
This is a repository copy of Fault-Tolerant Dynamic Deduplication for Utility Computing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97018/

Version: Accepted Version

Proceedings Paper:
Leesakul, W, Townend, P, Garraghan, P et al. (1 more author) (2014) Fault-Tolerant
Dynamic Deduplication for Utility Computing. In: 2014 IEEE 17th International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing. 17th
International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, 10-12 Jun 2014, Reno, NV. IEEE , pp. 397-404.

https://doi.org/10.1109/ISORC.2014.55

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Fault-Tolerant Dynamic Deduplication for Utility

Computing

Waraporn Leesakul, Paul Townend, Peter Garraghan, Jie Xu

School of Computing

University of Leeds, Leeds, LS2 9JT

United Kingdom

{scwl, p.m.townend, scpmg, j.xu} @leeds.ac.uk

Abstract� Utility computing is an increasingly important

paradigm, whereby computing resources are provided on-

demand as utilities. An important component of utility

computing is storage; data volumes are growing rapidly, and

mechanisms to mitigate this growth need to be developed. Data

deduplication is a promising technique for drastically reducing

the amount of data stored in such system systems; however,

current approaches are static in nature, using an amount of

redundancy fixed at design time. This is inappropriate for

truly dynamic modern systems. We propose a real-time

adaptive deduplication system for Cloud and Utility computing

that monitors in real-time for changing system, user, and

environmental behaviour in order to fulfill a balance between

changing storage efficiency, performance, and fault tolerance

requirements. We evaluate our system through simulation,

with experimental results showing that our system is both

efficient and scalable. We also perform experimentation to

evaluate the fault tolerance of the system by measuring Mean

Time to Repair (MTTR), and using these values to calculate

availability of the system. The results show that higher

replication levels result in higher system availability; however,

the number of files in the system also effects recovery time. We

show that the tradeoff between replication levels and recovery

time when the system overloads needs further investigation.

Keywords� Utility Computing; Fault-tolerance; Cloud

Computing; Cloud storage; Deduplication; Adaptive computing;

Dependability;

I. INTRODUCTION

In modern day society, utilities such as water, gas, and
electricity are deemed to be requirements for fulfilling
routines in daily life. In this context, we define utility as an
essential service that can be easily obtained by the general
population. The idea of computing utility was realised as
early as 1966, where it was envisioned that computing
networks would mature to reach a point where the idea of
'computer utilities' was made a reality and worked in similar
principle to electrical and telephone utilities; able to
provision computing service such as computing resources,
development platforms or applications to consumers.

The latest paradigm to emerge to realize the vision of
utility computing provisioned as a service is Cloud
computing, featuring loosely coupled systems typically

deployed within datacenters capable of dynamically
providing computing service and utility to consumers. There
is currently no standard definition for Cloud computing, but
there are a number of proposed definitions. A popular
definition for Cloud computing is taken from the National
Institute of Standards and Technology (NIST) [1], which
states that Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources that can be
rapidly provisioned and released with minimal management
effort or service provider interaction. Furthermore, Cloud
computing from an implementation perspective can be
defined as a �parallel and distributed system consisting of
interconnected and virtualized computers that are
dynamically provisioned and presented as one or more
unified computing resources base on service-level
agreements established through negotiation between the
service provider and consumers" [2].

The essential characteristics of cloud computing have
been defined in [3]. Cloud providers pool computing
resources together to serve customers via a multi-tenant
model. Computing resources are delivered over the Internet
where customers can access them through various client
platforms. Customers can access the resources on-demand at
any time without human interaction with the cloud provider.
From a customers� point of view, computing resources are
infinite, and customer demands can rapidly change to meet
business objectives. This is facilitated by the ability for cloud
services to scale resources up and down on demand
leveraging the power of virtualization. Moreover, cloud
providers are able to monitor and control the usage of
resources for each customer for billing purposes,
optimization resources, capacity planning and other tasks.

One of the services provided by Cloud computing is that

of storage � typically this is provided in the form of

virtualized storage on demand to customers. This can be

provided to meet a variety of needs [4] including

archival/backup storage, elastic real-time storage, etc. The

amount of storage required by cloud users and applications �

and hence ultimately by providers - is rapidly increasing,

digital data creation growing by around 50 percent per year.

Customers expect to reach the on-demand cloud services at

any time, while providers are required to maintain system

availability and process a large amount of data. In order to

meet these challenges in the face of such demand, providers

are increasingly looking for ways to reduce data storage

volumes, in order to reduce capital expenditure and energy

consumption. The concept of data deduplication is becoming

an increasingly popular method for achieving such savings.

Data deduplication is a technique whose objective is to

improve storage efficiency. In traditional deduplication

systems, incoming data is analysed and compared with data

already stored in the system � this can be done at either file-

level or block-level (whereby individual �chunks� of data are

hashed and compared against a central database). Only

unique data is copied into the target system, with logical

pointers are created for other copies instead of storing

redundant data. Deduplication can reduce both storage space

and network bandwidth [5]. However such techniques can

result with a negative impact on system fault tolerance; as

many files could refer to the same data chunk, any fault

pertaining to the chunk (loss of availability, integrity, etc.)

will impact all dependent files. Due to this problem, many

deduplication-based approaches and techniques have been

proposed to not only provide solutions to achieve storage

efficiency, but also to improve fault tolerance. These

techniques provide redundancy of data chunks after

performing deduplication; this ensures that faults affecting a

single data chunk will not cause any system failure.

However, current data deduplication mechanisms in

cloud storage are static schemes applied agnostically to all

data scenarios. This is a problem as data scenarios exhibit

different data characteristics that require different levels of

fault-tolerance and performance requirements. For example,

data usage in cloud changes overtime - some data chunks

may be read frequently in a period of time, but may not be

used in another periods; similarly, the level of fault-tolerance

provided will remain the same regardless of changing QoS

requirements. Due to the drawback of such static schemes,

which cannot cope with changing user behavior,

deduplication in cloud storages requires a dynamic scheme

which has the ability to adapt at real-time to changing access

patterns and user behavior.

This paper extends the dynamic deduplication scheme

for clouds first presented in [6] with a fault-tolerant

mechanism for cloud storage, creating a dynamic data

deduplication scheme that adapts in real-time to changing

requirements for cloud storage, in order to fulfil a balance

between storage efficiency and fault tolerance. Furthermore,

we also aim to improve performance in cloud storage

systems that experience changes in data scenarios and user

patterns. The rest of this paper is organized as follows:

section II presents background concepts and related work;

section III demonstrates our adaptive system model; section

IV illustrates our simulation of the proposed system model;

Section V describes the results of our experimentation.

Section VI discusses the future work, and section VII

concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Deduplication in Cloud Storages

Data deduplication is a technique that aims to reduce the
amount of space used for data storage. This is achieved by
identifying redundant data using hash values to compare data
chunks, storing only a fixed number of copies of these
chunks (typically one), and creating logical pointers to these
copies instead of storing the redundant data [7], [8]. By
employing deduplication, data volume is reduced and hence
disk space and network bandwidth can be reduced, resulting
in reduced costs and energy consumption for running storage
systems [5].

Data deduplication can be applied at nearly every point
which data is stored or transmitted in cloud storage [5].
Many cloud providers offer disaster recovery [9] and
deduplication can be used to make disaster recovery more
effective by replicating data after deduplication for speeding
up replication time and bandwidth cost savings. Backup and
archival storage in clouds can also apply data deduplication
in order to reduce physical capacity and network traffic [10],
[11]. Moreover, in the live migration process, there is a need
to transfer a large volume of duplicated memory image data
[12]. There are three major performance metrics of migration
to consider: total data transferred, total migration time and
service downtime. Longer migration time and downtime
would be lead to service failure � therefore, deduplication
can assist in migration [13]. Deduplication can be used to
reduce storage of active data such as virtual machine images.
Factors to consider when using deduplication in primary
storage is how to balance the trade-offs between storage
space saving and performance impact [14]. Additionally,
Mandagere, et al., [14] state that deduplication algorithms
reflect the performance of deduplicated storage in terms of
fold factor, reconstruction bandwidth, metadata overhead,
and resource usage. However, the mechanisms employed in
this work are static, and do not consider the need of Cloud-
based systems to adapt in real-time to changing behaviours
and circumstances, in particular with regard to Quality of
Service.

B. Quality of Service

In the context of cloud storage services, QoS properties
refer to non-functional aspects or quality aspects of the
services, such as performance, reliability, scalability,
availability and security, which could be used as a
differentiating point in the preference of customers [15]. QoS
is typically defined in a Service-Level Agreement, and the
QoS aspects that we will take into consideration in our work
are availability and performance.

A Service Level Agreement is part of the contract
between the service consumer and service provider and
formally defines the level of service [16], whilst availability
is one of the attributes of dependable system [17], and also a
quality aspect of a service. Availability is probability that the
system is ready to be used. The service should be available
when it is invoked. Performance is one of the quality aspects
of a service which represent the speed in which a request can
be completed Performance can be measured in terms of

throughput, response time, execution time, latency and
transaction time. Initially we will measure the response time,
which is the time that elapses from when a node sends a
request for a file until it receives the complete file [18].

C. Dependability Issues

When performing deduplication, a portion of data chunks
may be much more important than others (for example, data
chunks that are referenced by many files may have more
business value than those referenced by few files).
Traditional deduplication approaches do not implement
redundancy of data chunks; this means that deduplication
may reduce the reliability of a storage system, as the loss of a
few important chunks can lead to a loss of integrity in many
files. As a result, critical chunks should be replicated more
than the less important data chunks in order to improve
reliability of the system. The authors in [19], consider the
effects of deduplication on the reliability of the archival
system. They proposed an approach to improve reliability by
developing a method to weigh and measure the importance
of each chunk by examining the number of data files that
share the chunk, and use this weight to identify the level of
redundancy required for the chunk to guarantee QoS.
However, this again is a static approach, with no capability
to adapt in real-time to changes in the system environment.

D. Related Work

We now examine the existing work performed on system
architectures of deduplication for cloud backup services such
as SAM [11], AA-Dedupe [20], CABdedupe [21], and
SHHC [22].

The SAM [11] system architecture is composed of three
subsystems: File Agent, Master Server and Storage Server.
Clients subscribe to backup services, then File Agents are
distributed and installed on their machines, while the service
provider provides the Master Server and Storage Server in its
data-centre to serve backup requests from clients.

Most of the existing solutions that use deduplication
technology primarily focus on the reduction of backup time
while ignoring restoration time. The authors of CABdedupe
[21] propose a performance booster for both cloud backup
and cloud restore operations, through middleware that is
orthogonal and can be integrated into any existing backup
system. CABdedupe consists of CAB-Client and CAB-
Server, which is placed on the original client and server
modules in existing backup systems.

The main aim of these related works are the following:
SAM aims to achieve an optimal trade-off between
deduplication efficiency and deduplication overhead,
CABdedupe reduces both backup time and restoration time.
AA-Dedupe [20] aims to reduce the computational overhead,
increase throughput and transfer efficiency, while SHHC
[22] tries to improve fingerprint storage and lookup
mechanism, however has a concern of scalability. SHHC is a
novel Scalable Hybrid Hash Cluster designed for improving
response times to fingerprint lookup process. Because of a
large number of simultaneous requests are expected in cloud
backup services. In order to solve this problem, the hash
cluster is designed for high load-balancing, scalability and

minimizing the cost for each fingerprint lookup query. The
hash cluster is designed as middleware between the clients
and the cloud storage. It provides the fingerprint storage and
lookup service.

There are other works on deduplication storages whose
architectures are designed for the scalability issue, for
example; Extreme Binning [23], and Droplet [24].

Extreme Binning is used to build a distributed file backup
system. The architecture of such a system is composed of
several backup nodes. Each backup node consists of a
compute core and RAM along with a dedicated attached
disk. The first task when a file arrives to the system for
backup is, it must be chunked. The system can delegate this
task to any one of the backup nodes by choosing one
according to the system load at that time. After chunking,
stateless routing algorithm is used to route the chunked file
by using its chunk ID. The chunked file will be routed to a
backup node where it will be deduplicated and stored.

Droplet is a distributed deduplication storage system
designed for high throughput and scalability. It consists of
three components: a single meta server that monitors the
entire system status, multiple fingerprinting servers that run
deduplication on input data stream, and multiple storage
nodes that store fingerprint index and deduplicated data
blocks. The meta server maintains information of
fingerprinting and storage servers in the system. When new
nodes are added into the system, they need to be registered
on the meta server first. The meta server provides a routing
service with this information. The client first connects to the
meta server and queries for list of fingerprinting servers, and
then connects to one of them. After this, a raw data stream
containing backup content will be sent to this fingerprinting
server, which calculates data block fingerprints and replies
results to the client. Fingerprint servers check duplicated
fingerprint by querying storage servers.

 The limitation of all of these mechanisms when applied
to the Cloud computing paradigm is that the nature of data in
cloud storage is dynamic [25], [26]. For example, data usage
in cloud changes overtime, some data chunks may be read
frequently in period of time, but may not be used in another
time period. Some datasets may be frequently accessed or
updated by multiple users at the same time, while others may
need the high level of redundancy for reliability requirement.
In order to adequately address the needs of Cloud users and
providers, it is crucial to support this dynamicity; this
requires an architecture and mechanism for monitoring the
real-time behaviours of the Cloud system and adapting
dynamically to changing needs. The following section
introduces the system model for our proposed dynamic
Cloud deduplication system.

III. SYSTEM MODEL FOR ADAPTIVE DEDUPLICATION

A. Overall Architecture

The work presented in this paper builds on the dynamic
deduplication system first presented in [6]. The system
model for this work is shown in figure 1, and features a
client-side deduplication using whole file hashing. The
hashing process of our scheme is performed on the client-

side, and connects to one of a number of Deduplicator
components, based on current system load (the number of
these components is arbitrary and scaleable). The
deduplicator component used then identifies duplication in
the client�s file by calculating a hash of the file and
comparing this with existing hash values stored in the
Metadata Server. In traditional deduplication systems, if it is
a new hash value, it will be recorded in metadata server, and
the file will be uploaded to File Servers, its logical path will
also recorded in metadata server. If the hash value is already
contained in the database, the number of references for the
file will be increased.

Some systems may keep a static number of copies of
each file (or data chunk); however, as the system
environment changes � for example, data chunks that are
referenced by a large number of files - more replicas may be
necessary to avoid late timing faults and thus ensure
appropriate QoS is maintained. To solve this issue, some
existing works introduce a level of redundancy into
deduplication systems - however, in addition to their lack of
dynamism, identifying a correct level of redundancy by the
number of references to a data chunk is a poor measurement
because files with fewer references may be critical files.

In our system model, after identifying the duplication, the
Redundancy Manager then calculates an optimal number of
copies for the file based on its number of references and
level of QoS necessary, as associated with the policy defined
in the SLA Manager.

The numbers of copies of deduplicated data are
dynamically changed at run-time based on the changing
number of references, level of QoS and demand for the files.
The changes are monitored, for example, when a file is
deleted by a user, or the level of QoS of the file has been
updated, this will trigger the redundancy manager to re-
calculate an optimal number of copies.

In order to address fault-tolerance issue, apply the re-
replication function from HDFS simulator [27] to Failure
Manager, the new component in our simulation system. This
function provides failure monitoring and detection tools
including failure recovery process. Our proposed system
model as shown in figure 1 is further composed of:

• Load Balancer: after hashing the process with SHA-
1, clients send a fingerprint (hash value) to a
deduplicator via the load balancer. The load balancer
responds to requests from clients, sending to any one
of the deduplicators according to their loads at that
time.

• Deduplicators: a component designed for identifying
the duplication by comparing with the existing hash
values stored in metadata server.

• Cloud Storage: a Metadata Server to store metadata,
and a number of File Servers to store actual files and
their copies.

• Redundancy Manager: a component to identify the
initial number of copies according to the level of QoS
and the policy defined in SLA Manager, and monitor
the changing level of QoS.

• SLA Manager: a component defines the level of
service policy.

• Failure Manager: a component to monitor and detect
failure and recover failure.

IV. SIMULATION ENVIRONMENT

In order to test the effectiveness of this scheme, we
conducted a number of simulation-based experiments.
CloudSim [28] and HDFS Simulator [27] are both Java-
based toolkits that have different purposes for simulation.
CloudSim is used for modelling and simulating cloud
computing environments and infrastructure, and is intended
to be used for experimenting with various scheduling and
allocation algorithms, while HDFS Simulator is a simulation
of the replication mechanism in the Hadoop Distributed File
System, popularly used in Cloud Storage systems.

Although CloudSim provides some storage related
classes which can be extended, the existing architecture is
not yet mature, and requires an additional module which
supports simulation of cloud storage in order to evaluate new
replication management strategies. Therefore, HDFS
Simulator is more applicable to our work, as it already
provides replication mechanisms. Although the replication
degree of these mechanisms is pre-defined to be a static
value, it is possible modify the source code in order to

Load Balancer

Client

Failure

Manager
SLA Manager

Redundancy

Manager

Metadata server

File server File serverFile server

Cloud Storage

Deduplicator Deduplicator Deduplicator

Client Client

Figure 1: The System Model for our Adaptive Real-Time
Deduplicator for Cloud Systems

introduce replication dynamicity. Moreover, we can perform
experiments by simulating events like changing the level of
Quality of Service. The concepts of HDFS Simulation have
been adapted to simulate our proposed system model. We

create one Namenode as Metadata server, and five

Datanodes as File servers. Metadata in XML format is
kept in the metadata server, and File servers store the copies
of files.

We simulate three file system events: upload, update, and
delete. The upload event is when the file is first uploaded to
the system. If files already exist in the system, and have been
uploaded again, the number of copies of the files will be
recalculated according to the highest level of QoS, this is for
an update event. For a delete file event, users can delete their
files, but the files will not permanently deleted from the
system if there are any other users refer to the same files. All
three events cause the system to monitor the current set of
QoS requirements in the system, and cause the system to
adapt in real-time to the changing requirements.

A. Upload

When uploading files, the deduplicator requests a hash
value of the uploaded file from a client, and then checks for
any duplicates with the same existing hash value in the
metadata server. If it is a new file, the new metadata of the
file will be added to the system and the file will be uploaded
to the file server. The replicas of the file will be created
according to the level of QoS of the upload file.

B. Update

In the case of an existing file, the metadata of the file will
be updated to reflect a new reference being added, and the
system may need to create or delete the replicas of the file
according to the maximum value of QoS of the file.

C. Delete

The deduplicator checks the number of files which refer
to the same hash value the user wants to delete. If there is
only one reference to the hash, all replicas of the file will be
deleted. On the other hand if there are any other files that
refer to the hash, only the metadata will be updated, and the
number of replicas of the file may need to decrease
according to the maximum value of QoS.

In order to evaluate availability of our proposed system,

we also simulated failure events by applying an experiment
from the HDFS simulator [27]. We generated a simulation
file to be used as a failure scheduler; the failure scheduler
defined the scheduled failing times. Mean Time to Failure
(MTTF) was chosen to be 3 seconds. Then we used this
failure scheduler to simulate failure events to our system.
These events are monitored, detected, and recovered by the
Failure Manager component. From the simulation of failure
monitoring, detection, and recovery, we can measure the
values of Mean Time to Repair, and use these values to
calculate availability according to the formula [29] presented
in (1):

 Availability = MTTF / (MTTF+MTTR) (1)

V. EXPERIMENTAL RESULTS

Based on the discussed events, we performed a number
of experiments on the simulation of our proposed model. The
experiments were performed using one, five, and ten
deduplicators respectively.

All the files used in the experiments were created with
stochastic contents and properties. There are various sizes of

files used in this experiment: 100 KB, 150 KB, 200 KB, 250
KB, 300 KB, 500 KB, 800, 1 MB, 2 MB. We tested upload,
update, and delete events on ten files, a hundred files, a
thousand files, and ten thousand files respectively. For
testing the changing level of QoS, each file was randomly
assigned a level of QoS between 1 and 5; this mapped to the
required level of redundancy of each file. Files with higher
level of QoS will be replicated more than the lower ones.

Figure 2: Experimental results

When a single deduplicator was used, the system faced
scalability problems, taking a longer time when the number
of files increased as shown in Figure 2. This is because under
the heavy load with more requests and more users, a single
deduplicator cannot maintain the performance of the system.
When the number of deduplicators is increased to five and
ten, the results show that it helps to reduce the processing
time.

For uploads, when all the files have been uploaded to the
system for the first time, we compared the time taken from
one deduplicator to five and ten deduplicators. Adding more
deduplicators when the number of upload files increase,
could help to reduce the processing time. The results show in
Table I.

When the numbers of upload files are ten and a hundred
files, using five deduplicators can reduce 85.75% and
94.20% of the processing time taken by one deduplicator,
while ten deduplicators can save more time at 90.85% and
97.55%. When the number of upload files has been increased
to a thousand files, five and ten deduplicators can still help to
reduce the processing time but they are decreased to 91.40%
and 95.58% respectively. However, time saving significantly
decrease when the number of upload files are increased to
ten thousands as five and ten deduplicators can reduce
60.10% and 79.71% of processing time.

When files have already have been uploaded to the
system, we perform experiments for the case when there is a
changing level of QoS, which means the number of copies of
files in the system could be changed according to the
maximum value of QoS. The results of update files show that
when the number of files increase, adding more
deduplicators can help to reduce the processing time. When
the numbers of files are ten, a hundred files, one thousand
and ten thousands files, using five deduplicators can reduce
41.78% and 61.79%, 63.78% and 75.25% of the processing
time taken by one deduplicator, while ten deduplicators can
save more time at 75.02%, 75.34%, 82.09% and 96.17%. We
found that, when the numbers of files are ten, one hundred
and one thousand, time saving by adding more deduplicators
are less than time saving for the upload cases. However,
when the numbers of files are increased to one thousand and
ten thousands files, the time saving by five and ten
deduplicators still increase, in contrast to the upload cases.

We perform experiments to delete files. Adding more
deduplicators can also to reduce the processing time, but the
results of delete files are slightly different from the upload
and update cases. The results show that when the numbers of
files are ten, a hundred files, one thousand and ten thousands
files, using five deduplicators can reduce 93.42% and
69.31%, 40.74% and 90.28% of the processing time taken by
one deduplicator, while ten deduplicators can save more time
at 98.68%, 90.59%, 85.87% and 90.03%. We can see that,
for the delete case, time saving by adding more deduplicators
are decreased when the numbers of files are increased from
ten to one hundred and one thousand files. However, when
the numbers of files are increased to ten thousands, more
deduplicators help to increase time saving.

TABLE I. PERCENTAGE OF TIME SAVED USING FIVE AND TEN

DEDUPLICATORS

Number
of files

Upload Update Delete

Five Ten Five Ten Five Ten

10 85.75 90.85 41.78 75.02 93.42 98.68

100 94.20 97.55 61.79 75.34 69.31 90.59

1000 91.40 95.58 63.78 82.09 40.74 85.87

10000 60.10 79.71 75.25 96.17 90.28 90.03

The experimental results are not necessarily surprising.

Adding more deduplicators can help to reduce the processing
time. However, we still need to find out what is the optimal
number of deduplicators to be added into the system
according to the events and the number of files at that time.
Moreover, the results need to be evaluated against static
scheme.

We also perform experiments on the fault tolerance
mechanism, which is the extended component in our
proposed system. The experiment was conducted by
scheduling failure times into our system as described in
section IV, with the simulated failure events being monitored
by the Failure Manager. When failure events are detected,
the files in the failing node are be re-replicated to another
alive node. The value of the Mean Time to Repair (MTTR)
are measured and we used these values to calculate
availability. We carried out 50 experiments for each set of
values, and then get the mean of those results. The
replication level went from 3 to 10. We plot the results from
replica=3 to replica=10 when the number of files from
10,000, 20,000, 50,000 and 100,000 files on Figure 3.

From the results we can see that, the availability of the
system getting higher when the replication level increased.
This is because, if a failure occurs in a node, there are still
more replicas in other nodes which are available. However
when the replication level reach 8, 9, 10, the difference in
availability are not significant. We may need to find out the
balance between the replication level and the availability.

When the number of files increases to 50,000 and

Figure 3: Availability results related to number of

replicas under simulated failure events

100,000, availability values of the same replication level
significantly decreased. This is because as the number of
files in a node increase, the number of replicas also increase.
Then when a node fails, there are more files which need to
be re-replicated. This is considered as a limitation of the
simulation system when it reaches a great load in the system.
This also indicated that we still need to improve our system
and simulation environment. Moreover, the tradeoff between
replication level and availability need to be compared.

VI. FUTURE WORK

A. Performance Evaluation

For future work, we plan to evaluate the performance of
the proposed system. Performance is one of the quality
aspects of a service which represent the speed in which a
request can be completed Performance can be measured in
terms of throughput, response time, execution time, latency
and transaction time. Initially we plan to measure the
response time, which is the time that elapses from when a
node sends a request for a file until it receives the complete
file. This evaluation could be conducted by simulating file
request and transfer events, and measuring the response time
when demand of files is changing. We also consider the
changing of users� demand of files. A component in
redundancy manager will monitor file access activities. If
users� demand for a particular file are suddenly high,
additional copies will be created dynamically at real-time,
and they will be removed when the access rate is back to
normal. We can then calculate the average of response times
for the length of the simulation.

B. Overall Evaluation

The main aim of our research is to improve availability
and performance in cloud storage systems through dynamic
deduplication, and to archive a good balance between storage
efficiency and fault tolerance requirements. In order to
archive this aim we need to balance trade-off between
availability, performance and storage efficiency. Moreover,
our proposed system must be evaluated against an existing
static deduplication scheme, and it must ensure that the
benefit of dynamic deduplication and redundancy is higher
than the cost of them.

VII. CONCLUSION

Cloud storage services provided in cloud computing has
been increasing in popularity. It offers on demand virtualized
storage resources and customers only pay for the space they
actually consumed. As the increasing demand and data store
in the cloud, data deduplication is one of the techniques used
to improve storage efficiency. However, current data
deduplication mechanisms in cloud storage are static
scheme, which limits their full applicability in dynamic
characteristic of data in cloud storage.

In this paper, we propose a fault-tolerant dynamic data
deduplication scheme for cloud storage, in order to fulfill a
balance between changing storage efficiency and fault
tolerance requirements, and also to improve performance in

cloud storage systems. We dynamically change the number
of copies of files according to the changing level of QoS.
The experimental results show that, our proposed system is
performing well when adding more deduplicators and can
handle with scalability problem.

We also perform the experiment in order to evaluate fault
tolerance of the system by measuring Mean Time to Repair
(MTTR), and using these values to calculate availability of
the system. The results show that higher replication level
makes the system higher availability. However the number
of files in the system effect the recovery time, which we need
to figure out the tradeoff between replication level and
recovery time when the system overloads.

We still need to improve our system to achieve lower
recovery time. Because if we try to reduce recovery time or
Mean Time to Repair (MTTR) to be close to zero, then our
system can achieve a higher availability. We also plan to
monitor the changing of users� demand of files. Furthermore,
we plan to evaluate performance of the system and evaluate
our system against a static deduplication system.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S.r Venugopal, "Market-oriented

cloud computing: Vision,hype, and reality for delivering it

services as computing utilities."

[2] N. Leavitt "Is Cloud Really Ready for Prime Time?" Vol 42,

2009

[3] T. G. Peter Mell, "The NIST Definition of Cloud Computing,"

National Institute of Standards and Technology NIST Special

Publication 800-145, September 2011.

[4] SNIA Cloud Storage Initiative, "Implementing, Serving, and

Using Cloud Storage," Whitepaper 2010.

[5] SNIA, "Advanced Deduplication Concepts," 2011.

[6] W. Leesakul, P. Townend, and J. Xu, "Dynamic Data

Deduplication in Cloud Storage," in Service Oriented System

Engineering (SOSE), 2014 IEEE 8th International Symposium

on, 2014, pp. 320-325.

[7] D. Harnik, B. Pinkas, and A. Shulman-Peleg, "Side Channels in

Cloud Services: Deduplication in Cloud Storage," Security &

Privacy, IEEE, vol. 8, pp. 40-47, 2010.

[8] S. Guo-Zi, D. Yu, C. Dan-Wei, and W. Jie, "Data Backup and

Recovery Based on Data De-Duplication," in Artificial

Intelligence and Computational Intelligence (AICI), 2010

International Conference on, 2010, pp. 379-382.

[9] V. Javaraiah, "Backup for cloud and disaster recovery for

consumers and SMBs," in Advanced Networks and

Telecommunication Systems (ANTS), 2011 IEEE 5th

International Conference on, 2011, pp. 1-3.

[10] L. L. You, K. T. Pollack, and D. D. E. Long, "Deep Store: An

Archival Storage System Architecture," presented at the

Proceedings of the 21st International Conference on Data

Engineering, 2005.

[11] T. Yujuan, J. Hong, F. Dan, T. Lei, Y. Zhichao, and Z. Guohui,

"SAM: A Semantic-Aware Multi-tiered Source De-duplication

Framework for Cloud Backup," in Parallel Processing (ICPP),

2010 39th International Conference on, 2010, pp. 614-623.

[12] S. Kumar Bose, S. Brock, R. Skeoch, N. Shaikh, and S. Rao,

"Optimizing live migration of virtual machines across wide area

networks using integrated replication and scheduling," in

Systems Conference (SysCon), 2011 IEEE International, 2011,

pp. 97-102.

[13] S. K. Bose, S. Brock, R. Skeoch, and S. Rao, "CloudSpider:

Combining Replication with Scheduling for Optimizing Live

Migration of Virtual Machines across Wide Area Networks," in

Cluster, Cloud and Grid Computing (CCGrid), 2011 11th

IEEE/ACM International Symposium on, 2011, pp. 13-22.

[14] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani,

"Demystifying data deduplication," presented at the Proceedings

of the ACM/IFIP/USENIX Middleware '08 Conference

Companion, Leuven, Belgium, 2008.

[15] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, "Deploying

and managing Web services: issues, solutions, and directions,"

The VLDB Journal, vol. 17, pp. 537-572, 2008.

[16] B. Philip, L. Grace, and M. Paulo, "Service Level Agreements

in Service-Oriented Architecture Environments," Software

Engineering Institute, Carnegie Mellon University, vol.

CMU/SEI-2008-TN-021, 2008.

[17] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, "Basic

concepts and taxonomy of dependable and secure computing,"

Dependable and Secure Computing, IEEE Transactions on, vol.

1, pp. 11-33, 2004.

[18] Y. Dai, L. Yang, and B. Zhang, "QoS-driven self-healing web

service composition based on performance prediction," J.

Comput. Sci. Technol., vol. 24, pp. 250-261, 2009.

[19] D. Bhagwat, K. Pollack, D. D. E. Long, T. Schwarz, E. L.

Miller, and J. F. Paris, "Providing High Reliability in a

Minimum Redundancy Archival Storage System," in Modeling,

Analysis, and Simulation of Computer and Telecommunication

Systems, 2006. MASCOTS 2006. 14th IEEE International

Symposium on, 2006, pp. 413-421.

[20] F. Yinjin, J. Hong, X. Nong, T. Lei, and L. Fang, "AA-Dedupe:

An Application-Aware Source Deduplication Approach for

Cloud Backup Services in the Personal Computing

Environment," in Cluster Computing (CLUSTER), 2011 IEEE

International Conference on, 2011, pp. 112-120.

[21] T. Yujuan, J. Hong, F. Dan, T. Lei, and Y. Zhichao,

"CABdedupe: A Causality-Based Deduplication Performance

Booster for Cloud Backup Services," in Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International,

2011, pp. 1266-1277.

[22] X. Lei, H. Jian, S. Mkandawire, and J. Hong, "SHHC: A

Scalable Hybrid Hash Cluster for Cloud Backup Services in

Data Centers," in Distributed Computing Systems Workshops

(ICDCSW), 2011 31st International Conference on, 2011, pp.

61-65.

[23] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge,

"Extreme Binning: Scalable, parallel deduplication for chunk-

based file backup," in Modeling, Analysis & Simulation of

Computer and Telecommunication Systems, 2009. MASCOTS

'09. IEEE International Symposium on, 2009, pp. 1-9.

[24] Z. Yang, W. Yongwei, and Y. Guangwen, "Droplet: A

Distributed Solution of Data Deduplication," in Grid Computing

(GRID), 2012 ACM/IEEE 13th International Conference on,

2012, pp. 114-121.

[25] W. Cong, W. Qian, R. Kui, C. Ning, and L. Wenjing, "Toward

Secure and Dependable Storage Services in Cloud Computing,"

Services Computing, IEEE Transactions on, vol. 5, pp. 220-232,

2012.

[26] Y. Kan and J. Xiaohua, "An Efficient and Secure Dynamic

Auditing Protocol for Data Storage in Cloud Computing,"

Parallel and Distributed Systems, IEEE Transactions on, vol.

24, pp. 1717-1726, 2013.

[27] C. Debains, P. A.-T. Togores, and F. Karakusoglu, "Reliability

of Data-Intensive Distributed File System: A Simulation

Approach," 2010.

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,

and R. Buyya, "CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of

resource provisioning algorithms," Software: Practice and

Experience, vol. 41, pp. 23-50, 2011.

[29] G. Candea, A. B. Brown, A. Fox, and D. Patterson, "Recovery-

oriented computing: building multitier dependability,"

Computer, vol. 37, pp. 60-67, 2004.

