

This is a repository copy of *Psychological predictors of opportunistic snacking in the absence of hunger*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/96932/

Version: Accepted Version

Article:

Fay, SH, White, MJ, Finlayson, G et al. (1 more author) (2015) Psychological predictors of opportunistic snacking in the absence of hunger. Eating Behaviors, 18. pp. 156-159. ISSN 1873-7358

https://doi.org/10.1016/j.eatbeh.2015.05.014

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	
2	
3	
4	
5	
6	
7	
8	Psychological predictors of opportunistic snacking in the absence of hunger
9	
10	
11	Stephanie H. Fay ^{a*} , Melanie J. White ^a , Graham Finlayson ^b , Neil A. King ^a
12	
13	
14	^a Institute of Health and Biomedical Innovation, Queensland University of Technology,
15	Brisbane, Australia
16	^b School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
17	
18	*Corresponding author: Stephanie H. Fay, Institute of Health and Biomedical Innovation, 60
19	Musk Avenue, Kelvin Grove, Queensland 4059, Australia; email: Stephanie.fay@qut.edu.au;
20	telephone +61 (0)7 3138 6093
21	

Abstract

25	Increased frequency of eating in the absence of homeostatic need, notably through snacking, is
26	an important contributor to overconsumption and may be facilitated by increased availability
27	of palatable food in the obesogenic environment. Opportunistic initiation of eating snacking is
28	likely to be subject to individual differences, although these are infrequently studied in
29	laboratory-based research paradigms. This study examined psychological factors associated
30	with opportunistic initiation of snacking, and predictors of intake in the absence of homeostatic
31	need. Fifty adults (mean age 34.5 years, mean BMI 23.9 kg/m ² , 56% female) participated in a
32	snack taste test in which they ate a chocolate snack to satiation, after which they were offered
33	an unanticipated opportunity to initiate a second eating episode. Trait and behavioural
34	measures of self control, sensitivity to reward, dietary restraint and disinhibited eating were
35	taken. Results showed that, contrary to expectations, those who initiated snacking were better
36	at inhibitory control compared with those who did not initiate. However, amongst participants
37	who initiated snacking, intake in the laboratory(kcal) was predicted by higher food reward
38	sensitivity, impulsivity and BMI. These findings suggest that snacking initiation in the absence
39	of hunger is an important contributor to overconsumption. Consideration of the individual
40	differences promoting initiation of eating may aid in reducing elevated eating frequency in
41	at-risk individuals.
42	
43	Overconsumption; eating initiation; eating frequency; reward; inhibitory control
44	
45	

48 <u>1. Introduction</u>

50	Overconsumption can be defined as energy intake that is superfluous to energy needs (Fay et		
51	al., 2013), with excessive portion size or consumption of energy-dense foods often implicated		
52	(Duffey and Popkin, 2011; French et al., 2014; Piernas and Popkin, 2011). However, research		
53	increasingly suggests that elevated eating frequency is a significant contributor to		
54	overconsumption and weight gain (Berteus Forslund et al., 2005; la Fleur et al., 2014; Mattes,		
55	2014). Initiation of eating is likely to be an important driver of eating frequency, in that a		
56	higher propensity to initiate eating, especially in the absence of hunger, may be associated with		
57	overconsumption associated with greater frequency of eating episodes. This may be facilitated		
58	by increased snack food availability (la Fleur et al., 2014). It is hypothesised that individual		
59	differences exist in opportunistic snacking, and the psychological drivers of eating initiation in		
60	the absence of metabolic need are therefore of interest. However, laboratory-based research		
61	has tended to overlook initiation of eating, in favour of overconsumption as amount consumed,		
62	or portion size, during a single mandatory eating episode.		
63	Research has shown that overconsumption within an eating episode is related to		
64	increased sensitivity to food reward (Davis et al., 2007; Epstein et al., 2011), reduced inhibitory		
65	self control (Allan et al., 2010; Haws and Redden, 2013; Jasinska et al., 2012), or an interaction		
66	of these factors (Nederkoorn et al., 2010; Redden and Haws, 2013; Rollins et al., 2010), with		
67	eating behaviour traits such as dietary restraint and disinhibition (Batra et al., 2013; Carr et al.,		
68	2014; Hofmann et al., 2007) also implicated. It is unclear whether these factors, implicated in		
69	delayed termination of an eating episode, may also be predictive of the decision to initiate		
70	eating. Much research investigating eating initiation has relied on self-report (e.g. Tuomisto et		
71	al., 1998), despite issues with under-reporting of eating frequency (McCrory et al., 2011). The		
72	aims of this study were to examine differential factors levels of sensitivity to food reward,		

73	inhibitory self control, dietary restraint and disinhibition between individuals who	
74	opportunistically initiated intake in the laboratory and those who did not; and secondly to	
75	examine predictors of overconsumption in this context.	
76		
77	2. Methods	
78		
79	2.1 Participants	
80		
81	Fifty adults (mean age 34.5 years [SD = 12.9], mean BMI 23.9 kg/m ² [SD = 3.1,], 56% female)	
82	were recruited from the staff and student population of the Queensland University of	
83	Technology to take part in a study investigating 'differences in taste perceptions of chocolate	
84	snack food' during which they ate chocolate snack food to self-determined satiation.	
85	Participants were then invited to take part in a further, unanticipated taste test. Acceptance of	
86	this further opportunity to initiate eating having recently eaten to satiation, and resultant energy	
87	intake, was the main focus of the present study.	
88		
89	2.2 Measures	
90		
91	2.2.1 Self control	
92	Trait self control was measured using the 30-item Barratt Impulsiveness Scale, Version 11	
93	(BIS-11) (Patton et al., 1995), which measures general impulsivity as well as three sub-factors:	
94	motor, attentional and non-planning impulsivity (example item: 'I act on the spur of the	
95	moment'. It is generally found to have good test-retest reliability and high correlation with	
96	other self-report measures of impulsiveness (Stanford et al., 2009).	

97	Behavioural inhibitory control was measured using a computerised GoStop task		
98	(Dougherty et al., 2005), which assesses ability to inhibit a prepotent 'go' response when a		
99	'stop' signal is presented. Participants were required to attend to a series of five-digit numbers		
100	presented in quick succession and respond via mouse-click when a number matched the		
101	previous onenumber displayed (the 'go' signal). If the colour of the number changed from		
102	black to red (the 'stop' signal), participants were required to withhold the response. Following		
103	White et al. (2009), the parameters were set as two blocks with seven stop trials, 28 no-stop		
104	trials and 56 novel trials. Stimuli were presented for 500 milliseconds (ms) with a 600ms		
105	washout between presentations. Four intervals between the 'go' and 'stop' signals were used:		
106	50ms, 150ms, 250ms and 350ms, presented in a randomised order throughout the trials.		
107	Percentage correct inhibition on the 'stop' trials was averaged over the four intervals and two		
108	blocks to produce a mean response inhibition value per session. The task has been shown to		
109	have good validity (Ledgerwood et al., 2009).		
110			
111	2.2.2 Sensitivity to food reward		
112	Sensitivity to food reward was measured using the Leeds Food Preference Questionnaire		
113	(LFPQ) (Finlayson et al., 2007), measuring motivation to eat foods according to their taste and		
114	fat properties (i.e. sweet-high fat, savoury-high fat, sweet-low fat and savoury-low fat		
115	categories). Each of the four food categories was represented by four photographs of		
116	ready-to-eat foods that were matched for familiarity and palatability. Explicit sensitivity to		
117	food reward within each category was measured using visual analogue scales (VAS) with the		
118	question 'How much do you want to eat this food right now?'. Here, data from the high-fat		
119	sweet category only were used in line with because as the test food were also high-fat sweet.fell		
120	into this category. The LFPQ is a validated predictor of food selection and intake and		
121	demonstrates reliable sensitivity to nutritional manipulations (Dalton and Finlayson, 2014).		

123	2.2.3 Dietary restraint			
124	The 10-item restraint subscale of the Dutch Eating Behaviour Questionnaire (DEBQ-R) (van			
125	Strien et al., 1986) was used to measure restrained eating tendency (sample item: 'Do you try to			
126	eat less at mealtimes than you would like to eat?"). The restraint subscale has been shown to			
127	have good test-retest reliability and validity (Allison et al., 1992).			
128				
129	2.2.4 Dietary disinhibition			
130	The 16-item disinhibition subscale of the Three Factor Eating Questionnaire (TFEQ-D)			
131	(Stunkard and Messick, 1985) was used to measure disinhibited eating tendency, or the			
132	tendency to eat opportunistically (sample item: 'I usually eat too much at social occasions, like			
133	parties and picnics'). The TFEQ-D has good reliability (Stunkard and Messick, 1985) and			
134	discriminatory validity with regards to BMI (Harden et al., 2009).			
135				
136	2.2.5 Assessment of appetite, mood and palatability			
137	Subjective appetite and mood sensations were measured using computerised 100-point visual			
138	analogue scales (VAS) <u>100mm long</u> word anchored at each end ('Not at all' and 'Extremely').			
139	Questions were: 'How hungry do you feel right now?', 'How full do you feel right now?',			
140	'How stressed do you feel right now?', 'How alert do you feel right now?', and 'How content			
141	do you feel right now?'VAS measures of appetite have been shown to have excellent			
142	test-retest reliability (Arvaniti et al., 2000) and to correspond to levels of circulating appetite			
143	hormones (Heini et al., 1998).			

- 144
- 145 <u>2.2.6 Test food</u>

146	The opportunistic taste test food was a milk chocolate snack (M&Ms Mars) with an energy
147	density of 4.9 kcal/g150g M&Ms (the size of a snack bag) was presented in a white ceramic
148	bowl in a taste test paradigm. Participants who accepted the snack were allocated 10 minutes
149	to participate in the taste test and complete VAS measures of mood, appetite and food
150	palatability, together with a series of sensory ratings of the test food (not included in analysis).
151	Participants were instructed to eat as much as they wished during the taste test, and that any
152	leftover food would be thrown away. Amount consumed was calculated by weighing the food
153	before and after the taste test.
154	The mandatory taste test chocolate snack food was Maltesers (Mars) (150g provided),
155	of which participants self-selected the amount eaten. Sweet snack foods were chosen in
156	accordance with the majority of previous research on laboratory-based snacking, with specific
157	test foods chosen to be comparable in terms of taste, sensory characteristics (confirmed via
158	self-report; data not presented here) and macronutrient composition.
159	
160	2.3 Procedure
161	
162	Self-report measures (BIS-11, DEBQ-R and TFEQ-D) were completed by online survey at
163	least one week prior to the laboratory test visit, while baseline appetite and mood VAS
164	measurements and computerised behavioural measures (GoStop and LFPQ) preceded the
165	mandatory taste test. The mandatory taste test chocolate snack food was Maltesers (Mars), of
166	which participants self selected the amount eaten. Following this taste test, each participant
167	was shown the opportunistic chocolate snack food (M&Ms) and told that a new taste test
168	opportunity was available, which was optional and unrelated to the experiment. If they
169	accepted the snack, another 10-minute taste test was administered in an identical format.
170	Post-consumption VAS measures of appetite and mood were taken following the final taste test
1	

171	(either the mandatory or the opportunistic, if accepted). Finally, height (in centimetres) and	
172	weight (in kilograms) were measured while the participant was wearing light indoor clothing,	
173	and used to calculate body mass index (BMI). After the session, participants were fully	
174	debriefed. Research was approved by the Queensland University of Technology Human	
175	Research Ethics Committee.	
176		
177	2.4 Data analysis	
178		
179	Independent samples t-tests were conducted to investigate any differences between participants	
180	who accepted and those who declined the opportunistic snack. Relationships between	
181	opportunistically initiated snack intake and appetite and psychological variables of interest	
182	(eating behaviour traits, self control and sensitivity to food reward) were examined via	
183	Pearson's correlational analysis and linear regression (enter method).	
184		
185	<u>3. Results</u>	
186		
187	3.1 Opportunistic snacking initiation	
188		
189	Thirty-eight participants from the sample (76% of total sample) accepted the opportunistic	
190	taste test. Those who initiated snacking following satiation had consumed more at the	
191	previous, mandatory taste test than those who declined it (M = 236.1 kcal acceptors vs. M =	
192	210.0 kcal non-acceptors), but this difference was not significant $\frac{(t(24.87) = -0.41, p = .69)}{(t(24.87) = -0.41, p = .69)}$.	
193	There were no significant differences between those who accepted and those who declined,	
194	with the exception of inhibitory control (see Table 1). Participants who initiated snacking	
195	demonstrated significantly better inhibitory control than those who did not.	

197

[Table 1 here]

198	
199	3.2 Opportunistically initiated snack intake
200	
201	VAS appetite scores confirmed that participants who initiated snacking were not hungry
202	following the mandatory taste test (M fullness = 57 mm, 61% increase from baseline; M hunger
203	= 44 mm, 11% decrease from baseline). Correlation analyses showed that opportunistic snack
204	intake was not correlated with any measure of appetite (hunger: $r =26$, $p = .12$; fullness: $r =$
205	.14, p = .40). Opportunistic snack intake was positively correlated with previous intake amount
206	<u>eaten</u> at the mandatory taste test ($r = .84$, $p < .001$).
207	<u>At the opportunistic taste test, Mm ean snack intake was 115.7 (SD = 151.0) kcal.</u> The
208	snack food was rated as moderately palatable (M palatability = 60 mm); however, intake was
209	not significantly correlated with palatability ($r = .28$, $p = .10$). Mean <u>opportunistic</u> snack intake
210	was positively correlated with sensitivity to food reward ($r = .40$, $p = .004$), motor impulsivity
211	(r = .39, p = .006) and BMI $(r = .30, p = .02)$. All three variables when entered into a regression
212	<u>model</u> emerged as significant predictors of intake ($F(3, 46) = 8.38$, p < .001; see Table 2).
213	
214	[Table 2 here]
215	
216	4. Discussion
217	
218	This study aimed to examine psychological predictors of initiation of snacking in the absence
219	of homeostatic need, and amount eaten in an opportunistically initiated episode. The use of a
220	community sample of adults is a strength of this study, as is the use of carefully matched test
1	

221	$\underline{foods.}$ We found that initiation of snacking was associated with higher inhibitory control. This
222	is contrary to previous research associating overconsumption and overweight with poor
223	inhibitory control (Houben et al., 2014; Jasinska et al., 2012; Wirt et al., 2014). However,
224	much research has demonstrated this in the context of amount eaten within a mandatoryn
225	eating episode, relating where inhibitory control may be required to terminate to eating when
226	food is presented 'ad libitum' termination; rather than in the context of initiation of an eating
227	episode as in the present study (Allan et al., 2010; Houben, 2011). Higher inhibitory control
228	may reflect more conscious cognitive control and it is interesting that while this was associated
229	with the decision to initiate snacking, it was not associated with the amount consumed in that
230	snacking episode. It is therefore possible that this finding is indicative of a more conscious
231	decision to initiate snacking given an opportunity, possibly coupled with the intention to later
232	compensate for intake. The mechanism underlying increased eating initiation with increased
233	self control is unknown, but it is possible that snacking may be initiated for reasons such as
234	curiosity or sensation-seeking, which is satisfied by tasting a food without necessitating
235	prolonged consumption. Higher self control may then allow successful termination of the
236	eating episode. However, this speculation requires further investigation and would benefit
237	from the addition of self-report. Amongst participants who did initiate snacking, greater trait
238	motor impulsivity was associated with greater intake. This suggests that a tendency to act on
239	motor impulses may be more strongly associated with failure to terminate eating episodes, in
240	line with previous research. Motor control in particular may be especially pertinent to intake of
241	bite-size snack foods, where intake involves repetitive hand-to-mouth movements_(Castiello,
242	1997).

Food reward sensitivity was also positively associated with snack intake, supporting
 previous laboratory-based studies (Davis et al., 2007; Rollins et al., 2014). However, in the
 present study there were no differences in reward sensitivity were not apparent between

246	participants who initiated snacking compared with those who did not. This may indicate that	
247	food reward sensitivity plays less of a role in initiation of eating, compared with amount eaten	
248	during an eating episode. a lesser role of food reward in eating initiation specifically. One	
249	proposed hypothesis for this derives from the observation in this study that opportunistic	
250	snacking initiation was not related to hunger. Evidence suggests that hunger influences	
251	reward-driven motivation to eat through increasing the incentive salience of food-related cues	
252	(Kroemer et al., 2013; Loeber et al., 2013), which may account for a reduced role in a satiated	
253	state. Alternative factors implicated in eating initiation in the absence of hunger merit further	
254	consideration, such as a tendency to eat for emotional reasons rather than in response to	
255	internal hunger of satiety cues (Tylka, 2006). Another possibility is that some participants may	
256	have eaten more than they typically would in order to avoid wasting food (Fay et al., 2011).	
257	Participants were asked to self-report any perceived influences on their behaviour at the end of	
258	the study, and dislike of food wastage was not mentioned. However, this possibility cannot be	
259	ruled out and further research should aim to clarify this issue. In the present study, the	
260	similarity of the opportunistic snack food with the previously consumed snack indicates that	
261	sensory specific satiety was unlikely to play a strong role in initiation. Snack foods were	
262	comparable in terms of taste, sensory characteristics (confirmed via self-report; data not	
263	presented here) and macronutrient composition, which may reduce sensory specific	
264	satiety related consumption (Griffioen Roose et al., 2010).	
265	The observed association with BMI and opportunistically initiated snack intake may	
266	highlight a link between overconsumption in the absence of hunger and risk for weight gain	
267	(Hill et al., 2008; Kral et al., 2012), although to date most research has been conducted in	
268	children. Disregard for hunger as a factor in meal termination has been linked to elevated BMI	

269 (Wansink et al., 2007), and a link with eating initiation is also likely. Given the relatively

Commented [MJW2]: My suggestion to mention re food wastage here, rather than as separate limitation section.

270	modest sample size of the current study, replication would be beneficial, especially to confirm	
271	findings in a population with a wide range of BMIs.	
272	The use of a community sample of adults is a strength of this study, as is the use of	Commented [MJW3]: Suggest moving this first sentence to beginning of discussion
273	carefully matched test foods. However, it is subject to a number of limitations, principally the	
274	modest sample size. Furthermore, an in-depth exploration of reasons for eating initiation was	
275	not possible in the context of this study and additional factors may have contributed to	
276	participants' intake. In particular, as participants were informed prior to the taste tests that	
277	leftover food would be thrown away, some participants may have eaten more than they would	
278	have otherwise in order to avoid wasting food (Fay et al., 2011). Participants were asked to	
279	self-report any perceived influences on their behaviour at the end of the study, and dislike of	
280	food wastage was not mentioned. However, this possibility cannot be ruled out and further	
281	research should aim to clarify this issue	Commented [k4]: My preference is to delete this.
282	4.1 Conclusions	
283		
284	This study is one of the first to examine predictors of opportunistically initiated food intake in	
285	the laboratory, together with the characteristics of individuals who initiate snacking compared	
286	with those who do not. We found that opportunistically initiated intake was associated with	
287	sensitivity to food reward, motor impulsivity and higher BMI, which suggests a link with	
288	overconsumption in the absence of metabolic need through elevated eating frequency.	
289	However, we also found that inhibitory control was higher in those who initiated eating than	
290	those who did not, implying that opportunistic initiation may not simply represent uncontrolled	
291	eating in response to food availability. The factors associated with opportunistic initiation of	
292	snacking therefore merit further study. Opportunistic initiation of snacking in the absence of	
293	metabolic need, implicating elevated eating frequency, is an important contributor to	
294	overconsumption and the factors predisposing it merit further study. It is important to define	
1		

295	overconsumption in order to highlight the diverse pathways to overweight and obesity, which	
296	may be a current barrier to obesity treatment and prevention.	
297		
298		
299	References	
300		
301	Allan JL, Johnston M and Campbell N. (2010) Unintentional eating. What determines	
302	goal-incongruent chocolate consumption? Appetite 54: 422-425.	
303	Allison DB, Kalinsky LB and Gorman BS. (1992) A comparison of the psychometric	
304	properties of three measures of dietary restraint. Psychological Assessment 4: 391-398.	
305	Arvaniti K, Richard D and Tremblay A. (2000) Reproducibility of energy and macronutrient	
306	intake and related substrate oxidation rates in a buffet-type meal. British Journal of	
307	Nutrition 83: 489-495.	
308	Batra P, Das SK, Salinardi T, et al. (2013) Eating behaviors as predictors of weight loss in a 6	
309	month weight loss intervention. Obesity 21: 2256-2263.	
310	Berteus Forslund H, Torgerson JS, Sjostrom L, et al. (2005) Snacking frequency in relation to	
311	energy intake and food choices in obese men and women compared to a reference	
312	population. International Journal of Obesity and Related Metabolic Disorders 29:	
313	711-719.	
314	Carr KA, Lin H, Fletcher KD, et al. (2014) Food reinforcement, dietary disinhibition and	
315	weight gain in nonobese adults. Obesity 22: 254-259.	
316	Castiello U. (1997) Arm and mouth coordination during the eating action in humans: a	
317	kinematic analysis. Experimental Brain Research 115: 552-556.	
318	Dalton M and Finlayson G. (2014) Psychobiological examination of liking and wanting for fat	
319	and sweet taste in trait binge eating females. Physiology & Behavior.	

320	Davis C, Patte K, Levitan R, et al. (2007) From motivation to behaviour: A model of reward	
321	sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 48:	
322	12-19.	
323	Dougherty D, Mathias C, Marsh D, et al. (2005) Laboratory behavioral measures of	
324	impulsivity. Behavior Research Methods 37: 82-90.	
325	Duffey KJ and Popkin BM. (2011) Energy density, portion size, and eating occasions:	
326	Contributions to increased energy intake in the United States, 1977–2006. PLoS Med 8:	
327	e10011050.	
328	Epstein LH, Carr KA, Lin H, et al. (2011) Food reinforcement, energy intake, and	
329	macronutrient choice. The American Journal of Clinical Nutrition 94: 12-18.	
330	Fay SH, Ferriday D, Hinton EC, et al. (2011) What determines real-world meal size? Evidence	
331	for pre-meal planning. Appetite 56: 284-289.	
332	Fay SH, Finlayson GS and King NA. (2013) Diet-induced obesity: When does consumption	
333	become overconsumption? Current Obesity Reports 2: 104-106.	
334	Finlayson G, King NA and Blundell JE. (2007) Is it possible to dissociate 'liking' and 'wanting'	
335	for foods in humans? A novel experimental procedure. Physiology & Behavior 90:	
336	36-42.	
337	French SA, Mitchell NR, Wolfson J, et al. (2014) Portion size effects on weight gain in a free	
338	living setting. Obesity 22: 1400-1405.	
339	Harden CJ, Corfe BM, Richardson JC, et al. (2009) Body mass index and age affect	
340	Three-Factor Eating Questionnaire scores in male subjects. Nutrition Research 29:	
341	379-382.	
342	Haws KL and Redden JP. (2013) In control of variety. High self-control reduces the effect of	
343	variety on food consumption. Appetite 69: 196-203.	

- Heini AF, Lara-Castro C, Kirk KA, et al. (1998) Association of leptin and hunger-satiety
- 345 ratings in obese women. International Journal of Obesity & Related Metabolic
- 346 Disorders 22: 1084.
- Hill C, Llewellyn CH, Saxton J, et al. (2008) Adiposity and 'eating in the absence of hunger' in
 children. International Journal of Obesity 32: 1499-1505.
- 349 Hofmann W, Rauch W and Gawronski B. (2007) And deplete us not into temptation:
- 350 Automatic attitudes, dietary restraint, and self-regulatory resources as determinants of
- eating behavior. Journal of Experimental Social Psychology 43: 497-504.
- 352 Houben K. (2011) Overcoming the urge to splurge: Influencing eating behavior by
- 353 manipulating inhibitory control. Journal of Behavior Therapy and Experimental
- 354 Psychiatry 42: 384-388.
- Houben K, Nederkoorn C and Jansen A. (2014) Eating on impulse: The relation between
 overweight and food-specific inhibitory control. Obesity 22: E6-E8.
- Jasinska AJ, Yasuda M, Burant CF, et al. (2012) Impulsivity and inhibitory control deficits are
 associated with unhealthy eating in young adults. Appetite 59: 738-747.
- Kral TV, Allison DB, Birch LL, et al. (2012) Caloric compensation and eating in the absence of
 hunger in 5- to 12-y-old weight-discordant siblings. The American Journal of Clinical
- 361 Nutrition 96: 574-583.
- Kroemer NB, Krebs L, Kobiella A, et al. (2013) Fasting levels of ghrelin covary with the brain
 response to food pictures. Addiction Biology 18: 855–862.
- la Fleur SE, Luijendijk MCM, van der Zwaal EM, et al. (2014) The snacking rat as model of
- 365 human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.
- 366 International Journal of Obesity 38: 643-649.

367	Ledgerwood DM, Alessi SM, Phoenix N, et al. (2009) Behavioral assessment of impulsivity in
368	pathological gamblers with and without substance use disorder histories versus healthy
369	controls. Drug and Alcohol Dependence 105: 89-96.
370	Loeber S, Grosshans M, Herpertz S, et al. (2013) Hunger modulates behavioral disinhibition
371	and attention allocation to food-associated cues in normal-weight controls. Appetite 71:
372	32-39.
373	Mattes R. (2014) Energy intake and obesity: Ingestive frequency outweighs portion size.
374	Physiology & Behavior 134: 110–118.
375	McCrory MA, Howarth NC, Roberts SB, et al. (2011) Eating frequency and energy regulation
376	in free-living adults consuming self-selected diets. The Journal of Nutrition 141:
377	148-153.
378	Nederkoorn C, Houben K, Hofmann W, et al. (2010) Control yourself or just eat what you like?
379	Weight gain over a year is predicted by an interactive effect of response inhibition and
380	implicit preference for snack foods. Health Psychology 29: 389-393.
381	Patton JH, Stanford MS and Barratt ES. (1995) Factor structure of the Barratt Impulsiveness
382	Scale. Journal of Clinical Psychology 51: 768-774.
383	Piernas C and Popkin BM. (2011) Increased portion sizes from energy-dense foods affect total
384	energy intake at eating occasions in US children and adolescents: patterns and trends by
385	age group and sociodemographic characteristics, 1977–2006. The American Journal of
386	Clinical Nutrition 94: 1324-1332.
387	Redden JP and Haws KL. (2013) Healthy satiation: The role of decreasing desire in effective
388	self-control. Journal of Consumer Research 39: 1100-1114.
389	Rollins BY, Dearing KK and Epstein LH. (2010) Delay discounting moderates the effect of

food reinforcement on energy intake among non-obese women. Appetite 55: 420-425.

391	Rollins BY, Loken E, Savage JS, et al. (2014) Measurement of food reinforcement in preschool
392	children. Associations with food intake, BMI, and reward sensitivity. Appetite 72:
393	21-27.
394	Stanford MS, Mathias CW, Dougherty DM, et al. (2009) Fifty years of the Barratt
395	Impulsiveness Scale: An update and review. Personality and Individual Differences 47:
396	385-395.
397	Stunkard AJ and Messick S. (1985) The three-factor eating questionnaire to measure dietary
398	restraint, disinhibition and hunger. Journal of Psychosomatic Research 29: 71-83.
399	Tuomisto T, Tuomisto MT, Hetherington M, et al. (1998) Reasons for initiation and cessation
400	of eating in obese men and women and the affective consequences of eating in
401	everyday situations. Appetite 30: 211-222.
402	Tylka TL. (2006) Development and psychometric evaluation of a measure of intuitive eating
403	Journal of Counseling Psychology 53: 226-240.
404	van Strien T, Frijters JER, Bergers GPA, et al. (1986) The Dutch Eating Behavior
405	Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating
406	behavior. International Journal of Eating Disorders 5: 295-315.
407	Wansink B, Payne CR and Chandon P. (2007) Internal and external cues of meal cessation: The
408	French Paradox redux? Obesity 15: 2920-2924.
409	White M, Lawford B, Morris C, et al. (2009) Interaction between DRD2 C957T polymorphism
410	and an acute psychosocial stressor on reward-related behavioral impulsivity. Behavior
411	Genetics 39: 285-295.
412	Wirt T, Hundsdörfer V, Schreiber A, et al. (2014) Associations between inhibitory control and
413	body weight in German primary school children. Eating Behaviors 15: 9-12.
414	

417 <u>Table 1: Mean (standard deviation) values and t-tests between participants who initiated vs. did</u>

- 418 <u>not initiate snacking</u>
- 419

Variable	Initiators M (SD)	Non-initiators M (SD)	t	р
	n = 38	n = 12		
Gender (M:F)	15:23	7:5	-	-
Age	35.08 (12.75)	32.83 (13.69)	52	.60
BMI	23.57 (3.23)	24.21 (2.56)	.20	.84
Restraint	2.45(0.75)	2.33 (0.72)	89	.38
Disinhibition	5.39 (3.06)	5.00 (3.35)	.53	.60
Attentional	16.08 (2.61)	14.27 (4.05)	-1.88	.07
impulsivity				
Motor impulsivity	21.14 (3.08)	20.00 (3.52)	67	.51
Non-planning	22.81 (4.59)	20.46 (4.91)	-1.14	.26
impulsivity				
Inhibitory control	45.96 (12.52)	36.53 (10.90)	-2.25	.03
Food reward	48.77 (24.95)	45.48 (11.23)	23	.82
sensitivity				
VAS hunger ¹	43.67 (24.85)	37.17 (16.75)	84	.40

420 ¹Following mandatory snack intake

422 <u>Table 2: Linear regression model predicting opportunistically initiated snack intake.</u>

423

	Unstandardised		Standardised	t	р
	В	S.E.	Beta	-	
(Constant)	-620.47	171.78		-3.61	.001
Sensitivity to food	2.47	0.79	.38	3.13	.003
reward					
Motor impulsivity	13.41	5.47	.30	2.45	.02
BMI	13.94	5.77	.29	2.42	.02

424 Model $R^2 = .35$