a special routing method.

Fig.6. Latency of communication between VMs

When VMs that locate different hosts communicate
with each other, the network performance in FENet is
about 30% higher than openvpn. Because in openvpn, the
packets are encapsulated and sent to the VPN server for
transferring. Besides, the routing process handled by
virtual router also pays a cost of performance loss.

Packets transfer process of FENet is essentially based
on bridging, so the bandwidth performance of FENet and
bridging are similar. However, the results show FENet
achieves lower latency. On the one hand, bridging takes
VLAN field as the tenant isolation identification tag, thus
the operations of adding/removing VLAN tags are
additional in compared with FENet, on the other hand,
FENet accomplishes routing efficiently by packet headers
rewriting.

C. The scalability of virtual netwoks

As we described in sector II , the flow entry rules in
FENet support more than 32,000 VMs, and FENet is
faced with challenges of virtual networks’ scalability in
two aspects, one is responding to the ARP requests, and
the other is responding to VM startup and installing flow
entries to the switches. We run Cbench [24] to measure
the responding ability of the controller. The controller
application is running on a host that has 8 cores of Intel(R)
Core(TM) i7 CPU 860 @2.80GHz and 8 GB memory.

Firstly, we measure the controller’s throughput of
ARP replies when different amounts of switches are
connected to the controller, we assume that each switch

has a fixed number of hosts of 100, which is above the
common case of today’s commercial products. The results
are shown in Fig.7. As the number of switches increases,
the throughput of the controller keeps improving till an
upper bound is reached. Finally, the throughput holds
steady at more than 18,000 responses per seconds,
because the CPU usage reaches 100%.

Fig.7. The throughput of controller with different number of switches

Besides, we measure the elapsed time of OpenFlow
flow entry installation when a VM is connected to virtual
networks of different scale. The virtual network scale is
determined by the amount of physical switches, each
physical switch is connected with 20 Open vSwitch.
When the controller manages a virtual network of 64
physical switches, it will install flow entries for 1280
switches (including software based Open vSwitch), the
elapsed time of flow entry installation for one VM is
1.185 seconds, and the results of other cases are shown in
Fig.8. As RYU is single-threaded the controller has to
take serial processing for flow entry installation when
plenty of VMs concurrently start. In a virtual network of 4
physical switches, when 1000 VMs start at the same time,
the total elapsed time of flow entry installation is about 81
seconds.

Fig.8. Elapsed time of flow entry installation for one VM

D. Network utilization of routing algorithm

In this test we run twelve VMs on six hosts. These
VMs are allocated to different tenants, VM1,2,3 belong to
tenant-1, VM4,5,6,9,10 belong to tenant-2 and VM7,8,11,12
belong to tenant-3. After that the SDN controller
respectively takes the FENet’s routing algorithm and the
routing algorithm based on the shortest path algorithm to
compute routing paths for the 12 VMs. The network
utilizations under these two algorithms are shown in Fig.9.

The shortest path routing algorithm only considers the hop
counts between the packets’ source and destination, while
in FENet, the controller chooses routing paths based on
several metrics, such as the links’ loads and the hop
counts of paths, therefore FENet achieves higher virtual
network utilization, and the network links are relatively
load balanced, which may help to relieve network
congestion.

Routing: Utilization
improved algorithm

Routing̟ Shortest
path algorithm

Switch1

Switch2

Switch3

Switch6Switch4

Switch5

6

14 10

6

4
4226

VM 6 VM 9 VM 4VM 4 VM 11VM 11 VM 5VM 5 VM 12VM 12

VM 3 VM 8VM 2 VM 10

VM 1

VM 7

Switch1

Switch2

Switch3

Switch6Switch4

Switch5

7

8 8

8

7
8865

VM 6 VM 9 VM 4VM 4 VM 11VM 11 VM 5VM 5 VM 12VM 12

VM 3 VM 8VM 2 VM 10

VM 1

VM 7

6 Load of network links

Fig.9. The network loads of different routing algorithms

V. CONCLUSIONS

This paper proposes FENet, a flexible and efficient
management scheme for virtual networks. FENet creates
virtual networks based on SDN, and develops an SDN
controller to guarantee tenant isolation and flexibly
manage the virtual network interconnections even though
the VMs are added or removed constantly. In addition,
FENet takes several effective methods, such as packets
validation and improved routing algorithm, to improve the
network utilization and performance. The contributions of
this paper include designing the OpenFlow flow entry
rules to achieve virtual network management, proposing a
network utilization concerned routing algorithm and the
handling processes of VM operations between the SDN
controller and virtualization platforms.

The functional experiments validate the prototype’s
effectiveness of virtual network interconnections and
tenant isolation. Besides, FENet achieves about 30%
better network performance than the management scheme
based on OpenVPN and it improves the network latency
in comparison with the management scheme based on
traditional bridging.

As the virtual networks scale up, FENet may need a
distributed controllers deployment to improve
management efficiency. And the tunneling technique may
be used to enable virtual network communications across
data centers. We leave these topics as our future works.

ACKNOWLEDGEMENT

This paper has been supported in part by the China
973 Program (No.2011CB302602), China 863 Program
(No. 2013AA01A213), HGJ Program (2010ZX01045-
001-002-4, 2013ZX01039-002-001-001), Projects from

NSFC (No.61170294, 91118008) and Fundamental
Research Funds for the Central Universities. We would
also like to thank the anonymous reviewers of ICPADS
for their suggestions and comments.

REFERENCES
[1] Omar Sefraoui, M. Aissaoui, M. Eleuldj. "OpenStack: Toward an

Open-source Solution for Cloud Computing." International
Journal of Computer Applications, 2012, 55(3): 38-42.

[2] A. I. Sundararaj, P. A. Dinda. "Towards Virtual Networks for
Virtual Machine Grid Computing." Virtual machine research and
technology symposium, 2004, pp.14-22.

[3] Ganguly, A. Agrawal, A. Boykin, P.O. Figueiredo. "IP over P2P:
Enabling self -configuring virtual IP networks for grid computing."
Parallel and Distributed Processing Symposium, IPDPS 2006.
20th International. IEEE, 2006.

[4] McKeown, Nick. "Software-defined networking." INFOCOM
keynote talk (2009).

[5] Kim, Hyojoon, and Nick Feamster. "Improving network
management with software defined networking." Communications
Magazine, IEEE 51.2 (2013): 114-119.

[6] Agarwal, Sugam, Murali Kodialam, and T. V. Lakshman. "Traffic
engineering in software defined networks." INFOCOM, 2013
Proceedings IEEE. IEEE, 2013, pp. 2211-2219.

[7] Nunes, V.Rogerio, Raphael L. Pontes, and Dorgival Guedes.
"Virtualized network isolation using software defined networks."
Local Computer Networks (LCN), 2013 IEEE 38th Conference on.
IEEE, 2013, pp: 683-686.

[8] McKeown, Nick, et al. "OpenFlow: enabling innovation in campus
networks." ACM SIGCOMM Computer Communication Review
38.2 (2008): 69-74.

[9] OpenvSwitch. http://openvswitch.org/.

[10] HomChaudhuri, S. Foschiano, and M. Foschiano. "Private VLANs:
Addressing VLAN scalability and security issues in a multi-client
environment." IETF draft-sanjib-private-vlan-02. txt. 2004.

[11] Mahalingam, Mallik, et al. "VXLAN: A framework for overlaying
virtualized layer 2 networks over layer 3 networks."
draftmahalingam-dutt-dcops-vxlan-01. txt. 2012.

[12] SSL/TLS based user-space VPN. http://openvpn.org.

[13] M. Sridharan, K. Duda, I. Ganga, et al. "NVGRE: Network
virtualization using generic routing encapsulation." IETF draft.
2011.

[14] Amazon VPC. https://aws.amazon.com/vpc/.

[15] Yeganeh, Soheil Hassas, Amin Tootoonchian, and Yashar Ganjali.
"On scalability of software-defined networking." Communications
Magazine, IEEE 51.2 (2013): 136-141.

[16] Caraguay, Valdivieso, et al. "Evolution and Challenges of Software
Defined Networking." Future Networks and Services (SDN4FNS),
2013 IEEE SDN for. IEEE, 2013, pp.1-7.

[17] Guan, Xinjie, Baek-Young Choi, and Sejun Song. "Reliability and
Scalability Issues in Software Defined Network Frameworks."
Research and Educational Experiment Workshop (GREE), 2013
Second GENI. IEEE, 2013, pp.102-103.

[18] Koponen, Teemu, et al. "Onix: A Distributed Control Platform for
Large-scale Production Networks." OSDI. 2010, Vol. 10, pp.1-6.

[19] Jeong, Kwangtae, Jinwook Kim, and Young-Tak Kim. "QoS-aware
network operating system for software defined networking with
generalized OpenFlows." Network Operations and Management
Symposium (NOMS), 2012 IEEE. IEEE, 2012, pp.1167-1174.

[20] Drutskoy, Dmitry, Eric Keller, and Jennifer Rexford. "Scalable
network virtualization in software-defined networks." Internet
Computing, IEEE 17.2 (2013): 20-27.

[21] Nicira Network Virtualization Platform (VMware NSX),
http://www.vmware.com/products/nsx/.

[22] Rekhter, Yakov, et al. "Address allocation for private internets."
(1994).

[23] RYU, http://osrg.github.io/ryu/.

[24] Cbench, http://archive.openflow.org/wk/index.php/Oflops.

http://openvpn.org/
http://www.vmware.com/products/nsx/

