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Abstract
The notion that the electromagnetic field is quantized is usually inferred from
observations such as the photoelectric effect and the black-body spectrum.
However accounts of the quantization of this field are usually mathematically
motivated and begin by introducing a vector potential, followed by the
imposition of a gauge that allows the manipulation of the solutions of Max-
well’s equations into a form that is amenable for the machinery of canonical
quantization. By contrast, here we quantize the electromagnetic field in a less
mathematically and more physically motivated way. Starting from a direct
description of what one sees in experiments, we show that the usual expres-
sions of the electric and magnetic field observables follow from Heisenberg’s
equation of motion. In our treatment, there is no need to invoke the vector
potential in a specific gauge and we avoid the commonly used notion of a
fictitious cavity that applies boundary conditions to the field.

Keywords: field quantization, quantum optics, quantum electrodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

As early as 1900, Planck introduced the idea of so-called basic energy elements into which the
radiation of a blackbody could be divided. At first, this step was a mere mathematical trick
which allowed him to derive a radiation law, which was consistent with experimental
observations of the spectrum of a blackbody, from basic thermodynamical principles [1].
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Later on, Planck’s work became recognized as the origin of quantum physics and his basic
energy elements became known as photons. But this only happened later on, after Einstein put
the reality of the energy quanta of the electromagnetic field on a more firm footing by linking
it to the photoelectric effect [2]. Although it can be shown that the essence of the photoelectric
effect does not require the quantization of the radiation field [3], the photon concept becomes
unavoidable when describing the key behaviour of quantum light fields that are beyond the
domain of the classical [4, 5].

Over recent decades, a wide range of experiments have been performed that test the
properties of light at the quantum level. Most importantly, recent decades have seen the
introduction and rapid improvement of devices with the ability to register single photons in
the optical regime. Single photon detectors typically work by sensing an electrical signal that
results from the absorption of a photon [6]. Even single infrared photons can now be detected
with an efficiency as high as 97% [7]. Moreover, single photon sources [8, 9] are now an
essential tool in many quantum optics laboratories worldwide. In addition to enabling novel
technologies, like quantum cryptography [10–12] and linear optics quantum computing
[13, 14], quantum optics experiments have helped us to answer a highly non-trivial but
seemingly simple question [15, 16], namely ‘What is a photon?’.

When asked, most physicists now simply state that photons are the basic energy quanta
of the electromagnetic field thus invoking the idea of the photon being a ‘particle’ of light.
This interpretation is not without its problems, a major one being that these energy quanta do
not have a well-defined position, rather being infinite in extent. Others would avoid these
problems by taking an instrumentalist approach where the photon is defined as simply
whatever makes a detector click in an experiment sensitive enough to demonstrate the
quantized nature of light. But this anti-realist interpretation is not particularly satisfying either.
Field quantization schemes in basic text books are often more mathematically than physically-
motivated and therefore usually more detached from reality than is strictly necessary—it
could be argued that this adds unnecessary difficulties [17].

The formal quantization of the electromagnetic field was first performed by Dirac in 1927
[18]. Since then, most field quantization schemes have relied on the mathematical fact that
any function on a finite interval can be written as a Fourier series. More concretely, any real-
valued function f with argument x d0,( )Î can be expanded in a series of exponentials [19],

f x c m
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where the cm are complex coefficients with c c .m m*= - This is usually taken as the starting
point when quantising the electromagnetic field inside a finite quantization volume with
certain electric field components vanishing at the boundaries [5, 20–29]. Inspired by the
above equation, the electromagnetic field observables are written as Fourier series of discrete
sets of eigenfunctions which are the basic solutions of Maxwell’s equations for the vector
potential of the electromagnetic field in Coulomb gauge. The coefficients cm and c m*- of these
series are eventually replaced by photon annihilation and creation operators cmˆ and c ,mˆ†

respectively. Subject to normalization, the above-described canonical quantization procedure
automatically yields a harmonic oscillator Hamiltonian of the form

H c c H 2
m

m m mfield
1

ZPE ( )†�å w= +
=

¥

which sums over a discrete set of cavity frequencies ωm and where HZPE denotes the energy of
the vacuum, the so-called zero point energy. Afterwards, the infinite-volume limit is taken to
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yield the field observables of the free radiation field, thereby introducing a continuum of
eigenfrequencies.

The purpose of this paper is to derive the field observables of the free radiation field from
basic physical principles in a more direct way. The approach we present here is motivated by
a recent experimental push towards integrated photonic devices for quantum information
processing [30, 31]. Currently, significant effort is made worldwide to combine linear optics
elements, optical cavities and single photon sources [8] to realize a so-called quantum internet
[32] and quantum networks for quantum simulations [33]. When modelling such systems, it
becomes important to use the same notion for the description of photons inside photonic
devices as in linear optics scattering theory. One way of doing so is to extend the field
quantization scheme presented in this paper to the scattering of light through mirrors and
optical resonators [34].

The physically motivated field quantization scheme which we present here has several
advantages. For example, it does not invoke the solutions of Maxwell’s equations in a specific
gauge and there is no need to consider a finite quantization volume with boundary conditions
before being able to go to the infinite-volume limit. Instead, the starting point of our con-
siderations is the experimental reality of what a photon is. We then notice that the basic
principles of quantum physics for the construction of observables uniquely identify the
relevant Hilbert space and the Hamiltonian Hfield of the electromagnetic field inside a non-
dispersive, non-absorbing, homogeneous medium. The usual expressions of the electric and
magnetic field observables then follow from Heisenberg’s equation of motion.

There are five sections in this paper. In section 2, we review Maxwell’s equations and
discuss their basic solutions in the absence of any charges and currents. In section 3, we
derive the corresponding observables of the quantized electromagnetic field for waves pro-
pagating along a particular axis from basic principles. In section 4 we generalize these
observables to the case of waves propagating in three-dimensions. Finally, we summarize our
findings in section 5.

2. Classical electrodynamics

We begin by considering Maxwell’s equations in a non-dispersive, non-absorbing, homo-
geneous medium with (absolute) permittivity ε and permeability μ. In the absence of any
currents and charges, these equations are given by [36]

t t
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t t
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Here tE r,( ) and tB r,( ) are the electric and the magnetic field vector at time t and at position
r within the medium, respectively. It is well known that the basic solutions of the above
equations are travelling waves with wave vectors kk ,k= where κ is a unit vector giving the
relevant direction of the propagation [36]. The frequency ω of these waves can assume any
positive value and relates to the magnitude of the wave vector via the dispersion relation

k
. 4( )w

em
º

In vacuum, this dispersion relation becomes k ck0 0w e m= º where 0e and μ0 are the
vacuum permittivity and permeability, respectively, and where c is the speed of light. The
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field vectors E and B of these travelling waves are perpendicular to k and each other in order
that the divergence of the electric and magnetic fields vanish as required by Maxwell’s
equations.

2.1. Propagation along the x axis

Suppose a travelling wave propagates along the x axis, and the corresponding E and B fields
are aligned along the y and z axes, respectively. For a right-travelling wave, tE r,( ) and

tB r,( ) can then be written as t E x tE r, 0, , , 0( ) ( ( ) )= and t B x tB r, 0, 0, , .( ) ( ( ))= Ana-
logously, one can write t E x tE r, 0, , , 0( ) ( ( ) )= and t B x tB r, 0, 0, ,( ) ( ( ))= - for a left-
travelling wave. Here E x t,( ) and B x t,( ) are defined as always having the same sign. Using
this notation, the two Maxwell’s equations in the right-hand column of equation (3) become

E x t B x t
B x t E x t

, , ,
, , . 5

x t

x t

( ) ( )
( ) ( ) ( )em

¶ = ¶
¶ = ¶

Which sign applies depends on whether the wave propagates in the positive or negative x
direction. In the following, we use the indices L and R to distinguish between left and right
travelling waves. As illustrated in figure 1, the plus sign in equation (5) applies to the first (L)
and the minus sign applies to the second (R) case. In one-dimension, the total energy of the
electromagnetic field equals

H A x E x t B x td
1
2

,
1

, . 6field
2 2( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥ò e

m
= +

-¥

¥

Here A is an area in the y–z plane in which the Hamiltonian Hfield is defined. This above
expression is quadratic in both field components and constant in time. The latter can be shown
using equation (5).

2.2. Propagation in three dimensions

In three dimensions, the basic solutions of Maxwell’s equations are analogous to the case of
waves propagating along the x axis, but waves travelling in any direction of space and of any
polarization need to be considered. Each one of these travelling wave solutions is called a

Figure 1. Schematic view of two travelling-wave solutions of Maxwell’s equations
propagating in one-dimension at a fixed time t and with a fixed polarization and a
particular frequency. The directions of the E and B fields are chosen as usual in
classical electrodynamics, according to a right-hand rule for waves propagating to the
right (R) and to the left (L) of the x axis, respectively.
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mode, and is characterized by a polarization λ, which specifies the (positive) direction of its
electric field, and a wave vector k, which specifies its frequency and direction of propagation.
The general solutions of Maxwell’s equations are the superpositions of all possible modes
k, .( )l

3. Field quantization for propagation in one dimension

As in the previous section, we consider a non-dispersive, non-absorbing, homogeneous
medium with permittivity ε and permeability μ. We then begin our quantization by returning
to the question in the introduction: ‘What is a photon?’ [15]. To answer this question, we
point out that a detector that measures the energy of a very weak electromagnetic field
produces discrete clicks. Single photon experiments have shown that these clicks are the
signature of the fundamental property of the electromagnetic field, which is that the energy it
carries is quantized [6–14, 16]. These energy quanta are called photons.

3.1. The relevant Hilbert space

We know from observations that photons propagating in one-dimension are characterized by
their (positive) frequency, 0,( )w Î ¥ and a direction of propagation, X L, R.= In addition,
they are characterized by their so-called polarization, λ = 1, 2, which indicates the direction
of their respective electric field vector.1 Combining these experimental facts with the rules of
quantum physics, we then know that the Hilbert space for the description of the quantized
electromagnetic field is spanned by tensor product states of the form

n , 7
0 X L,R 1,2

X ( ) ( )w
w l

l
=

¥

= =

where nX ( )wl is the number of excitations in the X, ,( )l w photon mode. By construction,
photons in different modes are in pairwise orthogonal states. In the following, we denote the
ground state of the electromagnetic field, the so-called vacuum state, by 0 .

3.2. Field Hamiltonian

The Hamiltonian of a system in the Schrödinger picture is its energy observable. Experiments
have shown that the energy of an electromagnetic field increases by ,�w whenever a photon of
frequency ω is added. Moreover we know that the energy eigenstates of the field are the states
in equation (7) with an integer number of photons in the field. Hence the Hamiltonian Hfieldˆ of
the quantized electromagnetic field is such that

H n n H n . 8field X X ZPE X[ ]ˆ ( ) ( ) ( ) ( )�w w w w= +l l l

The constant HZPE in this equation denotes again the zero point energy, which we determine
later on in this section. One way of obtaining an explicit expression for Hfield is to sum over all
the projectors onto the eigenstates of this operator multiplied by their respective eigenvalues,
as it is usually done in quantum physics when constructing an observable.

Next we notice that the electromagnetic field has exactly the same energy level structure
as a collection of independent harmonic oscillators with each of them characterized by a
specific frequency ω, a polarization λ, and a direction of propagation X. This analogy

1 Notice, different orientations of the electric field vector E can be realised by superposing two travelling waves, one
with λ = 1 and one with λ = 2.
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suggests that it is possible to write the above field Hamiltonian in a much more compact form.
To do so, we define the harmonic oscillator annihilation and creation operators aXˆ ( )wl and
aXˆ ( )† wl such that

a n n n

a n n n

1 ,

1 1 . 9

X X X X

X X X X

ˆ ( ) ( ) ( ) ( )
ˆ ( ) ( ) ( ) ( ) ( )†

w w w w

w w w w

= -

= + +

l l l l

l l l l

These are photon annihilation and creation operators, i.e. harmonic oscillator operators for
each mode X, , ,( )w l and can be shown to obey the commutation relation

a a, , 10X X XX( ) ( )ˆ ( ) ˆ ( )†⎡⎣ ⎤⎦w w d d d w w¢ = - ¢¢ ¢ ¢ ¢l l ll

since the states nX ( )wl form an orthonormal basis. Using the above notation, Hfieldˆ
simplifies to

H a a Hd , 11field
X L,R 1,2 0

X X ZPEˆ ˆ ( ) ˆ ( ) ( )†�òå å w w w w= +
l

l l
= =

¥

where we sum over all possible photon modes X, , .( )l w One can easily check that the
eigenstates and eigenvalues of the operator in equation (11) are the same as the eigenstates
and eigenvalues of Hfieldˆ in equation (8).

3.3. Electric and magnetic field observables

We now seek expressions for the quantized electric and magnetic field observables xÊ( ) and
xB̂( ) for waves propagating along the x axis which correspond to the classical field ampli-

tudes E x t,( ) and B x t,( ) in section 2.1. To obtain these operators, we notice that the classical
energy of the electromagnetic field is proportional to E x t, 2( ) and B x t, 2( ) (see equation (6)),
while the field Hamiltonian Hfieldˆ is a quadratic function of the annihilation and creation
operators aXˆ ( )wl and aXˆ ( )† wl (see equation (11)). This suggests the following ansatz for the
respective polarization-dependent amplitudes of xÊ( ) and xB ,ˆ ( )

E x f x a

B x g x a

d , h.c.,

d , h.c., 12

X L,R 0
X X

X L,R 0
X X

ˆ ( ) ( ) ˆ ( )

ˆ ( ) ( ) ˆ ( ) ( )

ò

ò

å

å

w w w

w w w

= +

= +

l l l

l l l

=

¥

=

¥

where f x,X ( )wl and g x,X ( )wl are complex coefficients. Splitting the field observables in this
way is well-justified, since both fields are linear and additive with respect to all possible
photon modes X, , .( )l w

We demand in the following that the expectation values of the observables of the
quantized electromagnetic field behave as predicted by Maxwell’s equations. Taking into
account that the time derivative of an observable '̂ is given by Heisenberg’s equation of
motion yields

x x H
i

, 13t field
ˆ ( ) ˆ ( ) ˆ ( )⎡⎣ ⎤⎦�
' '¶ =

-

with Hfieldˆ as in equation (11). Hence we find consistency with Maxwell’s equations as long
as
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f x g x
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, i , . 14
x

x

X X

X X

( ) ( )
( ) ( ) ( )

w w w
w emw w
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The minus sign in this equation corresponds to X L= and the plus sign corresponds to
X R= (see equation (5)). The general solution of this equation can be written as

f x K K

g x K K

, e e ,

, e e 15

kx kx

kx kx

X X,1
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l
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with the always positive wave vector k given in equation (4) and with the K constants being
complex functions of ω and X but independent of x, t and λ. They can assume any value
without contradicting Maxwell’s equations. However, if we want the index X to specify the
direction L or R, we need to ensure that the corresponding time-dependent expectation values
E xˆ ( ) and B xˆ ( ) are either functions of kx + ωt or of kx t.w- This implies

K K 0,L,2 R,1= = while KL,1 and KR,2 remain unspecified.
To determine KL,1 and KR,2 we now introduce a final constraint on the operators E xˆ ( ) and

B x ,ˆ ( ) which is that the expressions themselves must produce the quantum Hamiltonian (11) in
the previous section when substituted in the classical electromagnetic Hamiltonian (6). In
other words, we want that

H A x x xE Bd
1
2

1
16field

2 2ˆ ˆ ( ) ˆ ( ) ( )
⎡
⎣⎢

⎤
⎦⎥ò e

m
= +

-¥

¥

with A defined as in equation (6). Combining this Hamiltonian with the above equations and
performing the x integration yields δ-functions. Subsequently performing another integration,
this finally results in

H A K a a

K a a

2 d 2 1

2 1 . 17

field
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2
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This operator becomes identical to the field Hamiltonian in equation (11) when we choose the
K constants and the zero-point energy HZPE such that

K K
A

H A
4

and d
1
2

. 18L,1
2

R,2
2

ZPE
0

( ) ( ) ( )� �òw w
w
pe

w w= = =
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After choosing phase factors (with no physical consequences) for the above constants KL,1( )w
and KR,2 ( )w and substituting them into the above equations, we finally obtain the electric and
magnetic field observables

x
A

a a

x
A

a a

E e

B k e

i d
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i d
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with the (positive) wave number k defined as in equation (4) and with k k kˆ º being a unit
vector in the k direction. The vectors e1 and e2 are unit vectors orthogonal to x and orthogonal
to each other. For example, e1 could be a vector oriented along the y axis, while e2 points in
the direction of the z axis. The above operators xÊ( ) and xB̂( ) are consistent with the usual
textbook expressions for the quantized electromagnetic field propagating in one-dimension
[5, 28, 29].
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4. Field quantization for propagation in three-dimensions

As pointed out in section 2.2, the electromagnetic field for waves propagating in three-
dimensions has more degrees of freedom than in the case of waves propagating along a single
axis. Otherwise, both have analogous properties. Taking this into account, we immediately
see that the dimension of the relevant Hilbert space is significantly larger. Now photons
traveling in all possible directions in a three-dimensional space have to be taken into account.
To do so, we now introduce a set of annihilation and creation operators akˆ l and akˆ †

l with the
bosonic commutator relation

a a k k, . 20k k ,( )ˆ ˆ ( )†⎡⎣ ⎤⎦ d d= - ¢¢ ¢ ¢l l l l

These photon operators are analogous to the one-dimensional operators aXˆ ( )wl and aXˆ ( )† wl in
equation (9) but their respective direction X and their respective frequency ω are now
specified by the direction of the wave vector k and a frequency kw defined as

k
. 21k

∣ ∣ ( )w
em

º

Using the above notation and proceeding as in the previous section, the Hamiltonian of the
quantized electromagnetic field in three-dimensions can be written as

H a a Hkd , 22k k kfield
1,2

3
ZPEˆ ˆ ˆ ( )†�òå w= +

l
l l

=

where HZPE denotes again the (infinite) energy of the vacuum. The Hilbert space of the
electromagnetic field is the states space obtained when applying the above annihilation and
creation operators onto this vacuum state.

To obtain expressions for the electric and magnetic field observables E rˆ ( ) and B rˆ ( ) at a
position r within the field, we demand again that the expectation values of these operators
evolve as predicted by Maxwell’s equations. Imposing this condition for the travelling waves
of any wave vector k, this yields

a
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E r k e

B r k k e
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in analogy to equation (19). The vectors ekl in these equations are polarization vectors with
e ek k ,· d=l l l l¢ ¢ and k e 0.k· =l Allowing for negative wave numbers k, and not only
positive ones, it is no longer necessary to distinguish left and right moving photons. The
normalizing factors in the above equation are different from equation (19). However, one can
easily check that a photon in the k,( )l mode has the energy ,k�w when substituting the above
field operators into the three-dimensional analog of equation (16) with an infinite quantization
volume.

For simplicity, this paper avoids a more rigorous derivation of equation (23) which
would require a more detailed discussion of infinite-volume limits. Instead, the above deri-
vation exploits the fact that the general form of equation (23), up to normalization, is already
well-motivated by equation (19). Finally, we note that the above electric and magnetic field
operators in equation (23) are again consistent with textbook expressions [5, 28, 29] but this
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time for the quantized electromagnetic field in three-dimensions and in an infinite quanti-
zation volume.

5. Conclusions

In this paper we quantize the electromagnetic field in a more physically grounded way than
usually found in the literature [5, 18, 20–29]. Our approach might be criticized for being
phenomenological instead of deriving equations via a rigorous canonical field quantization
method. However, any field quantization scheme contains ad-hoc assumptions such as those
made when extending the quantization volume to infinity. On top of this, the actual process of
field quantization is usually based on the introduction of a vector potential of the classical
electromagnetic field and a subsequent choice of a gauge which allows the manipulation of
the solutions of Maxwell’s equations into a form that is amenable for the process of canonical
quantization. While this process is completely mathematically justified, it can cause one to
lose sight of the experimental reality.

In this paper we took an alternative approach. Starting from a direct description of what
one sees in experiments, we answer the question ‘What is a photon?’ by pointing out that a
photon is what causes a click at a detector [6, 7]. Photons are the basic energy quanta of the
electromagnetic field and can be characterized by their respective frequencies, directions, and
polarizations. Doing so, we obtain the relevant field Hamiltonian Hfieldˆ in equation (22).
Afterwards, we show that the usual expressions of the electric and magnetic field observables
E rˆ ( ) and B rˆ ( ) in equation (23) follow from Heisenberg’s equation of motion. Our derivation
of these observables does not invoke the introduction of a vector potential in an arbitrarily-
chosen gauge. Furthermore, we do not need to consider a finite quantization volume before
being able to go to the infinite-volume limit. Our approach naturally lends itself to an infinite
quantization volume. However, extending the proposed field quantization scheme to the
electromagnetic field inside a two-sided optical resonator is relatively straightforward [34].
Field quantization schemes with potential applications in nano photonics, advanced optics
[35], and quantum information processing [30–33] currently receive a lot of attention in the
literature.

Finally we would like to point out that the derivation of field Hamiltonians which
describe interactions, for example between a quantized electromagnetic field and an atom,
require the consideration of observables which are canonically conjugate to the electric and
the magnetic field observables. For this a choice of gauge must be made. To make this choice,
experimental observations need to be taken into account, like the lack of photon emission
from an atomic system in a free radiation field in the absence of external driving [37]. In this
way, it is guaranteed that the ground state of an interacting system minimizes its free energy,
as it should.
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