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Abstract

This paper describes a multi-objective power dispatching problem that uses
Plug-in Electric Vehicle (PEV) as storage units. We formulate the energy stor-
age planning as a Mixed-Integer Linear Programming (MILP) problem, respect-
ing PEV requirements, minimizing three different objectives and analyzing three
different criteria. Two novel cost-to-variability indicators, based on Sharpe Ra-
tio, are introduced for analyzing the volatility of the energy storage schedules.
By adding these additional criteria, energy storage planning is optimized seeking
to minimize the following: total Microgrid (MG) costs; PEVs batteries usage;
maximum peak load; difference between extreme scenarios and two Sharpe Ra-
tio indices. Different scenarios are considered, which are generated with the
use of probabilistic forecasting, since prediction involves inherent uncertainty.
Energy storage planning scenarios are scheduled according to information pro-
vided by lower and upper bounds extracted from probabilistic forecasts. A
MicroGrid (MG) scenario composed of two renewable energy resources, a wind
energy turbine and photovoltaic cells, a residential MG user and different PEVs
is analyzed. Candidate non-dominated solutions are searched from the pool of
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feasible solutions obtained during different Branch and Bound optimizations.
Pareto fronts are discussed and analyzed for different energy storage scenarios.

Keywords: Microgrids, Power dispatching, Energy storage management,
Plug-in electric vehicle, Probabilistic forecast, Sharpe ratio

1. Introduction

The main goal of this paper is to address the power dispatching problem re-1

garding to the minimization of six different objective functions: Microgrid (MG)2

total costs; usage of PEV batteries, maximum grid peak load, volatility behav-3

ior in extreme scenarios and two different criteria based on the Sharpe Ratio4

index. In order to evaluate suitable schedules to be applied in extreme scenar-5

ios, we make use of probabilistic forecasts to generate different scenarios. The6

multi-objective energy storage management problem considers PEVs as main7

storage units, located at SmartParks. Power dispatching schedule is planned to8

meet PEVs operational requirements, settled by its users, and trying to charge9

PEVs batteries when energy price is cheaper.10

Energy storage has been studied over the last decades and remains a great11

challenge [1]. Especially in MG systems, its use has important benefits. The12

use of storage allows both sides, demand and production, to optimize the power13

exchanged with the main grid, in compliance with the electricity market and14

forecasts. Renewable energy generators associated with storage units are consid-15

ered as active distributed generators, one of the fundamental elements of power16

management in MG systems. Current smart-microgrid scenarios may include17

different renewable energy resources and different storage units. In this regard,18

storage is able to increase renewable energy self-consumption and independence19

from the grid. A wide range of applications exist for Energy Storage Systems20

(ESS). Tan, Li and Wang [2] refer the following: power quality enhancement, mi-21

crogrid isolated operation, active distribution systems and PEVs’ technologies.22

ESS ensembled with nondispatchable renewable energy generation units, such23

as wind and solar energy, can be mold into dispatchable units. Their use may24

improve dynamic stability, transient stability, voltage support and frequency25

regulation [3]. Furthermore, they can also be used for minimizing global cost26

and environment impact.27

MG systems require smarter operations to well-coordinate these new emerg-28

ing decentralized power energy sources. Optimization methods justify the cost29

of investing in a MG system by enabling economic and reliable utilization of30

resources [4]. Olivares et al. [5] observed that the microgrid optimal energy31

management problem falls, generally, into the category of mixed integer non-32

linear programming problems. Because, in general, objective functions may33

include higher polynomial terms and operational constraints. Levron, Guerrero34

& Beck [6] presented a methodology for solving the optimal power flow in MG.35

The model solves small systems containing up to two renewable generators and36
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two storage devices. The proposed approach grows in complexity exponentially,37

since each storage device contributes extra dimensions to the solution space.38

The mathematical formulation proposed by Macedo, Franco, Rider & Romero39

[7] extended the approach of Levron, Guerrero & Beck [6]. Their formulation40

uses a convex equivalent model which obtains an approximate optimal solu-41

tion for the same microgrid system. Mariani, Sareni, Roboam & Turpin [8]42

researched the power dispatching problem seeking to minimize system global43

energy costs. A smart-microgrids DC system with flywheel energy storage was44

analyzed. By considering forecasts for a MG residence and solar PV production,45

an off-line power dispatching was performed in the search of storage planning46

schedules. Mohammadi, Soleymani & Mozafari [9] considered uncertainties over47

the forecasting of consumption and renewable energy generation. A stochastic48

operation management of one day ahead was performed using a Heuristic Al-49

gorithm. At the initial state 2000 storage planning scenarios were generated,50

using a Probability Distribution Function (PDF) to represent the uncertainty51

of the forecasts. Those scenarios were generated and later reduced to 20 and52

sorted in ascending order of probability of occurrence. Recently, Kou, Gao &53

Guan [10] integrated a battery ESS with a wind farm, using stochastic model54

predictive control scheme. Based on the forecasted wind power distributions55

and uncertainties, using a sparse warped Gaussian process, they sought for op-56

timal operation regarding wind power dispatchability. The influence of wind57

power rapid ramp events was considered by Wang, Yu & Yu [11], looking for58

an optimal dispatching strategy against wind power rapid ramp events during59

peak load periods. An energy storage system coupled with a PV plant was im-60

plemented for correcting the prediction errors by Delfanti, Falabretti & Merlo61

in [12]. They tried to fulfill the lack between the injections of a PV power plant62

and the day-ahead market power schedule, minimizing energy imbalances.63

Torreglosa et al. [13] analyzed a long-term energy dispatching, based on a64

model predictive strategy using on state control. Another long-term scheduling65

was evaluated by Tascikaraoglu et al. [14], considering a hybrid system with66

RER and energy storage, in the concept of virtual power plant. They analyzed67

the economic operation of the system in order to enable it to participate in68

the electricity market with high levels of reliable power production. Trovão &69

Antunes [15] designed two meta-heuristic approaches for multi-ESS management70

in electric vehicles (EV). It has been noticed that hybridization of two or more71

energy storage elements into EV has been improving both the vehicle driving72

range and the lifecycle storage elements [16]. This kind of system allows batteries73

to perform power-sharing decisions in real time [17]. However, the latter did74

not consider the whole of RER along with the storage planning and scheduling.75

Some approaches in the literature incorporated the reduction of Greenhouse76

gas (GHG) emissions as part of a Multi-Objective (MO) Optimization Problem77

[18, 19, 20]. Other applications spotlighted on finding the energy and power78

capacities of the storage system that minimizes the operating costs of the MG,79

as can be verified in Fossati, Galarza, Mart́ın-Villate & Fontán [21].80

In this paper, a new multi-objective power dispatching problem is intro-81

duced, aiming to minimize global MG costs while minimizing saving batteries82
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wear and tear, maximum peak load, volatility between extreme scenarios and83

schedule’s total cost and maximum peak load volatility. Understanding the con-84

tributions of batteries as an objective function provides profits not only for the85

PEVs owners, but, also takes into account environment issues. Optimize its86

use not only reduces battery replacement costs for the PEVs owners but also87

is beneficial for the environment, since they are going to be used when needed.88

The proposed model also tries to obtain energy storage planning scenarios which89

minimize maximum power flow between the smart-microgrid and the main grid.90

The two latter objectives evaluate the schedule compared to its extreme scenar-91

ios and also to a wide range of possible scenarios. This is done by measuring92

the current expected cost compared to other possible costs using Sharpe Ratio93

[22]. Sharpe ratio is a useful index tool for analysis, used by investors facing94

alternative choices under uncertainties [23].95

Different ESS have been adapted to be used over MG, some examples are:96

Battery Energy Storage System [6], Compressed Air Energy Storage systems97

[24], Flywheels [8], Thermal Energy Storage [25], Pumped-storage hydroelec-98

tricity [26], Superconducting Magnetic Energy Storage [27]. On the other hand,99

the use of energy storage in connection with SmartParks is becoming crucial100

demand as the number of PEVs, such as electric cars and plug-in hybrid, in the101

market is increasing [28]. Smart Grid applications, being developed, are still102

analyzing the benefits of this growth [29]. Power dispatching systems are incor-103

porating vehicle-to-grid (V2G) power transactions over their schedule. Bidirec-104

tional power flow between PEVs and the grid will become essential [28, 30]. As105

emphasized by Romo & Micheloud [31], penetration of PEVs will increase sig-106

nificantly in the next 20 years. As a conclusion, smart parking lots with large107

fleets of electric cars can provide a flexible storage reserve for a MG system,108

reducing energy production needs.109

Most of the work in the literature deal with the concept of parameters un-110

certainties of ESS management. In Papadopoulos et al. [32], results from a111

deterministic storage planning model showed that voltage violations would be112

quite high without the consideration of errors in the forecasts. From a proba-113

bilistic model with uncertainties, it was concluded that the integration of micro-114

generation in each MG household might reduce such violations. Previous works115

in ESS has focused on obtaining deterministic storage scenarios. This task was116

mainly done by introduction of uncertainty over forecasts and identifying the117

most likely scenarios [25, 8, 9]. Here, uncertainties are considered through the118

use of probabilistic forecasts, analyzing scenarios provided by their upper and119

lower bounds.120

Probabilistic forecasts of MG components have been researched in the follow-121

ing areas: load [33], electricity prices [10, 34], wind [35] and photovoltaic power122

[36, 37]). Forecasting is a stochastic problem, probabilistic forecasts are able to123

provide additional quantitative information on the uncertainty associated with124

the MG components. Compared to currently wide-used deterministic forecasts,125

probabilistic forecasts are able to supplement point forecasts with probability126

information about their likely errors. Another advantage of using a probabilistic127

forecasting model is that they are able to quantify non-Gaussian uncertainties128
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in wind and solar power forecasts. As analyzed by Zhang, Wang & Wang [35],129

probabilistic forecasts are more appropriate inputs over decision-making in un-130

certain environments. It is expected that the use of probabilistic forecasts as131

inputs for energy storage management and power dispatching systems will be-132

come more widespread. The probabilistic forecasts provide reliable lower and133

upper bounds for each predicted time step, their use analyzing schedule in ex-134

treme scenarios is dealt with in this study.135

In this work, a multi-objective ESS management problem with probabilistic136

forecasts is developed. Energy storage is studied on a smart-microgrid scenario137

composed of renewable energy generators, MG consumers and PEVs available at138

a SmartPark. The main goal is to optimize the total MG costs while minimizing139

the use of PEVs batteries, maximum peak load of the system and schedules’140

behavior in different scenarios. Operational requirements of the PEVs are con-141

sidered: the specification of a desired percentage of energy in the PEVs during142

the storage schedule; the maximum Depth of Discharge (DoD) of batteries, in143

order to preserve the useful life of PEVs batteries. A smart storage scheduling144

model based on a mixed-integer mathematical formulation is designed. Non-145

dominated solutions are obtained from feasible solutions found over branches of146

the Branch and Bound (BB) optimization tree.147

The major contributions of the current work are:148

• Consideration of PEVs located at SmartParks as storage unit and respect-149

ing the operational constraints required by its users;150

• To analyze the upper and lowers bounds provided by the probabilistic151

forecasts in order to test best-case and worst-case energy storage scenarios;152

• A novel multi-objective power dispatching problem.153

The remainder of this paper is organized as follows. Section 2 describes the154

microgrid scenario. Section 3 describes, in detail, the proposed energy storage155

management framework. Section 4 presents the computational experiments,156

and, finally, Section 5 details our final conclusions and future work.157

2. Microgrid scenario158

In the microgrid considered in this study, all components are connected159

through a DC bus without power flow constraints. The scenario is composed160

of:161

• Consumption: A building with a maximum contractual power of 243162

kW.163

• Production:164

1. Wind Power Turbine (WPT) with a total capacity of 160 kW;165

2. Solar PV array with a total capacity of 80 kW.166
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• SmartPark storage unit:167

– PEV car composed with a typical Lithium-ion battery 60kW/60kWh168

storage.169

– PEV car composed with three high speed flywheel 10kW/10kWh170

storage.171

– PEV car composed with a CAES 60kW/60kWh storage.172

The problem of energy management described here consists in planning, with173

a time step of 1h, energy storage for each hour of a desired planning horizon.174

Two different storage planning time horizons are handled in this current work,175

24 and 168 hours ahead.176

Figures 1a and 1b show day and week month historical data of the analyzed177

periods. WPT data were adapted from EirGrid [38], Solar PV adapted from178

Hong, Wilson & Xie [33] and residential house (adapted from Liu, Tang, Zhang179

& Liu [39]). As can be verified in these figures, three different PEVs are showed.180

PEVs availability are stated between each pair of red and blue points (maybe a181

last red arrival point can be without pair, since vehicle will only departure later182

than the last time stamp). When vehicle arrives there is a red symbol marking183

its arrival state of charge (SOC). Analogously, in each departure, the blue point184

marks the desired battery SOC. During the arrival until the last time stamp185

before departure, PEV is available as an extra energy demand/source for the186

MG. Both words (demand/source) are used here since each PEV may represent187

an extra demand, taking into account that its owner might require charging188

during its stay at the SmartPark, what would represent an extra demand. On189

the other hand, if available to be used, as will be shown along this paper, it can190

represent a very useful and beneficial MG component.191

The three PEVs depicted in Figures 1a and 1b where generated according192

to the procedure described in Algorithm 1.193

Figure 1: Historical microgrid data with hour sampling
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Algorithm 1: Generate PEV

Input: Cardinality of the set of interval |I|
Output: PEV availability pevavi, PEV arrival pevarrvi , PEV departure

pev
dep
vi , PEV arrival SOC pevSOCarr

vi , PEV departure SOC

pev
SOCdep

vi

for i← 0 to |I| do1

pevavi ← random binary ∈ [true, false]2

if pevavi is true then3

pevSOCarr

vi ← random SOC ∈ [low,medium,much]4

i′ ← i+random available time ∈ [short,medium, long]5

pevavi,...,i′ ← true6

i← i′7

pev
dep
vi ← true8

pev
SOCdep

vi ← pevavi+random extra SOC ∈ [low,medium,much]9

end10

end11

return pevavi, pev
arr
vi , pev

dep
vi , pevSOCarr

vi , pev
SOCdep

vi12

194

195

In Line 2 of Algorithm 1, PEV receives a random status of arriving or not.196

If it is arriving, a random initial SOC, from different ranges of possible initial197

SOCs, is assigned in line 4. After defining the availability time at the SmartPark,198

line 5, the departure flag is set in line 8 and a random departure SOC, higher199

than arrival, is defined in line 9. In this paper, each vehicle is considered to200

demand energy from the grid and, thus, its departure SOC is always greater201

than its arrival SOC. A maximum allowed percentage of charging per interval202

is set to be 35%. Thus, any huge charging, higher than 35%, is expected by the203

PEV owner. Parameters are formally presented in Section 3.2.204

Typical microgrid prices, also obtained from Hong, Wilson & Xie [33], are205

shown in Figure 2. This figure shows the probabilistic forecast of the prices. In206

this case, the medium quartile q50 is considered to be the real measured price.207

For simplicity, this data is repeated to the others days, when required by a208

longer energy storage planning.209

3. Methodology210

This section describes the proposed framework developed and used to solve211

the multi-objective energy storage planning problem. First of all, Section 3.1212

describes the model used to generate the probabilistic forecast for the MG com-213

ponents. Section 3.2 presents the mathematical formulation developed in this214

paper, as well as a description of the three main objective functions to be min-215

imized. Section 3.3 introduces other criteria functions used to evaluate energy216

storage schedule behavior in extreme and different scenarios. Section 3.4 intro-217

duces the proposed Branch and Bound pool search algorithm.218
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Figure 2: Probabilistic price forecasts

3.1. Probabilistic forecasting problems219

A set of Qmgc = [qmgc
1 , ..., q

mgc
99 ] probabilistic quartiles is considered for each220

microgrid component mgc (energy consumption, wind and solar production,221

energy prices). Each quartile, qmgc
i = [f1, ..., ft, ..., fk], is composed of a set of222

ft forecasts for the desired time horizon. The lowest and upper quartile q0 and223

q100 are not considered, since they are, technically, −∞ and ∞.224

The hybrid fuzzy heuristic algorithm of Coelho et al. [40] is adapted to225

perform the probabilistic forecast. Since the heuristic model is based on a fuzzy226

model calibrated using a bio-inspired metaheuristic algorithm, the proposal here227

is to change model parameters in order to generate different forecast values.228

Parameters changed here were the number of individuals of the population of229

Evolution Strategy [41] used to refine the fuzzy model which generates the230

forecasts. From the set of different forecast models, they were sorted from the231

lowest and highest values and quartiles were determined. If forecasts are far232

from the actual measured data, they are slightly adjusted in order to provide a233

reasonable probabilistic forecast scenario to be, didactically, used here.234

Figures 3a, 3b, 3c and 3d show the obtained probabilistic forecasts for the235

historical data introduced in Section 2. As can be verified, lower and upper236

quartiles (q1 and q99, respectively) were able to afford acceptable limits for each237

MG component time series forecast (consumption (Figures 3a and 3b), solar238

(Figure 3b), renewable energy production, solar + wind, (Figure 3d) and prices239

(Figure 2)). From intervals the forecast time horizons 105 to 115 the model did240

not have a good performance in forecasting solar PV production, thus, a small241

gap can be verified. Nevertheless, since the extreme scenario analyses handled242

in this paper do not consider the relationship between the current measured243

values, the probabilistic forecast can still be considered precise.244
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Figure 3: Probabilistic forecasts
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3.2. Multi-objective energy storage management problem245

AMILP model was developed in the interest of optimizing an global criterion246

based on the linear combination of three different objectives in energy storage247

planning. The following parameters were considered for the model:248

I: Set of discrete intervals from 1 to furthest desired storage time horizon k;249

qdi : demand of all customers together at the interval i ∈ I;250

qrGi : indicates the energy production of all renewable energy resources at the251

interval i ∈ I;252

qselli : energy selling price at the interval i ∈ I;253

q
buy
i : energy buying price at the interval i ∈ I;254

PEV : set of plug-in electric vehicles;255

pevSOCmin
v : indicates the minimum DoD of the vehicle v;256

pevPower
v : indicates PEV battery maximum capacity;257

pevavi: indicates if the vehicle v is available at the SmartPark at the interval258

i ∈ I;259

pevarrvi : indicates if the vehicle v is arriving at the SmartPark at the interval260

i ∈ I;261

pevSOCarr

vi : indicates the battery percentage of the vehicle v at its arrival at the262

interval i ∈ I, obviously, if pevarrvi = 1, otherwise it does not need to be263

attended;264

pev
dep
vi : indicates if the vehicle v is departing from the SmartPark at the interval265

i ∈ I;266

pev
SOCdep

vi : indicates the battery percentage demanded by the vehicle v at its267

departure at the interval i ∈ I, if pevdepvi = 1, otherwise it does not need268

to be attended;269

C: set of different battery cycles;270

pevdRate
vc : battery discharging rate of the plug-in vehicle v with power cycle c.271

pevdPrice
vc : price for discharging the battery of the plug-in vehicle v with rate272

pevdRate
vc ;273

pevcRate
vc : indicates the charge rate of the vehicle v;274

pevcPrice
vc : price for charging the battery of the plug-in vehicle v with rate of275

charge cycle pevcRate
vc .276

The following decision variables were defined:277
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eselli : variable with real values indicating the amount of energy being sold at278

the interval i ∈ I;279

e
buy
i : variable with real values indicating the amount of energy being bought280

at the interval i ∈ I;281

esellActive
i : binary variable which indicates if any energy being sold at the282

interval i ∈ I;283

e
buyActive
i : binary variable which indicates if any energy being bought at the284

interval i ∈ I;285

ybRvi : variable with real values indicating the rate of battery of the vehicle v at286

the interval i ∈ I;287

ycvci : binary variable which indicates if the vehicle v is charging with power288

cycle c at the interval i ∈ I;289

ydvci : binary variable which indicates if the vehicle v is discharging with power290

cycle c at the interval i ∈ I;291

tCD: real variable indicating the total charging and discharging expenses;292

fobjTotalCost: real variable indicating objective function that measures the MG293

total costs;294

fobjBatteriesUse: real variable indicating objective function that measures bat-295

teries use;296

fobjMaxPeakLoad: real variable indicating objective function that measures max-297

imum peak load during the whole set of interval i ∈ I.298

The mathematical model proposed in this paper can be seen from Eqs. (1) to299

(17). The global objective function to be minimized (Eq. (1)) is composed of the300

linear combination of three different objective functions, described in Eqs. (2),301

(3) and (4). Total MG cost (Eq. (2)) is measured by the total amount of energy302

that is being bought or sold at each interval i ∈ I plus the cost associated with303

each vehicle charge or discharge, these two latter are paid to the PEVs owners304

(its calculus is described in Eq. (8)). Batteries use (Eq. (3)) is figured by the305

sum of charges and discharges scheduled to perform during the whole energy306

storage planning. Eq. (4) attributes the maximum peak load of the MG system307

to the value of the third objective function.308

Eqs. (5), (6) and (7) force the system to only buy or sell energy at each309

interval. Eq. (9) forces the PEVs to only charge or discharge while Eqs. (10)310

and (11) make them charge or discharge only when PEVs are available at the311

SmartPark. Battery SOC limits, pevSOCmin
v ≤ ybRvi ≤ 100, are defined in Eqs.312

(12) and (13). Eq. (14) ensures that PEVs’ batteries will attend a minimum313

SOC wished at its departure. PEV’s battery rate is updated according to Eqs.314

(15) and (16). Eq. (15) attends the special case of the first interval while Eq.315
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(16) takes the rate of the last battery, if the vehicle is not arriving, and add or316

subtract energy from charges or discharges. Finally, in Eq. (17), the amount of317

energy that is being sold or bought, at each interval i ∈ I, is determined.318

minimize λ1fobjTotalCost + λ2fobjBatteriesUse + λ3fobjMaxPeakLoad (1)

S. T.:

fobjTotalCost =
∑

i∈I

(

e
buy
i q

buy
i − e

sell
i q

sell
i

)

+ tCD (2)

fobjBatteriesUse =
∑

i∈I

∑

v∈PEV

∑

c∈C

(

y
d
vcipev

dRate
vc + y

c
vcipev

cRate
vc

)

(3)

fobjMaxPeakLoad ≥ e
buy + e

sell ∀i ∈ I (4)

e
sellActive
i ∗M ≥ e

sell ∀i ∈ I (5)

e
buyActive
i ∗M ≥ e

buy ∀i ∈ I (6)

e
sellActive + e

buyActive ≤ 1 ∀i ∈ I (7)

tCD =
∑

i∈I

∑

v∈PEV

∑

c∈C

(

(yd
vcipev

dPrice
vc + y

c
vcipev

cPrice
vc )pevPower

v

)

(8)

∑

c∈C

(

y
d
vci + y

c
vi

)

≤ 1 ∀v ∈ PEV, i ∈ I (9)

∑

c∈C

y
d
vci ≤ pev

a
vi ∀v ∈ PEV, i ∈ I

(10)
∑

c∈C

y
c
vci ≤ pev

a
vi ∀v ∈ PEV, i ∈ I

(11)

y
bR
vi ≤ 100 ∀v ∈ PEV, i ∈ I

(12)

y
bR
vi ≥ pev

SOCmin
v pev

a
vi ∀v ∈ PEV, i ∈ I

(13)

y
bR
vi ≥ pev

SOCdep

vi pev
dep
vi ∀v ∈ PEV, i ∈ I

(14)
∑

c∈C

y
bR
v1 ≤ pev

SOCarr
v1 pev

arr
v1 ∀v ∈ PEV

(15)

∑

c∈C

y
bR
vi ≤ (1− pev

arr
vi )ybR

v(i−1) + pev
arr
vi pev

SOCarr
vi

+
∑

c∈C

(

y
d
vcipev

dRate
vc − y

c
vcipev

cRate
vc

)

∀v ∈ PEV, i ≥ 2 ∈ I

(16)
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∑

v∈PEV

∑

c∈C

(

(yd
vcipev

dRate
vc − y

c
vcipev

cRate
vc )pevPower

v

)

+ q
rG
i − q

d
i −

∑

v∈PEV

(

y
c
vipev

cRate
v

)

= e
sell
i − e

buy
i ∀i ∈ I

(17)

319

3.3. Extreme energy storage scenarios320

The energy storage schedule obtained by solving the mathematical model321

described in Section 3.2 is further evaluated regarding to six criteria. The first322

three criteria are the three objectives used in the optimization problem, while323

three additional criteria are introduced in this section.324

The fourth criterion, so-called fobjExtremeScenario, evaluates the schedule325

compared to the opposite case of it. In other words, a comparison of the total326

cost of the worst and the best case is made and the discrepancy is returned. It327

seeks to find solutions which are flexible to be applied even in extreme scenarios,328

that is, this criterion measures the robustness of the schedule. Thus, batteries329

charge and discharge schedule are kept and analyzed through the most different330

expected scenario.331

Table 1 indicates some possible MG scenarios based on energy consumption,332

renewable energy production and main grid energy price. As can be seen, the333

worst possible case, regarding to the total cost paid by the MG user, is the one334

when the consumption is the maximum possible (q99) with the highest expected335

prices (q99) and almost no renewable energy generation (q1).336

Section 4 explores the results when a energy storage schedule is performed337

considering the worst case scenario and the best case scenario happens and vice338

versa.339

Table 1: MG scenarios based on probabilistic quartiles

Current MG energy scenario
scenario consumption production price
worst case q99 q1 q99

best case q1 q99 q1

neutral q50 q50 q50

The fifth and sixth criteria, namely fobjSharpeRatioTotalCost, fobjSharpeRatioMaxLoad,340

evaluate the schedules over a wide range of possible scenarios and use the Sharpe341

Ratio to verify the total cost and maximum load volatility. Eqs. (18) and (19)342

measure Sharpe Ratio, known in the literature as reward-to-variability index,343

but, here, adapted and used as a cost-to-variability indicator.344

The schedule with the high expected cost and maximum peak loads is con-345

sidered to be a constant risk-free return throughout the analyzed period. The346

optimum value for objective function f∗

objBatteriesUse provides this information,347

since it represents the solution where energy storage is performed only seek-348

ing to attend PEVs’ constraints and save batteries use. This solution indicates349
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an energy storage planning where all extra needed energy is bought from the350

main grid and the PEVs charge is scheduled to be done when the energy price351

is cheaper. In view that energy price can not guaranteed to be the cheapest,352

a small variability is also considered over f∗

objBatteriesUse. Thus, an adapted353

Sharpe Ratio [42] is designed, where the term Vf∗

objBatteriesUse
indicates volatil-354

ity over the energy price (measured from probabilistic forecast variations from355

the time series depicted in Figure 2). Finally, volatility V (fobjTotalCost(s)) and356

V (fobjMaxPeakLoad(s)) are obtained from the standard deviation of objective357

functions fobjTotalCost(s) and fobjMaxPeakLoad(s), respectively, over a set of358

random scenarios. Random scenarios are generated from the combination of359

different quartiles of energy consumption, renewable energy production and en-360

ergy prices. The behavior of the PEVs’ scheduled charges and discharges of361

solution s are analyzed for each of those scenarios.362

fSRTotalCost(s) =
f∗

objBatteriesUse − fobjTotalCost(s)

V (fobjTotalCost(s))− Vf∗

objBatteriesUse

(18)

fSRMaxPeakLoad(s) =
f∗

objBatteriesUse − fobjMaxPeakLoad(s)

V (fobjMaxPeakLoad(s))− Vf∗

objBatteriesUse

(19)

3.4. Branch and Bound pool search algorithm363

In order to obtain non-dominated solutions from the proposed MILP model,364

the use of solutions accessed in the BB [43] tree is considered. During the BB365

optimization over branches of its tree, different feasible solutions achieved dur-366

ing the searching procedure are saved in a pool of solutions. All these obtained367

solutions are considered to be inserted in the Pareto Front. In order to ob-368

tain solutions that optimize each objective function and the decision criteria369

(fobjTotalCost, fobjBatteriesUse, fobjMaxPeakLoad, fobjExtremeScenario,370

fobjSharpeRatioTotalCost and fobjSharpeRatioMaxLoad), different MILP problems371

are generated by the linear combination of the weights λ1, λ2 and λ3. Notice372

that since the problem is convex, any Pareto-optimal solution regarding the373

objectives fobjTotalCost, fobjBatteriesUse, fobjMaxPeakLoad can be achieved by a374

specific combination of weights.375

Algorithm 2 presents the procedure used to perform the linear combination376
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and add solutions to the Pareto Front.377

Algorithm 2: Branch and Bound Pool Search

Input: Number of linear combination intervals nIntervals
Output: Set of non-dominated solutions Xe

Λ = [0, 1
nIntervals

, ..., nIntervals−1
nIntervals

, 1]1

for each combination of λ1, λ2, λ3 ∈ Λ do2

model← MILP model with weights λ1, λ2, λ33

poolSol, poolEval[1...3] ← BB(model)4

poolEval[4...6] ← evaluations of each solution s ∈ poolSol regarding to5

criteria [4 . . . 6]
for nS ← 0 to |poolSol| do6

addSolution(Xe, poolSolnS , poolEvalnS)7

end8

end9

return Xe10

378

379

Parameter nIntervals guides the precision of the linear combination between380

the weights λ1, λ2 and λ3 and the number of solutions generated. A set of381

possible values for these weights, namely Λ, is created in Line 1 of Algorithm 2.382

Basically, variable nIntervals regulates a discrete number of real values, from383

the interval [0, 1], that can be assigned to these weights.384

Line 3 of Algorithm 2 generates the math model described in Section 3.2385

with weights λ1, λ2 and λ3 for the objectives objTotalCost, objBatteriesUse,386

objMaxPeakLoad, respectively. The generated model is solved through a BB387

procedure (Line 4) and return obtained feasible solutions and its evaluations388

(regarding to the first three objective functions). Each solution from the pool389

is now evaluated according to the additional three criteria described in Section390

3.3. Finally, the procedure addSolution (described in Algorithm 3), extracted391

from Lust & Tehrem [44], is called in Line 7. This latter mechanism tries to add392

15



each obtained solution s ∈ poolSol in the set of non-dominated solutions Xe.393

Algorithm 3: addSolution

Input: Population Xe potentially efficient; Solution s, and its
evaluations z(s)

Output: Xe; Added (optional)

Added ← true1

forall x ∈ Xe do2

if z(x) � z(s) then3

Added ← false; Break4

end5

if z(s) ≺ z(x) then6

Xe← Xe \ x7

end8

end9

if Added = true then10

Xe← D ∪ s11

end12

return Xe13

394

395

4. Computational experiments396

This section is divided into three subsections. Section 4.1 presents the com-397

putational resources and some considerations about the model parameters. Sec-398

tion 4.2 describes the behavior of the first three objective function (criteria) over399

deterministic energy storage management using real measured historical data.400

Finally, Section 4.3 presents results of the proposed model regarding the whole401

set of criteria, in which the results are analyzed using Aggregation Trees (AT)402

[45].403

4.1. Software and hardware configurations404

The BB pool search algorithm was implemented in C++ in the framework405

OptFrame 2.0 1 [46, 47, 48] running with CPLEX 12.5.1.406

The tests were carried out on a DELL Inspiron Intel Core i7-3537U, 2.00 x407

4 GHZ with 8GB of RAM, with operating system Ubuntu 12.04.3 precise, and408

compiled by g++ 4.6.3, using the Eclipse Kepler Release.409

4.2. Energy storage management over deterministic scenarios410

This first batch of experiments seeks to analyze the behavior of the proposed411

model over the deterministic scenario presented in Section 2. Two different412

storage planning time horizons were evaluated, k = 24 and k = 168. Main grid413

1Available at http://sourceforge.net/projects/optframe/

16



prices of the first scenario were taken from the 11th quartile of the probabilis-414

tic forecast reported in Figure 2. The expected buying prices for the forecast415

horizon of k = 168 were taken from the medium quartile, q50, and repeated416

for each day. Selling prices were set to be 70% of the buying price for the417

first energy storage planning and and 30% for the long-term. The number of418

discrete intervals nIntervals, which regulates the possible values for the objec-419

tive functions weights (Section 3.4), was set to be 20 and 10, respectively for420

k = 24 and k = 168. Thus, 9260 and 1330 MILP models were solved (excluding421

the case where λ1, λ2, λ3 are equal to 0), respecting a maximum optimization422

time limit of 60 seconds. For instance, the following set of possible values for423

the linear weightening were considered for the one-week ahead storage plan-424

ning: Λk=168 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. As may be noticed,425

the number of possible values can be increased in large scale and real case ap-426

plications by increasing the value of nIntervals.427

Batteries characteristics are shown in Figure 4. Flywheel and CAES batter-428

ies were set to be able to discharge deeper than the Lithium-ion, 2% and 40%429

of maximum DoD, respectively. Possible rates of charge and discharge were430

generated according to 11 possibilities.431
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Figure 4: Batteries rate of charge, discharge and prices.

Figure 5 presents the obtained set of non-dominated solution for the first432

forecast time horizon, composed of 205 solutions.433

The expected grid rate for the best solution of each objective function can434

be seen in Figures 6a and 6b. As can be verified, the optimization of each435

objective function resulted in different power dispatching strategies. The best436
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Figure 5: Pareto front for one day ahead with deterministic energy storage schedule.

total cost the one-day ahead schedule was $ 112.92, with a total percentage of437

batteries use of 418% and maximum load of 67 kW. By saving batteries use,438

a solution with a slightly greater maximum peak load of 72 kW was obtained439

with a total cost of $ 152.61. The schedule which minimizes the maximum peak440

load schedule was able to minimize it in up to 31 kW, expecting a total cost of441

$ 189,13 and a total amount of batteries use equal to 1022 %. An analogous442

behavior was reported for the one week ahead storage planning.443

Figure 6: Grid rate for deterministic power dispatching.
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4.3. Energy storage management using probabilistic forecasts444

In this second batch of experiments, two different scenarios, extracted from445

Table 1, were considered. The first one involves power dispatching based on446

the worst case scenario and on evaluating objective function fobjExtremeScenario447

regarding to the best case. The second scenario was designed to optimize energy448

storage considering the best case scenario while its performance over the worst449

case scenario was also evaluated by fobjExtremeScenario. Sharpe ratio criteria450

(fobjSharpeRatioTotalCost(s) and fobjSharpeRatioMaxLoad(s)) were evaluated for 20451

different random scenarios.452

Figures 7a, 7b, 8a, 8b, 9a and 9b present the obtained set of non-dominated453

solutions, composed of more than 4000 solutions, represented by AT, polar454

and parallel coordinates Graphs as visualization tools for problems with many455

objectives (criteria).456

Figure 7: Aggregation tree

(a) Worst case storage planning.

(b) Best case storage planning.

As can be verified in the branches of the AT, considering the worst case457

scenario, criteria 3 and 6 and criteria 4 and 5 present low conflict, because these458
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Figure 8: Polar graph
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Figure 9: Parallel coordinate plot
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criteria were aggregated first in the AT. This result makes sense, it shows that459

minimizing the max peak load also tend to minimize the variability of the peak460

load. Moreover, in the worst case scenario the robustness of the total cost as461

measured by the criterion 4 is in harmony with the volatility measured by cri-462

terion 5. On the other hand, objectives fobjTotalCost (1) and fobjBatteriesUse(s)463

(2) present the highest conflict, clearly capturing the trade-off existing in this464

power dispatch problem. For the best case scenario, criteria 1 and 2 still present465

the largest conflict since their groups are aggregated last in the AT. The relation466

of conflict and harmony between the other criteria can be similarly derived from467

the tree.468

Since fobjSharpeRatioMaxLoad(s) and fobjMaxPeakLoad(s) are more harmonic469

criteria, it can also be concluded that PEVs batteries can be used for decreasing470

maximum peak load and its volatility over different possible scenarios. The471

use of PEVs batteries is also beneficial for reducing the difference between the472

expected total cost of the power dispatching and the one that might happen in473

extreme scenarios.474

5. Conclusions and extensions475

5.1. Summary and final considerations476

In this paper, a novel multi-objective energy storage power dispatching was477

analyzed and discussed. Optimization of different MG characteristics was pro-478

posed, such as: MG total costs, use of PEVs batteries, maximum MG system479

peak load, behavior in extreme and sets of different scenarios. Probabilistic480

forecasts were used in order to evaluate energy storage schedule in extreme481

scenarios and for optimizing schedules volatility. The well-known economic in-482

dicator Sharpe Ratio was applied for evaluating a new cost-to-variability index.483
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It was verified a reasonable potential of improving the use of self-generation484

energy use and reducing systems peak load by using ESS based on PEVs located485

at SmartParks. Trade-offs between the use of PEVs batteries, which are an486

important environment issue, were discussed. Their use were mostly contrasted487

with the reduction of MG maximum peak load and its use was able also to488

minimize expected volatility on the power flow. It is expected that the proposed489

model could be applied not only by MG users but also as a decision-making tool490

in order to assist smart-microgrid management.491

5.2. Extensions492

As future work the proposed model should be applied in other MG scenarios,493

including other renewable energy resources and larger scenarios. Uncertainties494

over PEVs availability could also be considered. The development of a meta-495

heuristic based algorithm might provide an interest and flexible tool that can496

be applied over real large cases.497
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