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Abstract� Utility computing is an increasingly important 

paradigm, whereby computing resources are provided on-

demand as utilities. An important component of utility 

computing is storage; data volumes are growing rapidly, and 

mechanisms to mitigate this growth need to be developed. Data 

deduplication is a promising technique for drastically reducing 

the amount of data stored in such system systems; however, 

current approaches are static in nature, using an amount of 

redundancy fixed at design time. This is inappropriate for 

truly dynamic modern systems. We propose a real-time 

adaptive deduplication system for Cloud and Utility computing 

that monitors in real-time for changing system, user, and 

environmental behaviour in order to fulfill a balance between 

changing storage efficiency, performance, and fault tolerance 

requirements. We evaluate our system through simulation, 

with experimental results showing that our system is both 

efficient and scalable. We also perform experimentation to 

evaluate the fault tolerance of the system by measuring Mean 

Time to Repair (MTTR), and using these values to calculate 

availability of the system. The results show that higher 

replication levels result in higher system availability; however, 

the number of files in the system also effects recovery time. We 

show that the tradeoff between replication levels and recovery 

time when the system overloads needs further investigation. 

Keywords� Utility Computing; Fault-tolerance; Cloud 

Computing; Cloud storage; Deduplication; Adaptive computing; 

Dependability; 

I.  INTRODUCTION 

In modern day society, utilities such as water, gas, and 
electricity are deemed to be requirements for fulfilling 
routines in daily life. In this context, we define utility as an 
essential service that can be easily obtained by the general 
population. The idea of computing utility was realised as 
early as 1966, where it was envisioned that computing 
networks would mature to reach a point where the idea of 
'computer utilities' was made a reality and worked in similar 
principle to  electrical and telephone utilities; able to 
provision computing service such as computing resources, 
development platforms or applications to consumers.  

The latest paradigm to emerge to realize the vision of 
utility computing provisioned as a service is Cloud 
computing, featuring loosely coupled systems typically 

deployed within datacenters capable of dynamically 
providing computing service and utility to consumers. There 
is currently no standard definition for Cloud computing, but 
there are a number of proposed definitions. A popular 
definition for Cloud computing is taken from the National 
Institute of Standards and Technology (NIST) [1], which 
states that Cloud computing is a model for enabling 
ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources that can be 
rapidly provisioned and released with minimal management 
effort or service provider interaction. Furthermore, Cloud 
computing from an implementation perspective can be 
defined as a �parallel and distributed system consisting of 
interconnected and virtualized computers that are 
dynamically provisioned and presented as one or more 
unified computing resources base on service-level 
agreements established through negotiation between the 
service provider and consumers" [2]. 

The essential characteristics of cloud computing have 
been defined in [3]. Cloud providers pool computing 
resources together to serve customers via a multi-tenant 
model. Computing resources are delivered over the Internet 
where customers can access them through various client 
platforms. Customers can access the resources on-demand at 
any time without human interaction with the cloud provider. 
From a customers� point of view, computing resources are 
infinite, and customer demands can rapidly change to meet 
business objectives. This is facilitated by the ability for cloud 
services to scale resources up and down on demand 
leveraging the power of virtualization. Moreover, cloud 
providers are able to monitor and control the usage of 
resources for each customer for billing purposes, 
optimization resources, capacity planning and other tasks. 

One of the services provided by Cloud computing is that 

of storage � typically this is provided in the form of 

virtualized storage on demand to customers. This can be 

provided to meet a variety of needs [4] including 

archival/backup storage, elastic real-time storage, etc. The 

amount of storage required by cloud users and applications � 

and hence ultimately by providers - is rapidly increasing, 

digital data creation growing by around 50 percent per year. 

Customers expect to reach the on-demand cloud services at 



any time, while providers are required to maintain system 

availability and process a large amount of data. In order to 

meet these challenges in the face of such demand, providers 

are increasingly looking for ways to reduce data storage 

volumes, in order to reduce capital expenditure and energy 

consumption. The concept of data deduplication is becoming 

an increasingly popular method for achieving such savings. 

Data deduplication is a technique whose objective is to 

improve storage efficiency. In traditional deduplication 

systems, incoming data is analysed and compared with data 

already stored in the system � this can be done at either file-

level or block-level (whereby individual �chunks� of data are 

hashed and compared against a central database). Only 

unique data is copied into the target system, with logical 

pointers are created for other copies instead of storing 

redundant data. Deduplication can reduce both storage space 

and network bandwidth [5]. However such techniques can 

result with a negative impact on system fault tolerance; as 

many files could refer to the same data chunk, any fault 

pertaining to the chunk (loss of availability, integrity, etc.) 

will impact all dependent files. Due to this problem, many 

deduplication-based approaches and techniques have been 

proposed to not only provide solutions to achieve storage 

efficiency, but also to improve fault tolerance. These 

techniques provide redundancy of data chunks after 

performing deduplication; this ensures that faults affecting a 

single data chunk will not cause any system failure. 

However, current data deduplication mechanisms in 

cloud storage are static schemes applied agnostically to all 

data scenarios. This is a problem as data scenarios exhibit 

different data characteristics that require different levels of 

fault-tolerance and performance requirements. For example, 

data usage in cloud changes overtime - some data chunks 

may be read frequently in a period of time, but may not be 

used in another periods; similarly, the level of fault-tolerance 

provided will remain the same regardless of changing QoS 

requirements. Due to the drawback of such static schemes, 

which cannot cope with changing user behavior, 

deduplication in cloud storages requires a dynamic scheme 

which has the ability to adapt at real-time to changing access 

patterns and user behavior. 

This paper extends the dynamic deduplication scheme  

for clouds first presented in [6] with a fault-tolerant 

mechanism for cloud storage, creating a dynamic data 

deduplication scheme that adapts in real-time to changing 

requirements for cloud storage, in order to fulfil a balance 

between storage efficiency and fault tolerance. Furthermore, 

we also aim to improve performance in cloud storage 

systems that experience changes in data scenarios and user 

patterns.  The rest of this paper is organized as follows: 

section II presents background concepts and related work; 

section III demonstrates our adaptive system model; section 

IV illustrates our simulation of the proposed system model; 

Section V describes the results of our experimentation. 

Section VI discusses the future work, and section VII 

concludes the paper. 

II. BACKGROUND AND RELATED WORK 

A. Deduplication in Cloud Storages 

Data deduplication is a technique that aims to reduce the 
amount of space used for data storage. This is achieved by 
identifying redundant data using hash values to compare data 
chunks, storing only a fixed number of copies of these 
chunks (typically one), and creating logical pointers to these 
copies instead of storing the redundant data [7], [8]. By 
employing deduplication, data volume is reduced and hence 
disk space and network bandwidth can be reduced, resulting 
in reduced costs and energy consumption for running storage 
systems [5].  

Data deduplication can be applied at nearly every point 
which data is stored or transmitted in cloud storage [5]. 
Many cloud providers offer disaster recovery [9] and 
deduplication can be used to make disaster recovery more 
effective by replicating data after deduplication for speeding 
up replication time and bandwidth cost savings. Backup and 
archival storage in clouds can also apply data deduplication 
in order to reduce physical capacity and network traffic [10], 
[11]. Moreover, in the live migration process, there is a need 
to transfer a large volume of duplicated memory image data 
[12]. There are three major performance metrics of migration 
to consider: total data transferred, total migration time and 
service downtime. Longer migration time and downtime 
would be lead to service failure � therefore, deduplication 
can assist in migration [13]. Deduplication can be used to 
reduce storage of active data such as virtual machine images. 
Factors to consider when using deduplication in primary 
storage is how to balance the trade-offs between storage 
space saving and performance impact [14]. Additionally, 
Mandagere, et al., [14] state that deduplication algorithms 
reflect the performance of deduplicated storage in terms of 
fold factor, reconstruction bandwidth, metadata overhead, 
and resource usage. However, the mechanisms employed in 
this work are static, and do not consider the need of Cloud-
based systems to adapt in real-time to changing behaviours 
and circumstances, in particular with regard to Quality of 
Service. 

B. Quality of Service 

In the context of cloud storage services, QoS properties 
refer to non-functional aspects or quality aspects of the 
services, such as performance, reliability, scalability, 
availability and security,  which could be used as a 
differentiating point in the preference of customers [15]. QoS 
is typically defined in a Service-Level Agreement, and the 
QoS aspects that we will take into consideration in our work 
are availability and performance. 

A Service Level Agreement is part of the contract 
between the service consumer and service provider and 
formally defines the level of service [16], whilst availability 
is one of the attributes of dependable system [17], and also a 
quality aspect of a service. Availability is probability that the 
system is ready to be used. The service should be available 
when it is invoked. Performance is one of the quality aspects 
of a service which represent the speed in which a request can 
be completed Performance can be measured in terms of 



throughput, response time, execution time, latency and 
transaction time. Initially we will measure the response time, 
which is the time that elapses from when a node sends a 
request for a file until it receives the complete file [18]. 

C. Dependability Issues 

When performing deduplication, a portion of data chunks 
may be much more important than others (for example, data 
chunks that are referenced by many files may have more 
business value than those referenced by few files). 
Traditional deduplication approaches do not implement 
redundancy of data chunks; this means that deduplication 
may reduce the reliability of a storage system, as the loss of a 
few important chunks can lead to a loss of integrity in many 
files. As a result, critical chunks should be replicated more 
than the less important data chunks in order to improve 
reliability of the system. The authors in [19], consider the 
effects of deduplication on the reliability of the archival 
system. They proposed an approach to improve reliability by 
developing a method to weigh and measure the importance 
of each chunk by examining the number of data files that 
share the chunk, and use this weight to identify the level of 
redundancy required for the chunk to guarantee QoS. 
However, this again is a static approach, with no capability 
to adapt in real-time to changes in the system environment. 

D. Related Work  

We now examine the existing work performed on system 
architectures of deduplication for cloud backup services such 
as SAM [11], AA-Dedupe [20], CABdedupe [21], and 
SHHC [22].  

The SAM [11] system architecture is composed of three 
subsystems: File Agent, Master Server and Storage Server. 
Clients subscribe to backup services, then File Agents are 
distributed and installed on their machines, while the service 
provider provides the Master Server and Storage Server in its 
data-centre to serve backup requests from clients. 

Most of the existing solutions that use deduplication 
technology primarily focus on the reduction of backup time 
while ignoring restoration time. The authors of CABdedupe 
[21] propose a performance booster for both cloud backup 
and cloud restore operations, through middleware that is 
orthogonal and can be integrated into any existing backup 
system. CABdedupe consists of CAB-Client and CAB-
Server, which is placed on the original client and server 
modules in existing backup systems. 

The main aim of these related works are the following: 
SAM aims to achieve an optimal trade-off between 
deduplication efficiency and deduplication overhead, 
CABdedupe reduces both backup time and restoration time. 
AA-Dedupe [20] aims to reduce the computational overhead, 
increase throughput and transfer efficiency, while SHHC 
[22] tries to improve fingerprint storage and lookup 
mechanism, however has a concern of scalability. SHHC is a 
novel Scalable Hybrid Hash Cluster designed for improving 
response times to fingerprint lookup process. Because of a 
large number of simultaneous requests are expected in cloud 
backup services. In order to solve this problem, the hash 
cluster is designed for high load-balancing, scalability and 

minimizing the cost for each fingerprint lookup query. The 
hash cluster is designed as middleware between the clients 
and the cloud storage. It provides the fingerprint storage and 
lookup service. 

There are other works on deduplication storages whose 
architectures are designed for the scalability issue, for 
example; Extreme Binning [23], and Droplet [24]. 

Extreme Binning is used to build a distributed file backup 
system. The architecture of such a system is composed of 
several backup nodes. Each backup node consists of a 
compute core and RAM along with a dedicated attached 
disk.  The first task when a file arrives to the system for 
backup is, it must be chunked. The system can delegate this 
task to any one of the backup nodes by choosing one 
according to the system load at that time. After chunking, 
stateless routing algorithm is used to route the chunked file 
by using its chunk ID. The chunked file will be routed to a 
backup node where it will be deduplicated and stored. 

Droplet is a distributed deduplication storage system 
designed for high throughput and scalability. It consists of 
three components: a single meta server that monitors the 
entire system status, multiple fingerprinting servers that run 
deduplication on input data stream, and multiple storage 
nodes that store fingerprint index and deduplicated data 
blocks. The meta server maintains information of 
fingerprinting and storage servers in the system. When new 
nodes are added into the system, they need to be registered 
on the meta server first. The meta server provides a routing 
service with this information. The client first connects to the 
meta server and queries for list of fingerprinting servers, and 
then connects to one of them. After this, a raw data stream 
containing backup content will be sent to this fingerprinting 
server, which calculates data block fingerprints and replies 
results to the client. Fingerprint servers check duplicated 
fingerprint by querying storage servers. 

 The limitation of all of these mechanisms when applied 
to the Cloud computing paradigm is that the nature of data in 
cloud storage is dynamic [25], [26]. For example, data usage 
in cloud changes overtime, some data chunks may be read 
frequently in period of time, but may not be used in another 
time period. Some datasets may be frequently accessed or 
updated by multiple users at the same time, while others may 
need the high level of redundancy for reliability requirement. 
In order to adequately address the needs of Cloud users and 
providers, it is crucial to support this dynamicity; this 
requires an architecture and mechanism for monitoring the 
real-time behaviours of the Cloud system and adapting 
dynamically to changing needs. The following section 
introduces the system model for our proposed dynamic 
Cloud deduplication system. 

III. SYSTEM MODEL FOR ADAPTIVE DEDUPLICATION 

A. Overall Architecture 

The work presented in this paper builds on the dynamic 
deduplication system first presented in [6]. The system 
model for this work is shown in figure 1, and features a 
client-side deduplication using whole file hashing. The 
hashing process of our scheme is performed on the client-



side, and connects to one of a number of Deduplicator 
components, based on current system load (the number of 
these components is arbitrary and scaleable). The 
deduplicator component used then identifies duplication in 
the client�s file by calculating a hash of the file and 
comparing this with existing hash values stored in the 
Metadata Server. In traditional deduplication systems, if it is 
a new hash value, it will be recorded in metadata server, and 
the file will be uploaded to File Servers, its logical path will 
also recorded in metadata server. If the hash value is already 
contained in the database, the number of references for the 
file will be increased. 

Some systems may keep a static number of copies of 
each file (or data chunk); however, as the system 
environment changes � for example, data chunks that are 
referenced by a large number of files - more replicas may be 
necessary to avoid late timing faults and thus ensure 
appropriate QoS is maintained. To solve this issue, some 
existing works introduce a level of redundancy into 
deduplication systems - however, in addition to their lack of 
dynamism, identifying a correct level of redundancy by the 
number of references to a data chunk is a poor measurement 
because files with fewer references may be critical files. 

In our system model, after identifying the duplication, the 
Redundancy Manager then calculates an optimal number of 
copies for the file based on its number of references and 
level of QoS necessary, as associated with the policy defined 
in the SLA Manager.  

The numbers of copies of deduplicated data are 
dynamically changed at run-time based on the changing 
number of references, level of QoS and demand for the files. 
The changes are monitored, for example, when a file is 
deleted by a user, or the level of QoS of the file has been 
updated, this will trigger the redundancy manager to re-
calculate an optimal number of copies. 

In order to address fault-tolerance issue, apply the re-
replication function from HDFS simulator [27] to Failure 
Manager, the new component in our simulation system. This 
function provides failure monitoring and detection tools 
including failure recovery process. Our proposed system 
model as shown in figure 1 is further composed of: 

• Load Balancer: after hashing the process with SHA-
1, clients send a fingerprint (hash value) to a 
deduplicator via the load balancer. The load balancer 
responds to requests from clients, sending to any one 
of the deduplicators according to their loads at that 
time. 

• Deduplicators: a component designed for identifying 
the duplication by comparing with the existing hash 
values stored in metadata server. 

• Cloud Storage: a Metadata Server to store metadata, 
and a number of File Servers to store actual files and 
their copies. 

• Redundancy Manager: a component to identify the 
initial number of copies according to the level of QoS 
and the policy defined in SLA Manager, and monitor 
the changing level of QoS. 

• SLA Manager: a component defines the level of 
service policy. 

• Failure Manager: a component to monitor and detect 
failure and recover failure. 

 

IV. SIMULATION ENVIRONMENT 

In order to test the effectiveness of this scheme, we 
conducted a number of simulation-based experiments. 
CloudSim [28] and HDFS Simulator [27] are both Java-
based toolkits that have different purposes for simulation. 
CloudSim is used for modelling and simulating cloud 
computing environments and infrastructure, and is intended 
to be used for experimenting with various scheduling and 
allocation algorithms, while HDFS Simulator is a simulation 
of the replication mechanism in the Hadoop Distributed File 
System, popularly used in Cloud Storage systems. 

Although CloudSim provides some storage related 
classes which can be extended, the existing architecture is 
not yet mature, and requires an additional module which 
supports simulation of cloud storage in order to evaluate new 
replication management strategies. Therefore, HDFS 
Simulator is more applicable to our work, as it already 
provides replication mechanisms. Although the replication 
degree of these mechanisms is pre-defined to be a static 
value, it is possible modify the source code in order to 

Load Balancer

Client
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Manager
SLA Manager

Redundancy 

Manager

Metadata server

File server File serverFile server

Cloud Storage

Deduplicator Deduplicator Deduplicator
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Figure 1: The System Model for our Adaptive Real-Time 
Deduplicator for Cloud Systems 



introduce replication dynamicity. Moreover, we can perform 
experiments by simulating events like changing the level of 
Quality of Service. The concepts of HDFS Simulation have 
been adapted to simulate our proposed system model. We 

create one Namenode as Metadata server, and five 

Datanodes as File servers. Metadata in XML format is 
kept in the metadata server, and File servers store the copies 
of files.  

We simulate three file system events: upload, update, and 
delete. The upload event is when the file is first uploaded to 
the system. If files already exist in the system, and have been 
uploaded again, the number of copies of the files will be 
recalculated according to the highest level of QoS, this is for 
an update event. For a delete file event, users can delete their 
files, but the files will not permanently deleted from the 
system if there are any other users refer to the same files. All 
three events cause the system to monitor the current set of 
QoS requirements in the system, and cause the system to 
adapt in real-time to the changing requirements. 

A. Upload 

When uploading files, the deduplicator requests a hash 
value of the uploaded file from a client, and then checks for 
any duplicates with the same existing hash value in the 
metadata server. If it is a new file, the new metadata of the 
file will be added to the system and the file will be uploaded 
to the file server. The replicas of the file will be created 
according to the level of QoS of the upload file. 

B. Update 

In the case of an existing file, the metadata of the file will 
be updated to reflect a new reference being added, and the 
system may need to create or delete the replicas of the file 
according to the maximum value of QoS of the file.  

C. Delete 

The deduplicator checks the number of files which refer 
to the same hash value the user wants to delete. If there is 
only one reference to the hash, all replicas of the file will be 
deleted. On the other hand if there are any other files that 
refer to the hash, only the metadata will be updated, and the 
number of replicas of the file may need to decrease 
according to the maximum value of QoS. 

 
In order to evaluate availability of our proposed system, 

we also simulated failure events by applying an experiment 
from the HDFS simulator [27]. We generated a simulation 
file to be used as a failure scheduler; the failure scheduler 
defined the scheduled failing times. Mean Time to Failure 
(MTTF) was chosen to be 3 seconds. Then we used this 
failure scheduler to simulate failure events to our system. 
These events are monitored, detected, and recovered by the 
Failure Manager component. From the simulation of failure 
monitoring, detection, and recovery, we can measure the 
values of Mean Time to Repair, and use these values to 
calculate availability according to the formula [29] presented 
in (1): 

 Availability = MTTF / (MTTF+MTTR) (1) 

V. EXPERIMENTAL RESULTS 

Based on the discussed events, we performed a number 
of experiments on the simulation of our proposed model. The 
experiments were performed using one, five, and ten 
deduplicators respectively. 

All the files used in the experiments were created with 
stochastic contents and properties. There are various sizes of 

files used in this experiment: 100 KB, 150 KB, 200 KB, 250 
KB, 300 KB, 500 KB, 800, 1 MB, 2 MB. We tested upload, 
update, and delete events on ten files, a hundred files, a 
thousand files, and ten thousand files respectively. For 
testing the changing level of QoS, each file was randomly 
assigned a level of QoS between 1 and 5; this mapped to the 
required level of redundancy of each file. Files with higher 
level of QoS will be replicated more than the lower ones.  

 
 

 
 

 
 

Figure 2: Experimental results 



When a single deduplicator was used, the system faced 
scalability problems, taking a longer time when the number 
of files increased as shown in Figure 2. This is because under 
the heavy load with more requests and more users, a single 
deduplicator cannot maintain the performance of the system. 
When the number of deduplicators is increased to five and 
ten, the results show that it helps to reduce the processing 
time.  

For uploads, when all the files have been uploaded to the 
system for the first time, we compared the time taken from 
one deduplicator to five and ten deduplicators. Adding more 
deduplicators when the number of upload files increase, 
could help to reduce the processing time. The results show in 
Table I. 

When the numbers of upload files are ten and a hundred 
files, using five deduplicators can reduce 85.75% and 
94.20% of the processing time taken by one deduplicator, 
while ten deduplicators can save more time at 90.85% and 
97.55%. When the number of upload files has been increased 
to a thousand files, five and ten deduplicators can still help to 
reduce the processing time but they are decreased to 91.40% 
and 95.58% respectively. However, time saving significantly 
decrease when the number of upload files are increased to 
ten thousands as five and ten deduplicators can reduce 
60.10% and  79.71% of processing time. 

When files have already have been uploaded to the 
system, we perform experiments for the case when there is a 
changing level of QoS, which means the number of copies of 
files in the system could be changed according to the 
maximum value of QoS. The results of update files show that 
when the number of files increase, adding more 
deduplicators can help to reduce the processing time. When 
the numbers of files are ten, a hundred files, one thousand 
and ten thousands files, using five deduplicators can reduce 
41.78% and 61.79%, 63.78% and 75.25% of the processing 
time taken by one deduplicator, while ten deduplicators can 
save more time at 75.02%, 75.34%, 82.09% and 96.17%. We 
found that, when the numbers of files are ten, one hundred 
and one thousand, time saving by adding more deduplicators 
are less than time saving for the upload cases. However, 
when the numbers of files are increased to one thousand and 
ten thousands files, the time saving by five and ten 
deduplicators still increase, in contrast to the upload cases. 

We perform experiments to delete files. Adding more 
deduplicators can also to reduce the processing time, but the 
results of delete files are slightly different from the upload 
and update cases. The results show that when the numbers of 
files are ten, a hundred files, one thousand and ten thousands 
files, using five deduplicators can reduce 93.42% and 
69.31%, 40.74% and 90.28% of the processing time taken by 
one deduplicator, while ten deduplicators can save more time 
at 98.68%, 90.59%, 85.87% and 90.03%. We can see that, 
for the delete case, time saving by adding more deduplicators 
are decreased when the numbers of files are increased from 
ten to one hundred and one thousand files. However, when 
the numbers of files are increased to ten thousands, more 
deduplicators help to increase time saving. 

TABLE I.  PERCENTAGE OF TIME SAVED USING FIVE AND TEN 

DEDUPLICATORS 

Number 
of files 

Upload Update Delete 

Five Ten Five Ten Five Ten 

10 85.75 90.85 41.78 75.02 93.42 98.68 

100 94.20 97.55 61.79 75.34 69.31 90.59 

1000 91.40 95.58 63.78 82.09 40.74 85.87 

10000 60.10 79.71 75.25 96.17 90.28 90.03 

 
The experimental results are not necessarily surprising. 

Adding more deduplicators can help to reduce the processing 
time. However, we still need to find out what is the optimal 
number of deduplicators to be added into the system 
according to the events and the number of files at that time. 
Moreover, the results need to be evaluated against static 
scheme.  

We also perform experiments on the fault tolerance 
mechanism, which is the extended component in our 
proposed system. The experiment was conducted by 
scheduling failure times into our system as described in 
section IV, with the simulated failure events being monitored 
by the Failure Manager. When failure events are detected, 
the files in the failing node are be re-replicated to another 
alive node. The value of the Mean Time to Repair (MTTR) 
are measured and we used these values to calculate 
availability. We carried out 50 experiments for each set of 
values, and then get the mean of those results. The 
replication level went from 3 to 10. We plot the results from 
replica=3 to replica=10 when the number of files from 
10,000, 20,000, 50,000 and 100,000 files on Figure 3. 

From the results we can see that, the availability of the 
system getting higher when the replication level increased. 
This is because, if a failure occurs in a node, there are still 
more replicas in other nodes which are available. However 
when the replication level reach 8, 9, 10, the difference in 
availability are not significant. We may need to find out the 
balance between the replication level and the availability. 

When the number of files increases to 50,000 and 

 

 
Figure 3: Availability results related to number of 

replicas under simulated failure events 

 



100,000, availability values of the same replication level 
significantly decreased. This is because as the number of 
files in a node increase, the number of replicas also increase. 
Then when a node fails, there are more files which need to 
be re-replicated. This is considered as a limitation of the 
simulation system when it reaches a great load in the system. 
This also indicated that we still need to improve our system 
and simulation environment. Moreover, the tradeoff between 
replication level and availability need to be compared. 

 

VI. FUTURE WORK 

A. Performance Evaluation 

For future work, we plan to evaluate the performance of 
the proposed system. Performance is one of the quality 
aspects of a service which represent the speed in which a 
request can be completed Performance can be measured in 
terms of throughput, response time, execution time, latency 
and transaction time. Initially we plan to measure the 
response time, which is the time that elapses from when a 
node sends a request for a file until it receives the complete 
file. This evaluation could be conducted by simulating file 
request and transfer events, and measuring the response time 
when demand of files is changing. We also consider the 
changing of users� demand of files. A component in 
redundancy manager will monitor file access activities. If 
users� demand for a particular file are suddenly high, 
additional copies will be created dynamically at real-time, 
and they will be removed when the access rate is back to 
normal. We can then calculate the average of response times 
for the length of the simulation. 

B. Overall Evaluation 

The main aim of our research is to improve availability 
and performance in cloud storage systems through dynamic 
deduplication, and to archive a good balance between storage 
efficiency and fault tolerance requirements. In order to 
archive this aim we need to balance trade-off between 
availability, performance and storage efficiency. Moreover, 
our proposed system must be evaluated against an existing 
static deduplication scheme, and it must ensure that the 
benefit of dynamic deduplication and redundancy is higher 
than the cost of them. 

VII. CONCLUSION 

Cloud storage services provided in cloud computing has 
been increasing in popularity. It offers on demand virtualized 
storage resources and customers only pay for the space they 
actually consumed. As the increasing demand and data store 
in the cloud, data deduplication is one of the techniques used 
to improve storage efficiency. However, current data 
deduplication mechanisms in cloud storage are static 
scheme, which limits their full applicability in dynamic 
characteristic of data in cloud storage. 

In this paper, we propose a fault-tolerant dynamic data 
deduplication scheme for cloud storage, in order to fulfill a 
balance between changing storage efficiency and fault 
tolerance requirements, and also to improve performance in 

cloud storage systems. We dynamically change the number 
of copies of files according to the changing level of QoS. 
The experimental results show that, our proposed system is 
performing well when adding more deduplicators and can 
handle with scalability problem.  

We also perform the experiment in order to evaluate fault 
tolerance of the system by measuring Mean Time to Repair 
(MTTR), and using these values to calculate availability of 
the system. The results show that higher replication level 
makes the system higher availability. However the number 
of files in the system effect the recovery time, which we need 
to figure out the tradeoff between replication level and 
recovery time when the system overloads. 

We still need to improve our system to achieve lower 
recovery time. Because if we try to reduce recovery time or 
Mean Time to Repair (MTTR) to be close to zero, then our 
system can achieve a higher availability. We also plan to 
monitor the changing of users� demand of files. Furthermore, 
we plan to evaluate performance of the system and evaluate 
our system against a static deduplication system. 
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