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Abstract

This paper uses random-coefficient models and (a) finds rankings of who are the best formula 1 (F1)
drivers of all time, conditional on team performance; (b) quantifies how much teams and drivers
matter; and (c) quantifies how team and driver effects vary over time and under different racing
conditions. The points scored by drivers in a race (standardised across seasons and Normalised) is
used as the response variable in a cross-classified multilevel model that partitions variance into
team, team-year and driver levels. These effects are then allowed to vary by year, track type and
weather conditions using complex variance functions. Juan Manuel Fangio is found to be the
greatest driver of all time. Team effects are shown to be more important than driver effects (and
increasingly so over time), although their importance may be reduced in wet weather and on street
tracks. A sensitivity analysis was undertaken with various forms of the dependent variable; this did
not lead to substantively different conclusions. We argue that the approach can be applied more
widely across the social sciences, to examine individual and team performance under changing

conditions.
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1 Introduction

Formula 1 (F1) is a sport of genuine global appeal. Established in 1950, F1 has also grown into a huge
business enterprise, with sponsorship and commercialism drawn to the sport by the 527 million
television viewers from 187 different countries (in 2010). After the Football World Cup and the
Summer Olympic Games, it is the largest sporting event in terms of television audience (Judde,

Booth, and Brooks 2013).

Many of the F1 teams that compete employ statistical analysts to analyse race results; however
these are in general kept undisclosed so that teams are able to keep any tactical advantages these
analyses offer to themselves. As such, there are only a handful of papers in the public domain that
have done systematic statistical analysis of F1 race results, and these are focused on the question of
who is the best driver, and do not consider the question of how much teams and drivers matter in
different contexts. However, the large fan base ensures that there is a plethora of publicly available

data on F1 race results online, and the potential for statistical analysis of these data is large.

This paper uses cross-classified multilevel models to produce a more complete picture of what
influences performance in F1 races. As well as producing rankings of F1 drivers that control for the
influence of teams, the models are able to partition variance to see the extent to which teams and
drivers matter. The key methodological innovation of this paper is the use of complex variance
functions, in which the variance depends on predictor variables, to see how team and driver
influences have changed over time, and differ by different driving conditions, as well as to see how
driver rankings vary by these conditions. Such an approach has potential application beyond F1 as
the methodology is applicable in subject areas throughout the social sciences and beyond, such as

when examining changing team and individual performance in firms.



2 Formula1

The academic literature surrounding Formula 1 is relatively limited. However that literature is cross-
disciplinary, involving, for example, computational simulations of race results (Loiacono et al. 2010,
Bekker and Lotz 2009), economic approaches that consider the importance of, and adaptability of,
F1 teams as firms (Jenkins 2010, Jenkins and Floyd 2001), knowledge transfer between teams
(Jenkins & Tallman, 2015) analyses of car design over time from an engineering perspective (Dominy
and Dominy 1984, Dominy 1992), analyses of specific tracks (Alnaser et al. 2006) and their impacts
on tourism (Henderson et al. 2010), and historical approaches to the sport (Hassan 2012). There
have been a few statistical analyses of race results, although these are often limited to a few races or

seasons (Bekker and Lotz 2009, Muehlbauer 2010).

2.1 Who is the best driver?

As far as we are aware, there are only two studies that have analysed data on F1 over the entirety of
its history, and in both cases the aim of the studies was to find out which driver, controlling for the
team that they drive for, is the greatest of all time. Whilst there are many examples of experts
attempting to form all-time rankings of F1 drivers, these are almost exclusively based on subjective
professional judgement and not statistical analysis. Given the differences in the cars driven by
different drivers in different teams, the question of who is the best driver is a controversial one:

being able to consistently win in the best car is not necessarily enough.

Eichenberger and Stadelmann (2009) consider finishing position as the dependent variable, control
for team-years using dummy variables in a standard OLS-estimated single-level regression, and also
control for a range of other variables relating to both drivers and the racing conditions. The results
are for the most part intuitive: Juan Manuel Fangio comes out as the best driver, with other highly

regarded drivers (Jim Clark, Michael Schumacher, Jackie Stewart, Alain Prost, Fernando Alonso) in



the top ten. However according to Phillips (2014), there are some unexpected results in these

rankings, in particular noting Mike Hawthorn coming surprisingly high at number five.

Phillips argues that this unexpected result is caused by the use of finishing position as the dependent
variable, and prefers the use of (adjusted) points scored as an appropriate measure, since he argues
this is a better measure of achievement in F1; the season average of these scores is used in the
analysis. Like Eichenberger and Stadelmann, Phillips controls for teams. He additionally controls for
competition effects (such that drivers are penalised in the ranking for appearing in less competitive
seasons) and, for driver withdrawals, separates driver faults and technical faults, to ensure drivers
are not penalised for team errors. His rankings are based on drivers’ 3-year (or 5-year) peak
performance (rather than their whole career). For Phillips’ rankings, it is Jim Clark who comes out
top; Stewart, Schumacher, Fangio and Alonso make up the rest of the top 5. However these results
also throw up a few surprises; for example James Hunt is ranked at number six (Phillips argues that

Hunt is indeed underrated by experts).

In sum, these two previous analyses have shown many consistencies, with drivers regarded as
‘greats’ by experts coming out at the top. However, different decisions regarding model specification
lead to different results, and both the above analyses produce some results that one might consider
surprising. This is not to doubt the validity of those results — simply to state that if you ask slightly
different questions, by defining rankings differently, you are likely to get slightly different results. We
discuss some of these modelling decisions, in the context of our own modelling strategy, in the

methods section below.

2.2 How much do teams, and drivers, matter?

Formula 1 is an unusual sport in that it is a hybrid of both a competition for individual drivers, and a
competition between teams. Thus, each season there is both a drivers’ and a constructors’

championship, with both considered important by F1 fans. Often drivers will move between teams,



and teams will change (in the technologies they use, the staff involved in designing and developing
the car and race strategies, the physical components of the car, and in the drivers that make up the
team) year on year. The question of whether teams or drivers are most important to formula 1 race
results is of great interest to many; however this question has been quantitatively assessed briefly
only once (Phillips, 2014:267) as far as we are aware. Yet because there is a relatively large amount
of movement of drivers between teams, the question can be answered with appropriate statistical

techniques that can model this complexity.

Certainly, there are reasons why some teams should in general outperform others. Certain teams
have more funds, are able to employ the best engineers, statisticians and tacticians, and use more
advanced technology than other teams. For example, the Williams cars that were so successful in
the mid-1990s included computerised driver aids; Brawn GP in 2009 used double diffuser
technology, which gave them an advantage and led Jenson Button to win the championship despite
having won only one race in the nine previous years of his career. As well as these specific
innovations, team/car performance will depend on “factors such as aerodynamic efficiency, brakes,
engines, gearbox, fuel, and more recently kinetic energy recovery systems”, which change between

teams and year on year (Horlock 2009:4).

Experts generally agree that the team matters more than the driver, although the extent to which
this is true is hotly debated. Driver Nico Rosberg has stated the respective contributions to be 80%
teams and 20% drivers (Spurgeon 2009). Others have argued that only the best drivers are really
capable of making a difference in F1 races, with Allen (2000) giving Michael Schumacher as an
example of this. A key contribution of this paper is to statistically evaluate the extent to which teams

and drivers matter.



2.3 Teams and drivers over time

Having said this, it seems likely that the importance of teams and the importance of drivers would
change as technologies develop. On one hand, technological developments mean that highly
advanced cars can really stand out; if so, the team effect becomes greater because the best funded,
most prestigious teams will be able to apply those technological advancements better. On the other
hand, there has been an increase in regulation that means car design is becoming increasingly
homogenised (Dominy 1992). If cars are all similar, there is little that teams can do to differentiate

themselves, apart from with superior tactics and employ better drivers.

2.4 Teams and drivers in different places

As well as changing over time, it is possible that the effects of teams, and drivers, could be different
on different race tracks. Tracks vary between street and temporary tracks, which often contain a
large number of corners, and purpose-built permanent circuits that often have fewer turns. Different
tracks can suit a particular driver’s style. However, the same can be said in regard to track suitability
for different cars; for example, in 2011, the Red Bull car had unmatchable downforce (meaning it can
carry a higher level of speed through corners) while Mercedes powered engines offered greater
straight-line speed (Allen 2011). Thus, one might expect the Mercedes car to have performed better

on permanent circuits, and Red Bull better on street circuits.

In basic terms, driver performance comes down to the ability to overtake one’s rivals, aided in
recent years by Kinetic Energy Recovery Systems and Drag Reduction Systems. Generally speaking
this is most easily done on long straight stretches of track, because the overtaking car can benefit
from slipstreaming behind the car in front. One might expect, therefore, that drivers might matter
more on more sinuous tracks where the opportunities to overtake are reduced and so only the best

drivers are able to successfully attempt overtaking manoeuvres. Indeed, many judge the Monte



Carlo circuit in Monaco (a street circuit) to be the greatest test of a driver’s skill in F1, with the best

drivers, rather than the best cars, being rewarded (Collings and Edworthy 2004).

2.5 Teams and drivers in different weather conditions

The final factor considered here that may affect the importance of teams and drivers are the
weather conditions in a particular race. F1 teams spend large amounts on weather forecasting and
meteorologists, in order to predict weather minute-to-minute and thus make strategic decisions on
how to deal with weather conditions. In theory, therefore, the best teams will make the best
strategic decisions, which could increase the team’s role in performance. However, because rain
reduces the grip that cars can maintain, the ability of a driver to handle the car becomes increasingly
important, and drivers are more likely to make mistakes (Spurgeon 2011). Indeed, certain drivers,
such as Ayrton Senna, Michael Schumacher and Lewis Hamilton, are noted by experts for their
abilities in wet weather, although in some cases this is based on a few outstanding notable
performances rather than a more general trend. Overall, we might expect rain to introduce
additional unpredictability into races, with even the best teams and drivers more prone to making

mistakes.

3 Methodology

In sum, this paper is looking to answer three inter-related questions: who are the greatest F1 drivers
of all time, how much do teams and drivers matter, and how much does the latter change over time,

on different tracks, and in different weather conditions.

These questions can be answered thanks to the multilevel structure that is inherent to F1 race
results data. Specifically, each observed race result can be nested within a driver, a team-year, and a
team. This is not a strict hierarchical structure: since drivers move between teams over their careers,

and teams contain multiple drivers, the levels cannot be hierarchically nested. Instead, it is a cross-



classified structure. The variables used in the modelling are summarised in Table 1; these come from
two online sources’, and incorporate all 905 F1 races (excluding Indianapolis 500 races) between

1950 and 2014.
[Table 1 about here]

The dependent variable Points; is the points scored by a driver in a race. Following Phillips (2014),
we deploy for all the races the points scheme used between 1991 and 2002 (10 points for 1%, 6 for
2™ and then 4 to 1 points for 3 to 6"), and use fractional points for lower positions - (0.1%)*p-6
where p is the finishing position. Where drivers do not finish a race, they are still ranked on the basis
of when they dropped out of the race (with the first to drop out being in last place). A basic, null

model can be expressed algebraically as:
Rankit(POints)i = ﬁO + Upriver T Vream T Wreamyear 1 €;
Upriver~N (0, 0-13)
Vream~N(0,07)
Wreamyear~N (0, 0)
e;~N(0,0%)
(1)
Such that 62, 62 and 02 summarise the between-driver, between-team and between-team-year’

variance respectively, and g2 summarises the within-race variance net of driver, team and team-

year characteristics.> The model assumes Normality of the random effects and we have therefore

1|www.race—database.com|and|www.fl—facts.com/stats] All data was available from these sites as of February
2015.

2 Alternatively, the team-year residuals can be thought of a random draw from a distribution with a mean
value of the team residual

* One could additionally include a driver-year level in this model, to assess the extent to which drivers vary
across their career. With our data, whilst this led to a modest improvement in the model according to the
Deviance Information Criterion (DIC), a penalized measure of badness of fit (Spiegelhalter, Best, Carlin, & van
der Linde, 2002). The model took a long time for the driver-year variance parameter to converge (with a

9
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used the Rankits of the points which are the expected Normal order statistics of the form that are
used in a Normal probability plot (Chambers, Cleveland, Kleiner, & Tukey, 1983). The nature of the

response variable is considered on more detail below.

3.1 Finding driver rankings

In the model the normalized points scored by an entrant is allowed to vary by drivers, teams, and
team-years, and their respective variances (g2, o2, and ¢2) are estimated and assumed to be

Normally distributed. The driver-level residuals, ©p; e, can be ranked and thus represent a rank of

driver ability, controlling for team and team-year.

The advantage of this approach is that any variance is automatically partitioned into the respective
levels, and there is no need to control for many variables in order to achieve appropriate rankings.
Thus, and contrary to Phillips (2014), we do not need to treat driver failures and team/car failures
differently — the model will automatically apportion the latter into the team or team-year levels and
so they will not unfairly penalise a driver who suffers such failures. In contrast, a driver that makes a
large number of mistakes (whilst his team mate does not) will be penalised (see section 3.3.3 for

more on this).

Having said this, there are a number of ways in which points scored can be affected that is not a
result of teams / team years, but that should also not penalise drivers. First, where there are fewer
drivers in a race, the average points scored will be higher, meaning drivers who generally compete
against fewer people will tend to get more points despite not necessarily being better drivers.
Second, drivers who are competing against better drivers will tend to perform worse than those
competing against worse drivers. Thus we add two predictor variables to the fixed part of the model

to take account of these concerns. For the former, we control for the number of drivers in a given

relatively low ESS score even after 500,000 iterations), and the modal estimate for that variance was zero,
suggesting there is little or no variation at the driver-year level. Moreover, the driver rankings were identical to
the model without the driver-year level included.

10



race (Ndrivers;). For the latter, we take each driver’'s mean finishing position (divided by the
number of drivers in their races) across their career, and average these by race occasions, and use
this to control for the competitiveness of the race (Compi)“. Thus the fixed part of equation 1 can be

extended to:

Rankit(Points); = Py + BiNdrivers; + f,Comp; + Upriver + VTeam + Wreamyear T €i

(2)

Here, we would expect [; to be negative (given that every additional driver will decrease the
average points scored), and f3, to be positive (since racing against drivers that usually perform well
should reduce the points scored by a driver). However, these values are not for the most part of
substantive interest; the important thing is that they are controlled for when extracting the driver-

level residuals Up,iper- The random part of the model remains as in equation 1.

3.2 Driver, Team and Team-Year variance functions

As well as uncovering the driver level residuals, the estimated variances for the team, team-year and
driver residuals allow us to compare the effects of each: that is, to see which of teams, team-years
and drivers matter the most. For this we only consider data from 1979 onwards. The reason for this
is that, prior to this date, the team-structure of F1 was less clearly defined: for example, wealthy
drivers would enter their car in just a few races because the costs and regulations required to do so
were not as prohibitive as they were/are in later years. Many teams and drivers only competed in
one race. It is thus much more difficult to define the team level, since teams did not always function
in the same way that they do today. Given this, and our primary interest in team and driver effects in

the modern sport, only the more recent post-1979 data were used in order to delineate between

* Note that Comp; is a variable measured at the ‘race occasion’ level. We do not include race occasion as a
random effect because there is not enough variation in it to make it’s variance significant (the only source of
variation is the number of drivers, which is entirely controlled out by Ndrivers;. The Comp; variable is
problematic in that it uses response data to form it. However, given this variable is a control, rather than being
of primary interest in itself, this method of constructing the variable seems appropriate.

11



team and team-year variance, where the former represents consistent team effects that persist over
the years, and the latter represents within-team fluctuations where teams perform particularly well
or badly in a particular year. Other than the reduction in data, the model used is exactly the same as

that in equation 2.

This model is further extended to include other variables: year, weather, and track type. In order to
keep the models relatively simple and to avoid convergence issues, these variables were included in
the model individually in separate models. One interesting nuance of the points scored dependent
variable is that it does not vary a huge amount between races (only varying by the number of drivers
in a race), which means that one cannot find effects on points scored of race-level variables such as
those used above. Whether it rains or not, the points scored will still be filled. However, these
variables can be included in the random part of the model to see how team, team-year and driver
effects vary across the variables. Furthermore, for categorical variables (that is, weather and track
type), these same models can produce separate driver rankings for different values of those

variables (thus showing if drivers are ranked differently in different driving conditions).

To assess the effect of year on driver, team and team-year effects, the model in equation 2 can be

extend to:

Rankit(Points); = B, + B Ndrivers; + B,Comp; + Bs;Year; + Uopriver + Voream + WoTeamyear T+ €i

.831' = :BB + U1 priver + ViTeam + WiTeamyYear

2

Uopriver ~Nlo 040
U1priver ’ 2
Ouo1 Ou1

2
[UOTeam] ~Nlo ()
ViTeam ’ Opo1 0'51

2
[WOTeamYear] ~Nlo Owo
WiTeamyear "Owo1  O2q

e;i~N(0,02)

12



(3)

We would expect f3, the fixed effect of Year, to be approximately zero. However, the driver, team
and team-year differentials from this effect (41 priver» ViTeam aNd WiTeamyear respectively) could be
non-zero, and as such, the variance at each level could vary by Year. The extent to which the
variance changes are quantified with variance functions (Goldstein 2010; Bullen, et al 1997): the

driver level, team level and team-year level variances are calculated respectively as:

Variancep, iyer = 029 + (20,01 * Year;) + (62, * Year?)
(4)
Varianceregm = 0% + (20,91 * Year;) + (02, * Year?)
(5)
Variancereamyear = 020 + (20,01 * Yeary) + (62, * Year?)

(6)

Note that we additionally tested for a quadratic year term (thus allowing a quartic variance

function); no improvement in the model was observed based on the DIC (see below).

The model is much the same for weather (with the Year variable replaced by the dummy variable for
rain). For the track type variable, there are three categories, so two dummy variables (Street; and
Temporary;) contrasted against the reference category Permanent;, must be included in the model.

This model is specified as:

Rankit(Points); = S, + piNdrivers; + ,Comp; + [3;Temporary; + f,;Street; + Ugpriver T Voream

+ WoTeamyear + €;

P3i = B3 + Wipriver T ViTeam + WiTeamyear

:84i = ﬁ3 + U2 Dpriver + Va2Team + WaTeamyear

13



2
[uODriver] Ouo

2
Uspriver [ ~N| 0,0401 0y

u .
2briver Ouo2 Ouiz Ou2

2
VoTeam Ovo
2
Viteam|~N| 0,0401 051
Var 2
eam Opoz Opiz  Op2
0.2
VoTeamYear wo
2
Viteamvear [ ~N| 0,0401 0y
VaTeamYear

2
Owo2 Owi2 Ow2
e;~N(0,02)
L rve

(7)

The variance function for the driver level becomes:

Variancep,iper = 020 + (20,01 * Temporary,) + (62, * Temporary?) + (20,,, * Street;)

+ (20,1, * Temporary; = Street;) + (o2, * Street?)

(8)

Thus, the driver variance on a permanent circuit is estimated as ¢, for a temporary circuit it is
02y + (20,01 * Temporary;) + (62, * Temporary?), and for a street circuit it is o2, +
(20,0, * Street;) + (02, = Street?). There are equivalent variance functions for the team and

team-year levels.

This same model can also be used to calculate separate driver rankings for different conditions
(using the entirety of the data from 1950, in order to include all drivers). Thus, in equation 7 the
driver rankings for permanent circuits is given by ugp,iver, for temporary circuits they are given by
Uopriver + Uipriver, and for street circuits they are given by Ugpriver + Uspriver- Rankings for dry

and wet weather conditions can be found in a similar way.
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All models were fitted in MLwiN v2.35, (Rasbash et al. 2013), using Monte Carlo Markov Chain
(MCMC) estimation (Gelfand & Smith, 1990, Browne 2009)°. Plausible but arbitrary starting values
were used for an initial model, and once that model had run for 10,000 iterations, these estimates
were used as starting values for the final models, which were run for 500,000 iterations (following a
500 iteration burn in). These were found to be sufficient to produce healthy-looking visual
diagnostics (that is, chain trajectories that have the appearance of white noise), and effective sample

sizes (ESS) of over 1000 for all parameters.

In all cases, variables were allowed to vary at each level one at a time, and model improvements
were calculated using the Deviance Information Criterion (DIC, Spiegelhalter et al. 2002). Where the
model shows substantial model improvement (a decrease in DIC of at least 4) when a variable’s
effect was allowed to vary at any level, the full model (with the variable effect allowed to vary at all

three levels) was run and these results presented.

3.3 Comparison to the methods of previous F1 studies

3.3.1 Advantages of a multilevel approach

There are a number of ways in which our methods differ from those of previous attempts to rank F1
drivers (Phillips 2014, Eichenberger and Stadelmann 2009). The most notable of these is our use of
multilevel models, or random effects (RE) models, rather than using fixed effects (FE) to represent
drivers and teams (Bell and Jones 2015). We argue that there are a number of advantages to the RE
approach. First, RE allows us to include a team as well as a team-year level in our model; with FE,
only a team-year level can be included because this takes all the degrees of freedom associated with

the team level. Thus, we can distinguish between enduring team ‘legacy’ effects, that do not change

> The default prior specifications in MLwiN were used: uniform distributions for the fixed effect estimates,
inverse Gamma distributions for the variances in the null models, and inverse Wishart distributions for the
variance-covariance matrices when effects were allowed to vary in other models. The models were also
estimated using Uniform priors for the variances, as suggested by Gelman (2006), but the results were almost
identical and the substantive conclusions did not change. For more on this see Browne (2009).

15



year-on-year, and more transient effects, where teams perform better or worse from one year to
the next. Second, the RE approach allows for the modelling of variance functions and so allows the
effects of drivers or teams to vary with covariates, as well being able to find different driver rankings
for discrete covariate values. Whilst this could be achieved with a FE model, it would require a large
number of interaction terms in the model for which parameters would need to be estimated, and
would quickly become unwieldy. Third and crucially for producing driver rankings, in RE models
unreliably estimated higher-level residuals are ‘shrunk’ to the mean — thus we are able to include,
for example, drivers that have only driven in very few races, without being concerned that they
might produce spurious results. Thus the residuals j at level u are in effect multiplied by reliability A;,

calculated as:

2

A=y
o2 + (% /)

(9)

where n; is the sample size of driver-level entity j, o2 is the between-driver variance, and a2 is the
level 1 variance. Thus competing in only one race and winning in a poor car is not enough in our
model to do well — drivers must perform consistently well to be sure their good performances are
not simply down to chance. This also means that drivers who are unlucky with random car problems,
but have not been in enough races for that luck to even out, will not be unfairly disadvantaged since

that unreliability is accounted for in their residual (see section 3.3.3).

3.3.2 The choice of dependent variable

For the dependent variable, there are broadly three choices: (a) season-long points earned (as used
by Phillips, 2014), (b) individual race finishing position (as used by Eichenberger and Stadelmann,
2009), and (c) individual race points scored. In this paper, we choose the latter. We avoid (a) because

we want to utilise the full uncertainty of race results in our modelling. The shrinkage that is applied

16



to drivers as described above would be incorrectly applied when meaned across seasons, since a
driver that raced in one race in one season would be judged to have the same certainty as a driver
racing in every race of that season. Phillips avoids this problem by removing drivers with very few
races in a season (and removing what non-finishing results that were judged to be ‘non-driver
failure’ — see section 3.3). An advantage of our approach is that we do not need to do this, and can
model all types of high and low performance, as well as all drivers that have ever competed in any

race.

The difference between individual race points scored and finishing position is actually rather small.
In order to apply a Normal model to such data, the latter needs to be transformed, meaning that the
resulting dependent variable is actually very similar to the finishing position (correlation of 0.99). We
choose points scored because it is a more realistic measure of what is valuable to drivers, although

the results found from each are rather similar.

This leaves the question of what transformation we should apply to points scored. From testing a
range of different transformations, it is notable that (a) none of the transformations produce level 1
residuals that are very far from Normality, and there are no extreme outliers, and (b) there is
remarkably little difference in the driver rankings found as a result of using the different dependent
variables. However, because it shows the closest relation to Normality, we choose as our dependent

variable the rankit transformation of Points scored®.

3.3.3 Treatment of driver and non-driver failure

A notable difference between our approach and that of Phillips (2014) is our treatment of driver and
non-driver failures. Phillips excludes data for which drivers failed to finish a race for reasons that

were not their fault — his argument being that these results should not count against them. There

® Another possibility could be to use an exploded logit model (also called a Plackett-Luce, or rank-ordered logit
model) for rankings (Allison & Christakis, 1994; Anderson, 2014; Baker & McHale, 2015; Glickman & Hennessy,
2015; Skrondal & Rabe-Hesketh, 2003). However, due to the complexity of our model, the large size of the
dataset we use (especially after it has been ‘exploded’), and the already long chain lengths required to make
the model converge, this was deemed unfeasible.

17



are a number of problems with this approach. First, the distinction between driver and non-driver
failure will always be somewhat arbitrary: for example a failure could be the fault of the car, but
with more careful driving the risk of such a failure might be reduced. Second, non-driver failure that
does not result in retirement from the race is not discounted in the same way, which seems
somewhat inconsistent. Third, one of the advantages of our approach is our ability to use all races
and drivers in history with no exclusion criteria; excluding driver-races with non-driver failures would

make our analysis incomplete. And fourth, we argue that it is not necessary to make the distinction.

The latter argument rests of an assumption that there are three causes of failure: (1) failures that
are the fault of the driver, (2) failures that are the fault of the team or car, and (3) random failures
that are nobody’s fault. We would expect worse drivers to have more driver failures, worse teams to
have more team failures (and for both drivers in that team to be equally affected by such failures),
and random failures to be randomly distributed across driver-races. If this is the case, then the
multilevel structure will partition these failures to the appropriate levels, and only driver error will
count against the driver in the driver-level residual. This approach may be problematic for drivers
that only raced in a small number of races (and, due to sheer bad luck, experienced lots of random
failures in those races). However such drivers would experience a high degree of shrinkage
(indicative of the unreliability of their residual — see section 3.3.1). Over the course of a driver’s
career, we would expect such random failures would even out across drivers’ careers, meaning any
differences between drivers are most likely to be the fault of the drivers themselves’. In our view
this approach to errors is more appropriate than any arbitrary classification into driver and non-
driver faults. If a driver consistently has more failures than their teammate in the same car, this is
statistical evidence that those failures were at least in part the fault of the driver, who should be

‘penalised’ accordingly.

7 A similar logic is used, for example, to identify poorly performing hospitals on the basis of having an unusually
high mortality rate, (for example see Taylor 2013). In such a case, there is no need to attempt to separate
random and hospital failures — the higher mortality rate given the sample size presents enough statistical
evidence.
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Other notable differences include:

e The use of a different (simpler) correction for competitiveness compared to Phillips 2014
(see section 3.1).

e We consider drivers’ entire careers, rather than their 1, 3, or 5 year peak performance (as
considered by Phillips (2014). To perform well in our rankings, drivers must perform
consistently well, and not just for a portion of their career.

e We control for fewer variables than Eichenberger and Stadelmann (2009), since we do not
want to control out any effects that should more appropriately be included in the random
effects.

e We are able to use data from all drivers and teams in history, whereas previous models have

had inclusion criteria.

With each difference, we are not necessarily claiming that our models are better than previous
models; rather that we are defining what a good driver is in subtly different ways that will impact the

results that are produced.

4 Results8

4.1 Who isthe best F1 driver of all time?

Figure 1 presents the driver level residuals for what are the top 20 F1 drivers of all time according to
our model, controlling for teams, team-years, the number of drivers in each race and the
competitiveness of the race. It is Juan Manual Fangio who comes out as the top driver, followed by
Alain Prost, Jim Clark, Ayrton Senna and Fernando Alonso. Of drivers currently racing, Alonso comes

out top, followed by Sebastian Vettel, Lewis Hamilton, Nico Rosberg and Jenson Button.

® Further model details, including parameter estimates, extended rankings, additional graphics, and model
predictions can be found at the end of this document.
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It should be noted that there are rather wide confidence intervals around each driver. There are two
reasons for this. First, the measure being estimated by the model is the (transformed) points scored
in a race, not in a season, meaning the confidence bounds reflect the uncertainty that exists race-to-
race, compared to smaller season-to-season uncertainty. And second, it reflects the level of
uncertainty that will exist in any ‘best of all time’ rankings, given the question of who is the best is
inherently uncertain. However, because the residuals have already been shrunk to the mean, there

is some protection against over-interpretation regardless.

Michael Schumacher, who holds the record for the most championships and race victories of any
driver in Formula 1, comes in a relatively modest eighth place. This is in part because those victories
were won in an excellent car, but also because his ranking is dragged down by his more recent post-
retirement performances (2010-2012) when he performed less well than in the main part of his
career and crucially was generally outperformed by his Mercedes teammate Nico Rosberg. Thus, we
re-ran the analysis with the latter section of Schumacher’s career treated as a separate driver. In this
formulation, pre-2006 Schumacher’s ranking rises to 3™ and Nico Rosberg’s ranking falls from 13" to
49™. This is because Schumacher’s high standing as a driver in the model effectively deflated 2010-
2012 Mercedes’ team ranking in the first model, meaning Rosberg’s performances appeared more
impressive. When treated as separate drivers, post-retirement Schumacher performed less well, the
Mercedes team effect appears greater, and so Rosberg’s performances no longer stand out

compared to his team.
[Figure 1 about here]

We were additionally able to produce rankings specific to certain weather conditions and track types
(not shown). In general, these showed similar results — Fangio remained top in all but one of the
categories and the top drivers still populate the top positions. However there are some interesting
points to note. In particular, whilst the reputations of Ayton Senna and Michael Schumacher for

being very good wet weather drivers are justified by the data (pre-2006 Schumacher is estimated to
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be the second best wet weather driver of all time, whilst Senna is the third best and ahead of his
rival Alain Prost), the similar reputation of Lewis Hamilton is not born out statistically (his ranking

does not differ between wet and dry conditions).

4.2 How much does the driver and the team matter?

The variances for the team, team-year and driver levels (for the years 1979-2014 were 0.066, 0.042
and 0.017, respectively (controlling for number of drivers and race competitiveness as in equation
2). Thus, team effects significantly outweigh driver effects, accounting for 86% of driver variation.
Furthermore, the majority (about two thirds) of the team effect is constant for a team and does not
change year on year (although there is substantial variation within teams, year-on-year as well). In

other words, the legacy of a team outweighs any transient effects as teams change year by year.

There is also limited evidence that the importance of these levels vary by key variables. Although the
confidence intervals are relatively wide, there is evidence that the importance of the team has
increased over time, whilst the importance of the driver has slightly decreased (Figure 2). There is
also evidence that the team-year is less influential to race results on street circuits, compared to
permanent circuits (Figure 4). The confidence intervals regarding wet and dry conditions are too
wide to be able to make any robust conclusions (Figure 3), but the direction is in line with what one
might expect: that teams are less influential in wet conditions than in dry conditions (in other words

there is more uncertainty to race results in wet conditions).

[Figures 2, 3 and 4 about here]

4.3 Does our model predict season results?

Whilst the aim of this paper is historical ranking rather than prediction, many readers may wonder
how well our model predicts the outcome of F1 seasons when the driver, team and team-year
variances are all taken into account. Overall, we would expect the model to be less good at
predicting season results than coming up with overall rankings, because there is more chance that a
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driver would be unlucky in a given season (compared to over their entire career), and, when

predicting out of sample, we do not know the team-year residual attached to teams in that year.

There are two aspects to evaluating this. First, we used our model that allows the variances to vary
by year and made predictions based on the varying driver, team and team-year effects, which we
then averaged across each driver-year. Given we are modelling a transformation of points scored,
and assuming driver ability changes over time linearly, we would expect some disagreement
between our model and final championship results. However the model does a relatively good job:
the actual champion is correctly predicted in over half of the seasons, and in only two instances does
the predicted champion finish outside the top three. There were specific reasons for that in each of
those cases: Senna’s death, and Schumacher’s broken leg. In sum, this is an encouraging indication

that our model is performing well.

Second, we used the same model to predict ahead to the 2015 season, using team-year residuals
from 2014. These predictions are not particularly accurate; there is too much variation between
seasons to correctly predict results out of sample. For example, the McLaren drivers perform very
well in the predictions, due to Mclaren’s (comparatively) decent performance in 2014 and the
addition of Alonso, a very high ranking driver, to the team. The model is unable to predict Mclaren’s
poor performance in 2015, and the fact that Alonso’s quality would not have much benefit in such a
poor car. Thus, whilst this model is very useful in assessing performance that has already occurred, it

is less good at predicting performance into the future.

5 Discussion

5.1 The greatest driver?

As with any ranking system, our claim of who is the ‘best driver’ should be treated with an
appropriate degree of circumspection. As Figure 1 shows, there is substantial uncertainty around

each of the drivers’ residuals. This is not a limitation of our model; rather we are explicitly
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quantifying the uncertainty that inevitably exists in a ranking exercise such as this. Having said this,
our results present an interesting ranking when compared to both previous statistical rankings, and

subjective expert rankings’.

The first point to note is that in most respects, our results match those of others: nine of our top ten
— Fangio, Prost, Schumacher, Alonso, Clark, Senna, Stewart, Fittipaldi and Vettel — are considered by
most models and experts of be among the best drivers of all time. Our model agrees with previous
statistical models (Phillips 2014, Eichenberger and Stadelmann 2009) in ranking Prost above Senna
(in contrast to many subjective rankings), and in viewing drivers such as Nigel Mansell, Mario

Andretti, Gilles Villeneuve and Mika Hakkinen as rather overrated by experts.

Our model differs from previous statistical attempts in not throwing up any particular surprises in
the top 10, in comparison to Eichenberger and Stadelmann (who placed Mike Hawthorn in 5*) and
Phillips (who placed James Hunt in 6™). Whilst they argue each has been underrated by experts, our
model suggests otherwise (with Hawthorn and Hunt in 34" and 95" place respectively). Part of the
reason for our low positioning of Hunt compared to both Phillips and Eichenberger and Stadelman is
his high rate of retirement, and the relatively high penalty that we place on not finishing (compared
to Phillips, for example, who does not include non-driver failures in his analysis). The high
performance (7th place) of Nico Rosberg in Phillips 2014 was, as Phillips suggests, a result of his
partnership with an out-of-form world champion (Michael Schumacher), which artificially improved
his results. In our analysis, when Schumacher is separated into two drivers, pre- and post-

retirement, Rosberg’s performance against the latter appears less impressive and he is placed 46™.

Perhaps the biggest surprise in our results is the high ranking of Christian Fittipaldi at number 11,
despite only competing in three seasons and never making a podium finish. This ranking occurs
because C. Fittipaldi consistently outperformed his team-mates, and because he never raced for a

‘good’ team, the standard required to get a high ranking is lower. More specifically, C. Fittipaldi’s

° For example|http://www.bbc.co.uk/sport/0/formulal/20324109[and
http://flgreatestdrivers.autosport.com
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teammates had relatively high rates of retirement: he gains his high ranking by being able to
successfully keep a relatively poor car on the track. Of course, this model cannot say that C. Fittipaldi
would have won championships had he raced for a better team, and his confidence intervals are
wider than most of the other highly ranked drivers, but the results suggest that in one aspect of
good race driving at least — that is, keeping a relatively unreliable car on the road — he should be

highly regarded.

Other surprises are the low ranking of champion drivers such as Niki Lauda (142") and Alberto Ascari
(76™). Lauda only performed notably well when racing for Ferrari (1974-1977) and his results
dropped when racing for other, lower achieving teams. Ascari’s performances can also be at least in
part attributed to his team (Ferrari); he also had a high performing team mate, and his result will be

shrunk back to the mean because he raced in relatively few (31) F1 races (see section 3.3).

5.2 The team or the driver

The multilevel approach presented here has allowed consideration of how much teams and drivers
matter, as well as to what extent team effects are invariant effects of a team’s ‘legacy’ and how
much they change year on year. Our results show that teams matter more than drivers, and that
about two thirds of the team effect is consistent over time, with one third being down to year-on-
year changes. This fits with what we know about team performances: Ferrari has historically been a
very high performing team, and its legacy, and the funds that come with it, ensures that it has and
will remain relatively high performing (even if it has been overtaken by newer teams in recent
years); there has also been non-negligible variation within teams between years — for example Red
Bull's performances in 2011-2013 was exceptionally good for that team (Red Bull in 2011 was the
biggest Team-Year level residual in the models), whilst Ferrari did unusually badly in 1992. Finally,

although drivers undoubtedly matter, their influence is smaller than that of teams and team years.

When allowing these variances to vary by various covariates, results were produced that in general

had wide confidence intervals but with intuitive directionality. It seems that teams have become
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more important over time, whilst drivers have become less important. There is some evidence that
wet weather produces less predictable results (in that all three variances are reduced suggesting
results are more down to random chance) although there is a large amount of uncertainty in this
result. Finally, street tracks appear to reduce the team effect (in particular the time-varying effect) in
comparison to purpose built tracks, whilst increasing the driver effect. Again there are wide
confidence intervals, but this again fits with expert opinion that sees street tracks, such as Monte
Carlo in Monaco, as difficult for drivers and requiring of skill that cannot be substituted by
technological advances. Thus, on street tracks, top drivers are able to differentiate themselves from

less good drivers in better cars.

6 Conclusions

We have presented a complex multilevel model that has allowed us to fulfil two related aims: (1) to
find a ranking of F1 drivers, controlling for team effects, and (2) to assess the relative importance of
team and driver effects. Whilst there is significant uncertainty in our results, our models suggest that
(1) Juan Manuel Fangio is the greatest F1 driver of all time; (2) teams matter more than drivers; (3)
about two-thirds of the team effect is consistent over time — a ‘legacy effect’; (4) team effects have

increased over time but appear to be smaller on street circuits.

As with any ranking system that one could devise, this one has some flaws. First, where drivers have
not changed teams over the course of their career it is very difficult to know whether their
performance is the result of their car, the drivers skill, or a combination of the two (for example a
driver that happens to driver a particular car well) especially if their teammate remains constant as
well. Thus, the model really tells us how drivers perform against their team mates, but those team-
mates are not randomly selected since good drivers will self-select into good teams. This is most
clearly demonstrated by the high ranking of Christian Fittipaldi, who performed well given his low
ranking team, but who has never been tested in a ‘good’ car (that counterfactual is not in the

dataset — see King and Zeng, 2006). Moreover, team orders have (particularly in recent years) been

25



known to be given to lower ranked team members, encouraging them to allow a favoured team
mate to pass them — thus a ‘good’ team driver may achieve more points simply by following team

orders. However with the observational data that we have, our models are the best we can do.

The model could be extended in a number of ways. For example, additional levels could be added to
further differentiate between different attributes of the team — we could include a tyre level, an
engine level, and so on, to assess what attributes of teams matter the most. It could also be
interesting to see how these results differ when qualifying position, or fastest lap times, are used as

the response variables.

Finally, we contend the methods used here have a potential broad appeal to researchers in social
science and beyond. The cross-classified structure has potential to assess the importance of a wide
range of social and economic determinants: how much do individuals, teams and companies affect
worker productivity; how much do Primary Care Trusts and neighbourhoods affect health; how
much do classes, schools and neighbourhoods affect educational attainment, and how much has this
changed over time. All of these questions could be answered, where data is available, using models
similar to those used here. The explicit analysis of variances as a function of continuous and
categorical predictors allows for the assessment of performance in complex and changing

circumstances reflecting the reality of the world that is being modelled.
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Table 1: Variables used in this study

Variable

Description

Fixed part variables

Points

Year
Weather

Track Type

Ndrivers
Comp

The dependent variable: Number of points scored, based on the scoring system
used from 1991-2002: 1% place: 10 pts, 2™ place: 6 pts, 3" — 6" place: 4 — 1 points;
Fractional points are awarded for lower positions, including those who fail to finish
the race (i.e., the first driver to drop out will finish last, the second second from last,
and so on).

Year of race — from 1950-2014

Dummy variable coded 1 if the race is in any way affected by rain (some 15% of all
observations), and 0 if not. Whilst this is a somewhat crude measure, data for a
more exact measure (like proportion of race conducted in wet conditions) is not
readily available.

Categorical variable classifying the type of track:

Permanent - a permanent track (76% of observations),

Street — a race that occurs on public streets (which are temporarily closed to the
public (19%),

Temporary — a temporary race track that is not on public streets (5%).

Number of entrants in the race. Mean=23.3, SD=3.1.

Competitiveness of the race based on the career performance of drivers in a given
race (see section 3.2). Mean=0.5, SD=0.02.

Random part variables

Driver
Team

Team-Year

The driver of the car (e.g. Michael Schumacher)
The team name (e.g. Ferrari)
Identifier of the team-year (e.g. Ferrari1992)

Note: Teams are defined based on the chassis-engine-constructor combination, unless a constructor
changes the chassis or engine used mid-season, in which case the team is judged to continue as that
team. Whilst this is problematic where a team changes the car for one driver and not another, this

problem only affects a small minority of team-years.
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Figure 1: Plot of the top 20 driver-level residuals, with 95% Bayesian credible intervals
(based on Goldstein & Healy, 1995), representing the top 20 drivers of all time (1950-2014)
according to our model. Number of drivers and race competitiveness are controlled. The
residual value represents the difference when compared to an average driver driving for an
equally good (or the same) team, with higher numbers indicating a better position. We can
be confident that drivers with Cls that do not overlap the zero line are ‘better than average’.
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Figure 2: Variance as a function of Year (data from 1979 only). Number of drivers

competitiveness of race are controlled. 95% Cls are shown.
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Figure 4: Variance as a function of track type. Number of drivers and competitiveness of race are

controlled. 95% Cls are shown.
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Online appendix to Formula for Success: Multilevel modelling of Formula
One driver and constructor performance, 1950-2014.

This appendix provides further figures and tables that could not be included in the printed version of the paper,
but which may nonetheless be of interest to some readers. The contents of this document are as followed:

Table Al: shows the sensitivity of the models to different outcome variable transformations, as
mentioned in section 3.3.2.

Table A2: shows the insignificance of the race-level and driver-year level random effects (as mentioned in
section 3.1.

Table A3: shows basic null models in the form of equation 2 in the paper, including the model that
produced Figure 1 and the variances mentioned in section 4.2.

Table A4: shows complex models in the form of equation 3 in the paper, including the model that
produced Figure 2.

Table A5: shows complex models that produced differential random effects for different weather
conditions, including the model that produces Figure 3.

Table A6: shows complex models in the form of equation 7 in the paper, including the model that
produced Figure 4.

Table A7: shows the separately coded version of the models shown in table A5.

Table A8: shows the separately coded version of the models shown in table A6.

Table A9: shows a list of the top 50 drivers, extending Figure 1.

Table A10: shows predicted and actual champions in each season, as mentioned in section 4.3.
Table A11: shows predicted and actual champions for the 2015 season, as mentioned in section 4.3.
Figure Al: a visual representation of the team, team-year and driver variances from the model in table
A3.

Figure A2: shows all the drivers in a single graph

Figure A3: shows the top 20 team-level residuals

Figure A4: shows the top 20 team-year-level residuals

Figure A5: shows the top 20 drivers under different weather conditions, as mentioned in section 4.1.
Figure A6: shows the top 20 drivers on different track types, as mentioned in section 4.1.
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Table Al: Level 1 residual plots, and predicted top 10 drivers, according to a variety of different dependent
variables and model specifications.

Y variable

L1 Normal Q-Q plot
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Table A2: Model results for 5 and 6 level model including a driver-year level and a race level (for a model with

500,000 iterations).

6-level model 5-level model

Estimate 95% Cls ESS Estimate 95% Cls ESS
Fixed Part
Constant 0.434 0.403 0.464 19157 0.434 0.404 0.464 19492
Ndrivers -gm -0.042  -0.046 -0.038 150153 -0.042 -0.046 -0.038 153110
NewComp -gm 0.977 0.343 1.614 166553 0.978 0.346 1.611 168164
Random Part
Driver-Year
Variance 0.003 0.001 0.006 984 0.003 0.001 0.006 1007
Race Variance 0.000 0.000 0.000 7314
Team Variance 0.023 0.016 0.032 32087 0.023 0.016 0.031 32399
Team-Year Variance 0.021 0.017 0.025 29449 0.021 0.017 0.025 28677
Driver Variance 0.013 0.010 0.017 32126 0.013 0.010 0.017 31736
Level 1 Variance 0.288 0.282 0.294 349694 0.288 0.282 0.294 350524
DIC: 33786.549 33762.679

Table A3: Models showing variance partitioning, controlling for competitiveness and the number of drivers.

(a) 1979-2014 (b) 1950-2014 - Schumacher as (c) 1950-2014 - Schumacher
1 driver (produces Figure 1) as 2 drivers
Estimate 95% Cls Estimate 95% Cls Estimate 95% Cls
Fixed Part
Constant 0.065 -0.011 0.139 0.434 0.403 0.464 0.433 0.403 0.463
Ndrivers -gm -0.049 -0.060 -0.039 0.986 0.353 1.615 0.982 0.350 1.615
Comp -gm 1.343 0.047 2.641 -0.042 -0.046  -0.038 -0.042  -0.046  -0.038
Random Part
Team Variance 0.066 0.040 0.102 0.022 0.015 0.031 0.023 0.016 0.032
Team-Year Variance 0.042 0.034 0.051 0.022 0.018 0.026 0.021 0.018 0.025
Driver Variance 0.017 0.012 0.025 0.013 0.010 0.017 0.013 0.010 0.017
Level 1 Variance 0.468 0.457 0.480 0.289 0.284 0.295 0.289 0.283 0.295
DIC: 29638.77 33776.32 33764.87
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Table A4: Models with variance as a function of Year, 1979-2014

(e) Year effect random at all higher levels

(a) Year Fixed Effect Only (b) Year effect random at Team level (c) Year effect random at Team-Year level (d) Year effect random at Driver level (produces figure 2)

Estimate 95% Cls Estimate 95% Cls Estimate 95% Cis Estimate 95% Cls Estimate 95% Cls
Fixed Part
Cons 0.065 -0.012 0.140 0.063 -0.017 0.138 0.066 -0.011 0.141 0.064 -0.012 0.137 0.065 -0.013 0.141
Ndrivers -gm -0.052 -0.063 -0.040 -0.052 -0.063 -0.041 -0.052 -0.063 -0.040 -0.052 -0.064 -0.041 -0.053 -0.064 -0.042
Comp -gm 1.564 0.203 2.927 1.657 0.311 3.009 1.569 0.204 2.934 1.482 0.124 2.839 1.634 0.292 2.976
Year -gm -0.002 -0.006 0.002 -0.002 -0.008 0.004 -0.001 -0.005 0.003 -0.002 -0.006 0.002 -0.002 -0.008 0.005
Random Part
Team Level
Cons 0.067 0.041 0.104 0.058 0.033 0.094 0.068 0.041 0.105 0.062 0.037 0.098 0.059 0.034 0.095
Covariance 0.001 -0.000 0.002 0.001 -0.000 0.002
Year 0.000 0.000 0.000 0.000 0.000 0.000
Team-Year
Level
Cons 0.042 0.034 0.051 0.037 0.030 0.045 0.041 0.033 0.050 0.032 0.021 0.043 0.028 0.018 0.038
Covariance 0.000 - 0.000 0.001 0.000 -0.000 0.001
Year 0.000 0.000 0.000 0.000 0.000 0.000
Driver Level
Cons 0.017 0.012 0.025 0.016 0.011 0.023 0.013 0.007 0.020 0.017 0.012 0.024 0.012 0.007 0.019
Covariance 0.000 -0.001 0.000 - 0.000 -0.001 - 0.000
Year 0.000 0.000 0.000 0.000 0.000 0.000
Level 1 Var 0.468 0.457 0.480 0.468 0.457 0.480 0.468 0.457 0.479 0.468 0.457 0.480 0.468 0.457 0.479
DIC: 29639.30 29634.08 29632.00 29638.52 29625.41




Table A5: Models with variance as a function of weather (dry/wet conditions), 1979-2014

(b) Weather random at Team

(c) Weather random at Team-

(d) Weather random at Driver

(e) Weather random at all higher

(a) Weather Fixed effects only Level Year Level Level levels (produces figure 3)
Estimate 95% Cls Estimate 95% Cls Estimate 95% Cls Estimate 95% Cls Estimate 95% Cls
Fixed Part
Cons 0.067  -0.010 0.140 0.060 -0.019 0.136 0.066 -0.010 0.141 0.065 -0.011 0.139 0.060 -0.019 0.136
Ndrivers -gm -0.049 -0.060 -0.039 -0.049 -0.060 -0.039 -0.050 -0.060 -0.039 -0.049 -0.060 -0.039 -0.050 -0.060 -0.039
Comp -gm 1.345 0.051 2.639 1.350 0.050 2.654 1.353 0.064 2.648 1.347 0.053 2.647 1.357 0.062 2.654
Wet 0.002 -0.032 0.035 0.040 -0.010 0.092 0.003 -0.033 0.038 0.013 -0.025 0.051 0.042 -0.010 0.096
Random Part
Team Level
Cons 0.066 0.040 0.102 0.071 0.044 0.109 0.065 0.040 0.101 0.065 0.040 0.102 0.070 0.044 0.108
Covariance -0.015 -0.030  -0.003 -0.013 -0.028 0.000
Wet 0.010 0.004 0.022 0.009 0.003 0.020
Team-Year Level
Cons 0.042 0.034 0.051 0.042 0.034 0.051 0.044 0.035 0.054 0.042 0.034 0.051 0.044 0.035 0.053
Covariance -0.008 -0.018 0.000 -0.007 -0.016 0.001
Wet 0.011 0.003 0.026 0.010 0.003 0.023
Driver Level
Cons 0.017 0.012 0.025 0.018 0.012 0.025 0.017 0.012 0.025 0.019 0.013 0.026 0.019 0.013 0.026
Covariance -0.005 -0.010 0.000 -0.003 -0.009 0.002
Wet 0.005 0.001 0.012 0.004 0.001 0.010
Level 1 Var 0.468 0.457 0.480 0.467 0.456 0.479 0.467 0.456 0.478 0.468 0.457 0.479 0.466 0.455 0.477

DIC:

29640.87

29625.10

29635.45

29637.32

29623.84




Table A6: Models with variance as a function of track type (permanent/temporary/street), 1979-2014

(a) Track type Fixed Effects (b) Track type random at Team  (c) Track type random at Team-Year (e) Street and temp random at all
only level level (d) Track type random at Driver level higher levels (produces figure 4)
Estimat

Estimate 95% Cls e 95% Cls Estimate 95% Cls Estimate 95% Cls Estimate 95% Cls
Fixed Part
Cons 0.066 -0.010 0.140 0.059 -0.021 0.136 0.067 -0.009 0.141 0.064 -0.013 0.139 0.062 -0.018 0.139
Ndrivers -gm -0.049 -0.060 -0.039 -0.049 -0.059 -0.039 -0.050 -0.060 -0.039 -0.049 -0.060 -0.039 -0.049 -0.060 -0.039
Comp -gm 1.342 0.041 2.638 1.354 0.059 2.652 1.342 0.048 2.639 1.317 0.010 2.613 1.339 0.041 2.634
Temp 0.002 -0.043 0.047 0.026 -0.034 0.088 0.002 -0.046 0.051 0.014 -0.038 0.066 0.027 -0.038 0.092
Street 0.000 -0.033 0.033 0.022 -0.018 0.064 0.001 -0.033 0.036 0.012 -0.031 0.055 0.016 -0.029 0.062
Random Part
Team Level
Cons 0.066 0.040 0.102 0.074 0.047 0.114 0.064 0.039 0.099 0.066 0.041 0.103 0.072 0.045 0.111
temp/cons -0.011 -0.028 0.004 -0.009 -0.025 0.005
Temp 0.010 0.003 0.023 0.008 0.002 0.019
street/cons -0.009 -0.020 -0.002 -0.005 -0.014 0.001
street/temp 0.002 -0.002 0.007 0.001 -0.001 0.005
Street 0.003 0.001 0.008 0.001 0.000 0.004
Team-Year Level
Cons 0.042 0.034 0.051 0.042 0.034 0.051 0.047 0.038 0.057 0.042 0.034 0.051 0.045 0.037 0.055
temp/cons -0.005 -0.018 0.007 -0.002 -0.015 0.010
Temp 0.036 0.013 0.068 0.029 0.010 0.058
street/cons -0.015 -0.024 -0.007 -0.011 -0.020 -0.004
street/temp 0.010 -0.001 0.024 0.005 -0.003 0.016
Street 0.011 0.004 0.023 0.006 0.002 0.015
Driver Level
Cons 0.017 0.012 0.025 0.017 0.012 0.024 0.018 0.012 0.025 0.019 0.013 0.026 0.018 0.012 0.025
temp/cons -0.005 -0.012 0.002 -0.002 -0.010 0.005
Temp 0.014 0.005 0.030 0.011 0.004 0.025
street/cons -0.004 -0.011 0.002 -0.002 -0.009 0.004
street/temp 0.011 0.002 0.022 0.009 0.001 0.019
Street 0.019 0.009 0.034 0.017 0.007 0.030
Level 1 Var 0.468 0.457 0.480 0.468 0.457 0.479 0.465 0.454 0.476 0.465 0.454 0.477 0.463 0.452 0.474

DIC: 29642.78 29636.556 29619.56 29618.313 29605.69




Table A7: Separately coded model with variance as a function of weather, 1950-2014

Weather with separate coding

Estimate 95% Cls
Fixed Part
Cons 0.458 0.42 0.494
Ndrivers -gm 0.997 0.364 1.63
Comp -gm -0.042 -0.046 -0.038
Wet -0.029 -0.06 0.002
Random Part
Team Level
Dry 0.025 0.017 0.034
Covariance 0.02 0.013 0.029
Wet 0.018 0.011 0.028
Team-Year Level
Dry 0.022 0.019 0.027
Covariance 0.019 0.014 0.024
Wet 0.02 0.013 0.029
Driver Level
Dry 0.014 0.011 0.018
Covariance 0.012 0.008 0.016
Wet 0.012 0.007 0.018
Level 1 Variance 0.288 0.282 0.294
DIC: 33746.002
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Table A8: Separately coded model with variance as a function of track type, 1950-2014

Track type with separate coding

Estimate 95% Cls
Fixed Part
Cons 0.431 0.399 0.462
Ndrivers -gm 0.969 0.339 1.602
Comp -gm -0.042 -0.046 -0.038
Temporary 0.018 -0.035 0.071
Street 0.011 -0.02 0.043
Random Part
Team level
Permanent 0.026 0.018 0.036
Perm/Temp Cov 0.022 0.014 0.033
Temporary 0.025 0.014 0.041
Perm/Street Cov 0.021 0.014 0.03
Street/Temp Cov 0.019 0.012 0.029
Street 0.02 0.013 0.029
Team-Year level
Permanent 0.024 0.019 0.028
Perm/Temp Cov 0.021 0.014 0.028
Temporary 0.037 0.021 0.056
Perm/Street Cov 0.017 0.013 0.021
Street/Temp Cov 0.019 0.012 0.028
Street 0.016 0.011 0.023
Driver level
Permanent 0.014 0.01 0.018
Perm/Temp Cov 0.011 0.006 0.017
Temporary 0.016 0.008 0.029
Perm/Street Cov 0.013 0.01 0.018
Street/Temp Cov 0.013 0.007 0.02
Street 0.018 0.012 0.025
Level 1 Variance 0.287 0.281 0.293
DIC: 33754.69
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Table A9: Top 50 drivers based on the driver level residuals from model Ald (Michael Schumacher

treated as two drivers, pre 2006 and post 2010)

Rank  Driver Residual | Rank Driver Residual
1 Juan Manuel Fangio 0.333 26 Robert Kubica 0.129
2 Alain Prost 0.300 27 Carlos Reutemann 0.128
3 Michael Schumacher (pre-2006) 0.286 28 Tom Pryce 0.128
4 Jim Clark 0.276 29 Stirling Moss 0.123
5 Ayrton Senna 0.265 30 Martin Brundle 0.121
6 Fernando Alonso 0.263 31 Rubens Barrichello 0.119
7 Nelson Piquet 0.238 32 Daniel Ricciardo 0.119
8 Jackie Stewart 0.232 33 AlanJones 0.119
9 Emerson Fittipaldi 0.217 34 Kimi Raikkonen 0.118
10 Sebastian Vettel 0.213 35 Patrick Depailler 0.118
11 Christian Fittipaldi 0.198 36 Carlos Pace 0.117
12 Lewis Hamilton 0.175 37 Richie Ginther 0.116
13 Graham Hill 0.169 38 Denny Hulme 0.115
14 Dan Gurney 0.166 39 Thierry Boutsen 0.113
15 Jody Scheckter 0.165 40 Mike Hawthorn 0.111
16 Jenson Button 0.160 41 Jean-Pierre Beltoise 0.106
17 Marc Surer 0.158 42 Heinz-Harald Frentzen 0.105
18 Damon Hill 0.157 43  Prince Bira 0.102
19 Louis Rosier 0.143 44 Keke Rosberg 0.100
20 Elio de Angelis 0.141 45 Clay Regazzoni 0.098
21 Ronnie Peterson 0.140 46 Luigi Fagioli 0.097
22 Nino Farina 0.130 47 Jack Brabham 0.093
23 Nick Heidfeld 0.130 48 Jacques Villeneuve 0.093
24 Pedro Rodriguez 0.129 49 Nico Rosberg 0.092
25 John Watson 0.129 50 Phil Hill 0.090
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Table A10: Comparison between predictions of the champion (from the model as in equation 3) and the actual champion, for years 1979-2014. Schumacher is treated as

two drivers.
Year  Model's Actual Actual Model's Notes
predicted Position of Champion position of
champion model's actual
champion champion

1979  J Scheckter 1st J Scheckter 1st

1980 CReutemann 3rd A Jones 2nd

1981 CReutemann 2nd N Piquet 3rd

1982  Keke Rosberg 1st K Rosberg 1st

1983 A Prost 2nd N Piquet 7th Piquet beaten in the model by 2nd-4th place drivers (Prost, Arnoux and Tambay, who were within 20 points of him), Jonathan Palmer
(who only raced one race and outperformed his Williams team-mate in that race), Jacques Laffite (who benefits in the model
compared to the championship because he missed two races, and Keke Rosberg, who won the championship the previous year.

1984 A Prost 1st A Prost 1st

1985 A Prost 1st A Prost 1st

1986 N Piquet 3rd A Prost 2nd Only 3 points between 1st and 3™ in the championship

1987 N Piquet 1st N Piquet 1st

1988 A Prost 2nd A Senna 2nd Only 3 points between 1% and 2™ in the championship; Very close in model predictions between 1% and second as well

1989 A Prost 1st A Prost 1st

1990 ASenna 1st A Senna 1st

1991 ASenna 1st A Senna 1st

1992 R Patrese 2nd N Mansell 3rd Very small differences in the model predictions of 1st and 3rd. Mansell gained lots of 1st places, so won by a long way in points (but
there is a less clear gap in finishing position, reducing the advantage when points are transformed).

1993  AProst 1st A Prost 1st

1994 A Senna Not classified M Schumacher 3rd Senna only raced 3 races, finishing none (the third race was, tragically, his last). However because he didn't race in many races, it
doesn't count against him or his team-year too much. Thus, his high driver residual was weighted heavily in his favour.

1995 M Schumacher 1st M Schumacher 1st

1996 D Hill 1st D Hill 1st

1997 M Schumacher 2nd/DSQ J Villeneuve 4th Schumacher was 2nd (3 points behind Villeneuve) but was disqualified from the final standings for dangerous driving.

1998 M Schumacher 2nd M Hakkinen 2nd

1999 M Schumacher 5th M Hakkinen 3rd Schumacher only completed seven races when he broke his leg, at which point he was second in the championship

2000 M Schumacher 1st M Schumacher 1st

2001 M Schumacher 1st M Schumacher 1st

2002 M Schumacher 1st M Schumacher 1st

2003 M Schumacher 1st M Schumacher 1st

2004 M Schumacher 1st M Schumacher 1st



2005 F Alonso 1st F Alonso 1st

2006 M Schumacher 2nd F Alonso 2nd Model produces a close result between Alonso and Schumacher. In the championship there was only a 13 point difference.
2007 F Alonso 3rd K Raikkonen 2nd Only 1 point between 1st and 3" on the championship

2008 L Hamilton 1st L Hamilton 1st

2009 ) Button 1st J Button 1st

2010 F Alonso 2nd S Vettel 2nd Only 4 points between 1% and 2™ in the championship

2011 S Vettel 1st S Vettel 1st

2012 F Alonso 2nd S Vettel 2nd Only 3 points between 1% and 2™ in the championship

2013 S Vettel 1st S Vettel 1st

2014 L Hamilton 1st L Hamilton 1st

Table A11: Out of sample predictions for the 2015 F1 season. Team year residuals are assumed not to change from 2014, and all trends are extrapolated. Based on a model
including random slopes on year, using data from 1979. Michael Schumacher is treated as two drivers.

2015 Actual Results Driver 2015 team Predicted Ranking
1 Lewis Hamilton Mercedes 5
2 Nico Rosberg Mercedes 6
3 Sebastian Vettel Ferrari 2
4 Kimi Raikkénen Ferrari 4
5 Valtteri Bottas Williams 12
6 Felipe Massa Williams 13
7 Daniil Kvyat Red Bull 9
8 Daniel Ricciardo Red Bull 7
9 Sergio Pérez Force India 16
10 Nico Hiilkenberg Force India 14
11 Romain Grosjean Lotus 11
14 I\I;IZTZZ;ado Lotus 10
16 Jenson Button McClaren 3
17 Fernando Alonso McClaren 1
18 Marcus Ericsson Sauber 15
21 Will Stevens Marussia 17

- Kevin Magnussen McClaren 8




Figure Al: Plot of the top 20 driver-level residuals, representing the top 20 drivers of all time
(1950-2014) according to our model. Number of drivers and race competitiveness are
controlled. Michael Schumacher is treated as two drivers (pre and post retirement), with
only his pre-retirement performances represented in the graph. Based on model (c) in table
A3. 95% credible intervals are shown.
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Figure A2: Driver level residuals for all 695 drivers, based on predictions from model (b) in table A3.
It can be seen that the better drivers (with large negative residuals) generally have narrower
confidence intervals as a result of competing in more races (many of those in the lower ranks
competed in as few as one race). This graph is an extended version of figure 2.
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Figure A3: Top 20 team-level residuals, based on model (b) in table A3
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Figure A4: Top 20 team-year level residuals, based on model (b) in table A3. Red Bull in 2011

performed best relative to the same team’s average performance.
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Figure A5: Plot of the top 20 driver-level residuals, representing the top 20 drivers of all time
(1950-2014) according to our model in (a) wet and (b) dry conditions. Number of drivers and

race competitiveness are controlled. Michael Schumacher is treated as two drivers (pre and
post retirement), with only his pre-retirement performances represented in the graph. 95%

credible intervals are shown. Based on the model in table A7.
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10Figure A6: Plot of the top 20 driver-level residuals, representing the top 20 drivers of all
time (1950-2014) according to our model, on (a) permanent, (b) temporary and (c) street
circuits. Number of drivers and race competitiveness are controlled. Michael Schumacher is
treated as two drivers (pre and post retirement), with only his pre-retirement performances
represented in the graph. 95% credible intervals are shown. Based on the model in table A8.
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*These graphs (figures A6 and A7) were produced by models that used ‘separate coding’ in the random part
of the model, to allow effects and their uncertainty to be most easily computed. These models produce exactly
equivalent results to the ‘contrast coding’ expressed in equation 7; see Bullen et al. (1997). Schumacher is
treated as two drivers in both figures. The coefficients for these models are given in the online appendix
(tables A7 and A8).
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