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Abstract

In this paper we show that there are explicit Yang-Baxter maps with Darboux-Lax repre-
sentation between Grassmann extensions of algebraic varieties. Motivated by some recent
results on noncommutative extensions of Darboux transformations, we first derive a Dar-
boux matrix associated with the Grassmann-extended derivative Nonlinear Schrödinger
(DNLS) equation, and then we deduce novel endomorphisms of Grassmann varieties,
which possess the Yang-Baxter property. In particular, we present ten-dimensional maps
which can be restricted to eight-dimensional Yang-Baxter maps on invariant leaves, re-
lated to the Grassmann-extended NLS and DNLS equations. We consider their vector
generalisations.

1 Introduction

The Yang-Baxter (YB) equation has a fundamental role in the theory of quantum and classical
integrable systems. In particular, the set-theoretical solutions of the YB equation, have been
of great interest for several researchers in the area of Mathematical Physics. The consideration
of such solutions was formally proposed by Drinfeld in [12], although the first examples of such
solutions appeared in [23]. Moreover, the study of the set-theoretical solutions gained a more
algebraic flavour in [6]. We refer to these solutions using the shorter term “Yang-Baxter maps”
which was proposed by Veselov in [25]. YB maps are related to several concepts of integrability
as, for instance, the multidimensionally consistent equations [1, 2, 5, 21]. Of particular interest
are those Yang-Baxter maps which admit Lax representation [24]. They are connected with
integrable mappings [25, 26] and they are also related to integrable partial differential equations
via Darboux transformations [15].

Moreover, noncommutative extensions of integrable equations have been of great interest
over the last decades [9, 10]. Darboux transformations for noncommutative-extended integrable
equations were recently constructed; in the case of Grassman-extended NLS equation in [13]
and for the supersymmetric KdV equation [27, 28, 31] and the AKNS system [29]. At the same
time, the derivation of noncommutative versions of YB maps has gained its interest [11].

In this paper, we make the first attempt to extend the theory of YB maps in the case of
Grassmann algebras; in particular, we study the Grassmann extensions of the YB maps related
to the Nonlinear Schrödinger equation and the derivative Nonlinear Schrödinger equation which
have recently appeared in [15].

1E-mail: grah@essex.ac.uk
2E-mail: skonstantin@chesu.ru
3E-mail: A.V.Mikhailov@leeds.ac.uk
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The paper is organised as follows. The second section deals with parametric YB maps and
their Lax representations. Moreover, we present some basic properties of Grassmann algebras
in order to make this text self-contained, as well as some properties of YB maps which admit
Lax representation. In section 3, following [13], we consider a noncommutative (Grassmann)
extension of the Darboux transformation for the DNLS equation. In section 4, we employ all
the Darboux matrices presented in section 3 and, from their associated refactorisation prob-
lems, we construct ten-dimensional YB maps. The entries of the considered Darboux matrices
satisfy particular systems of differential-difference equations which possess first integrals. These
integrals indicate that the associated YB maps can be restricted to eight-dimensional YB maps
on invariant leaves. Moreover, we consider their vector generalisations. Finally, in section 5 we
summarise our results and we present some ideas for future work.

2 Preliminaries

Let A be an algebraic variety in KN , where K is any field of zero characteristic (such as C, R

or Q), and let Y ∈ End(A × A) be a map (x, y)
Y
7→ (u(x, y), v(x, y)). The map Y is called a

Yang-Baxter map if it satisfies the following Yang-Baxter equation

Y 12 ◦ Y 13 ◦ Y 23 = Y 23 ◦ Y 13 ◦ Y 12, (2.1)

where Y ij ∈ End(A×A×A), i, j = 1, 2, 3, i 6= j, are defined by the following relations

Y 12(x, y, z) = (u(x, y), v(x, y), z), (2.2a)

Y 13(x, y, z) = (u(x, z), y, v(x, z)), (2.2b)

Y 23(x, y, z) = (x, u(y, z), v(y, z)), (2.2c)

where x, y, z ∈ A.
A YB map Y is called reversible if the composition of Ỹ = πY π (where π ∈ End(A×A) is

the permutation map π(x, y) = (y, x)) with Y is the identity map, namely

Ỹ ◦ Y = Id. (2.3)

Furthermore, we use the term parametric YB map if two parameters a, b ∈ K are involved in
the definition of the YB map, namely we have a map of the following form

Ya,b : (x, y) 7→ (u(x, y; a, b), v(x, y; a, b)), (2.4)

satisfying the parametric YB equation

Y 12
a,b ◦ Y

13
a,c ◦ Y

23
b,c = Y 23

b,c ◦ Y
13
a,c ◦ Y

12
a,b . (2.5)

2.1 Grassmann extended varieties

Here, we briefly present the basic properties of Grassmann algebras. For further details one
could consult [4]. Let G be a Z2-graded algebra over C or, in general, over a field K of
characteristic zero. Thus, as a linear space G is a direct sum G = G0 ⊕G1 (mod 2), such that
GiGj ⊆ Gi+j. Those elements of G that belong either to G0 or to G1 are called homogeneous,
the ones from G0 are called even (bosonic), while those in G1 are called odd (fermionic).
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By definition, the parity |a| of an even homogeneous element a is 0, and it is 1 for odd
homogeneous elements. The parity of the product |ab| of two homogeneous elements is a sum
of their parities: |ab| = |a| + |b|. Grassmann commutativity means that ba = (−1)|a||b|ab for
any homogeneous elements a and b. In particular, α2 = 0, for all odd elements α ∈ G1, and
even elements commute with all the elements of G.

Remark 1. In the rest of this paper we shall be using Latin letters for even variables, and
Greek letters when referring to the odd ones; yet, we shall be using the Greek letter λ when
referring to the spectral parameter, despite the fact that λ is an even variable.

A Grassmann extension of an algebraic variety, VG(p1, . . . , pk), can be defined similarly to
the commutative case:

VG(p1, . . . , pk) := {a1, . . . , an ∈ G0, α1, . . . , αm ∈ G1|p1 = . . . pk = 0, pi ∈ C [a1, . . . , an, α1, . . . , αm]}
(2.6)

2.1.1 Supertrace and superdeterminant

Let M be a square matrix of the following form

M =

(

P Π
Λ L

)

, (2.7)

where P and L are square matrices of even entries, whereas Π and Λ are matrices with odd
entries, not necessarily square.

We define the supertrace of M –and we shall denote it by str(M)– to be the following
quantity

str(M) = tr (P )− tr (L), (2.8)

where tr (.) is the usual trace of a matrix.
Moreover, we define the superdeterminant of M –and we shall denote it by sdet(M)– to be

sdet(M) = det(P − ΠL−1Λ) det(L−1) = det(P−1) det(L− ΛP−1Π), (2.9)

where det(.) is the usual determinant of a matrix.

2.2 Lax representations of YB maps

Following Suris and Veselov in [24], we call a Lax matrix for a parametric YB map a square
matrix, L = L(x, χ; a, λ), depending on an even variable x, an odd variable χ, a parameter a
and a spectral parameter λ, such that the Lax-equation

L(u, ξ; a)L(v, η; b) = L(y, ψ; b)L(x, χ; a) (2.10)

is satisfied whenever (u, ξ, v, η) = Ya,b(x, χ, y, ψ). Equation (2.10) is also called a refactorisation
problem.

If the Lax-equation (2.10) has a unique solution, namely it is equivalent to a map

(u, v, ξ, η) = Ya,b(x, y, χ, ψ), (2.11)

then the Lax matrix L is said to be strong [19]. In this case (2.11) is a Yang-Baxter map and
it is reversible [26].
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Now, since the Lax equation (2.10) has the obvious symmetry

(u, ξ, v, η, a, b)←→ (y, ψ, x, χ, b, a) (2.12)

we have the following

Proposition 1. If a matrix refactorisation problem (2.10) yields a rational map (x, χ, y, ψ) =
Ya,b(u, ξ, v, η), then this map is birational.

Proof. Let Y : (x, χ, y, ψ) 7→ (u, ξ, v, η) be a rational map corresponding to a refactorisation
problem (2.10), i.e.

x 7→ u =
n1(x, χ, y, ψ; a, b)

d1(x, χ, y, ψ; a, b)
, y 7→ v =

n2(x, χ, y, ψ; a, b)

d2(x, χ, y, ψ; a, b)
, (2.13a)

χ 7→ ξ =
n3(x, χ, y, ψ; a, b)

d3(x, χ, y, ψ; a, b)
, ψ 7→ η =

n4(x, χ, y, ψ; a, b)

d4(x, χ, y, ψ; a, b)
, (2.13b)

where ni, di, i = 1, 2, 3, 4, are polynomial functions of their variables.
Due to the symmetry (2.12) of the refactorisation problem (2.10), the inverse map of Y ,

Y −1 : (u, ξ, v, η) 7→ (x, χ, y, ψ), is also rational and it is given by

u 7→ x =
n1(v, η, u, ξ; b, a)

d1(v, η, u, ξ; b, a)
, v 7→ y =

n2(v, η, u, ξ; b, a)

d2(v, η, u, ξ; b, a)
, (2.14a)

ξ 7→ χ =
n3(v, η, u, ξ; b, a)

d3(v, η, u, ξ; b, a)
, η 7→ ψ =

n4(v, η, u, ξ; b, a)

d4(v, η, u, ξ; b, a)
, (2.14b)

Therefore, Y is a birational map.

Remark 2. Functions di(x, χ, y, ψ; a, b), i = 1, 2, 3, 4, must be non-nilpotent even-valued.

Proposition 2. If L = L(x, χ, a;λ) is a Lax matrix with corresponding YB map Y : (x, χ, y, ψ) 7→
(u, ξ, v, η), then str(L(y, ψ, b;λ)L(x, χ, a;λ)) is a generating function of invariants of the YB
map.

Proof. Since,

str(L(u, ξ, a;λ)L(v, η, b;λ))
(2.10)
= str(L(y, ψ, b;λ)L(x, χ, a;λ))

= str(L(x, χ, a;λ)L(y, ψ, b;λ)), (2.15)

and function str(L(x, χ, a;λ)L(y, ψ, b;λ)) can be written as str(L(x, χ, a;λ)L(y, ψ, b;λ)) =
∑

k λ
kIk(x, χ, y, ψ; a, b), from (2.15) follows that

Ii(u, ξ, v, η; a, b) = Ii(x, χ, y, ψ; a, b), (2.16)

which are invariants for Y .

Matrix L(x, χ, a;λ)L(y, ψ, b;λ) is called the monodromy matrix.

Remark 3. The invariants of a YB map, Ii(x, χ, y, ψ; a, b), may not be functionally indepen-
dent.
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3 Grassmann extensions of Darboux transformations

Let L be a Lax operator of the following form

L(p, q, θ, φ;λ) = Dx + U(p, q, φ, θ;λ), (3.1)

where U is a matrix depending on two even potentials, p = p(x) and q = q(x), two odd
potentials, θ = θ(x) and φ = φ(x), a spectral parameter λ and a variable x implicitly through
the potentials. In all our cases the dependence on the spectral parameter is polynomial.

By Darboux transformation we understand a map of the following form

L→ L̃ =MLM−1, (3.2)

where L̃ is L updated with potentials p10 = p10(x), q10 = q10(x), θ10 = θ10(x) and φ10 = φ10(x),
namely L̃ = L(p10, q10, θ10, φ10;λ). The matrix M in (3.2) is called Darboux matrix. Here, we
shall be assuming that the matrix M has the same λ-dependence with U . Moreover, we define
the rank of a Darboux transformation to be the rank of the matrix which appears as coefficient
of the highest power of the spectral parameter.

In this section we consider the Grassmann extensions of the Darboux matrices corresponding
to the NLS equation (see [13]) and the DNLS equation, which we shall use to construct YB
maps.

3.1 Nonlinear Schrödinger equation

The Grassmann extension of the Darboux matrix for the NLS equation was constructed in [13].
In particular, the following noncommutative extension4 of the NLS operator

L := Dx + U(p, q, ψ, φ, ζ, κ;λ) = Dx + λU1 + U0, (3.3a)

was considered, where U1 and U0 are given by

U1 = diag(1,−1, 0), U0 =





0 2p θ
2q 0 ζ

φ κ 0



 , (3.3b)

where p, q ∈ G0 and ψ, φ, ζ, κ ∈ G1.
It was shown that all the Darboux transformations of rank 1 associated to this operator are

described by the following matrix

M(p, q, θ, φ; c1, c2) =





F + λ p θ

q10 c1 0
φ10 0 c2



 , (3.4)

where c1 and c2 can be either 1 or 0. In the case where c1 = c2 = 1, the entries ofM(p, q, θ, φ; 1, 1)
satisfy the following system of differential-difference equations

Fx = 2(pq − p10q10) + θφ− θ10φ10, (3.5a)

px = 2(Fp− p10) + θζ, (3.5b)

q10,x = 2(q − q10F )− κ10φ10, (3.5c)

θx = Fθ − θ10 + pκ, (3.5d)

φ10,x = φ− φ10F − ζ10q10, (3.5e)

4If one sets the odd variables equal to zero, the obtained operator corresponds to the spatial part of the Lax
pair for the NLS equation.
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and the algebraic equations

θq10 = (S− 1)κ, (3.6a)

φ10p = (S− 1)ζ. (3.6b)

Moreover, system (3.5) admits the following first integral

∂x(F − pq10 − φ10θ) = 0, (3.7)

which implies that ∂x(sdet(M)) = 0, since sdet(M) = λ+ F − pq10 − φ10θ.

3.2 Derivative nonlinear Schrödinger equation

Let us now consider the Lax operator given by

L = Dx + λ2U2 + λU1, (3.8a)

where U1 and U2 are given by

U2 =s3, U1 =





0 2p 2θ
2q 0 0
2φ 0 0



 , (3.8b)

and s3 = diag (1,−1,−1). The potentials p and q and the spectral parameter λ are even,
whereas the potentials φ and θ are odd. Moreover, the operator (3.8) is invariant under the
transformation

s1(λ) : L(λ)→ L(−λ) = s3L(λ)s3. (3.9)

We seek a rank 1 Darboux matrix of the following form

M = λ2M2 + λM1 +M0, (3.10)

where Mi, i = 0, 1, 2, is a 3× 3 matrix, and we assume that M possesses the same symmetry,
(3.9), as the Lax operator (3.8), namely

M(−λ) = s3M(λ)s3, (3.11)

as in the commutative case in [16]. Therefore, for the entries of matrices Mi, i = 0, 1, 2, we
have

Mi,12 =Mi,13 =Mi,21 =Mi,31 = 0, i = 0, 2, and (3.12a)

M1,11 =M1,22 =M1,33 =M1,23 =M1,32 = 0. (3.12b)

Now, the definition (3.2) implies a second order algebraic equation in λ. Equating the coeffi-
cients of different powers of λ to zero, we obtain the following system of equations

[

U2,M2

]

= 0 (3.13a)
[

U2,M1

]

+ U1
10M2 −M2U

1 = 0 (3.13b)

M2,x +
[

U2,M0

]

+ U1
10M1 −M1U

1 = 0 (3.13c)

M1,x + U1
10M0 −M0U

1 = 0 (3.13d)

M0,x = 0. (3.13e)
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Equation (3.13a) is satisfied identically, whereas (3.13e) implies that matrix M0 must be con-
stant. Moreover, since rankM2 = 1, we can choose M2 = diag {f, 0, 0}. In this case, from
equation (3.13b) we have that the entries of M1 are given by

M1,12 = fp, M1,13 = fθ, M1,21 = q10f and M1,31 = φ10f. (3.14)

Moreover, from equation (3.13c) we deduce equation

fx = 2f(pq − p10q10 + θφ− θ10φ10), (3.15)

Therefore, matrix M is of the form:

M(f, p, q10, θ, φ10; c1, c2) = λ2





f 0 0
0 0 0
0 0 0



+ λ





0 fp fθ

q10f 0 0
φ10f 0 0



+





c1 0 0
0 c2 0
0 0 1



 , (3.16)

where we have chosen the constant matrix M0 to be diagonal, namely of the form M0 =
diag (c1, c2, 1) (one of the parameters along its diagonal can be rescaled to 1).

Finally, due to (3.13d), the entries of the Darboux matrix must satisfy the following system
of equations

px = 2p(p10q10 − pq + θ10φ10 − θφ)− 2
c2p10 − c1p

f
, (3.17a)

q10,x = 2q10(p10q10 − pq + θ10φ10 − θφ)− 2
c1q10 − c2q

f
, (3.17b)

θx = 2φ(p10q10 − pq + θ10φ10 − θφ) + 2
c1θ − θ10

f
, (3.17c)

φ10,x = 2φ10(p10q10 − pq + θ10φ10 − θφ) + 2
φ− c1φ10

f
. (3.17d)

where we have made use of (3.15).
Thus, matrix M given by (3.16) constitutes a Darboux matrix for the Lax operator (3.8),

if its entries satisfy the system of equations system {(3.15), (3.17)}. We can readily show that
the latter system admits the following first integral

∂x(c2f − f
2(pq10 + c2θφ10)) = 0, (3.18)

by straightforward calculation. Using the above first integral we can show that ∂x(sdetM) = 0.

Remark 4. The Darboux matrix (31) in [16] constitutes the bosonic limit of (3.16).

4 Derivation Yang-Baxter maps

In [15] we considered the case of Darboux matrices associated with Lax operators of NLS type,
which correspond to a recent classification of automorphic Lie algebras [7, 8, 20]. We used these
Darboux matrices to construct six-dimensional YB maps together with their four-dimensional
restrictions on invariant leaves.

In this paper, we are interested in the Grassmann extensions of these YB maps. In partic-
ular, we shall discuss the cases of the YB maps associated with the NLS equation [30] and the
DNLS equation [14].
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4.1 NLS case

According to (3.4) we define the following matrix

M(x;λ) =





X + λ x1 χ1

x2 1 0
χ2 0 1



 , x := (x1, x2, χ1, χ2, X), (4.1)

Then, we substitute M to the Lax equation (2.10) which leads to a system of polynomial
equations. The corresponding algebraic variety is a union of two ten-dimensional components.
The first one is obvious from the refactorisation problem, and it corresponds to the trivial Yang-
Baxter map, while the second one corresponds to a non-trivial ten-dimensional Yang-Baxter
map. In particular, we have the following.

Proposition 3. The matrix refactorisation problem

M(u;λ)M(v;λ) =M(y;λ)M(x;λ), (4.2)

where M =M(x;λ) is given by (4.1), yields the permutation map

x 7→ u = y, y 7→ v = x,

and the following ten-dimensional Yang-Baxter map

x1 7→ u1 = y1 −
X − x1x2 − χ1χ2 − Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2
x1, (4.3a)

x2 7→ u2 = y2, (4.3b)

χ1 7→ ξ1 = ψ1 −
X − x1x2 − Y + y1y2 + ψ1ψ2

1 + x1y2
χ1, (4.3c)

χ2 7→ ξ2 = ψ2, (4.3d)

X 7→ U =
X − x1x2 − χ1χ2 + (x1y2 + χ1ψ2)Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2

, (4.3e)

y1 7→ v1 = x1, (4.3f)

y2 7→ v2 = x2 +
X − x1x2 − χ1χ2 − Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2

y2, (4.3g)

ψ1 7→ η1 = χ1, (4.3h)

ψ2 7→ η2 = χ2 +
X − x1x2 − χ1χ2 − Y + y1y2

1 + x1y2
ψ2, (4.3i)

Y 7→ V =
(x1y2 + χ1ψ2)X + x1x2 + χ1χ2 + Y − y1y2 − ψ1ψ2

1 + x1y2 + χ1ψ2

, (4.3j)

which is non-involutive and birational.

Proof. Equation (4.2) implies that v1 = x1, η1 = χ1, u2 = y2, ξ2 = ψ2, and the following system
of equations

U + V = X + Y (4.4a)

UV + u1v2 + ξ1η2 = Y X + y1x2 + ψ1χ2 (4.4b)

Ux1 + u1 = Y x1 + y1, Uχ1 + ξ1 = Y χ1 + ψ1 (4.4c)

y2V + v2 = y2X + x2, ψ2V + η2 = ψ2X + χ2, (4.4d)
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for u1, ξ1, U, v2, η2 and V . From (4.4c)-(4.4d) using (4.4a), we can express all variables u1, ξ1, v2,
and η2 in terms of Y − U , as:

u1 = (Y − U)x1 + y1, ξ1 = (Y − U)χ1 + ψ1 (4.5a)

v2 = x2 − y2(Y − U), η2 = χ2 − ψ2(Y − U). (4.5b)

Now, substituting (4.5) to (4.4b), using (4.4a), we obtain

(Y − U) [U(1 + x1y2 + χ1ψ2)−X + x1x2 + χ1χ2 − (x1y2 + χ1ψ2)Y − y1y2 − ψ1ψ2] = 0. (4.6)

From the above follows that either U = Y , which in view of (4.5) and (4.4a) implies the
permutation map (4.3), or

U =
X − x1x2 − χ1χ2 + (x1y2 + χ1ψ2)Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2

. (4.7)

Substitution of the latter to (4.5), implies that u1 and v2 are given by (4.3a) and (4.3g),
respectively, while ξ1 and η2 are given by

ξ1 = ψ1 −
X − x1x2 − χ1χ2 − Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2
χ1

η2 = χ2 +
X − x1x2 − χ1χ2 − Y + y1y2 + ψ1ψ2

1 + x1y2 + χ1ψ2

ψ2.

Now, in the above expressions we mutliply both the nominator and the denominator with
the conjugate expression of the latter, namely “1 + x1y2 − χ1ψ2”, and we use the fact that
χ2
1 = ψ2

2 = 0. Then, ξ1 and η2 can be written in the form (4.3c) and (4.3i).
Finally, it can be readily verified by straightforward calculation that map (4.3) is non-

involutive, and its birationality is due to Prop. 1.

Remark 5. The bosonic limit of the above map (namely if we set the odd variables χ1 = χ2 =
ψ1 = ψ2 = 0) is map (4.7) in [15].

4.1.1 Restriction on invariant leaves: Extension of Adler-Yamilov map

In this section, we derive an eight-dimensional Yang-Baxter map from map (4.3), which is the
Grassmann extension of the Adler-Yamilov map [3, 17, 22]. Our proof is motivated by the
existence of the first integral (3.7) for system (3.5).

In particular, we have the following.

Proposition 4. 1. The quantities Φ = X − x1x2 − χ1χ2 and Ψ = Y − y1y2 − ψ1ψ2 are
invariants (first integrals) of the map (4.3).

2. The ten-dimensional map (4.3) can be restricted to an eight-dimensional map, Ya,b ∈
End{Aa ×Ab}, given by

x 7→ u =

(

y1 +
(b− a)(1 + x1y2 − χ1ψ2)

(1 + x1y2)2
x1, y2, ψ1 +

b− a

1 + x1y2
χ1, ψ2

)

, (4.8a)

y 7→ v =

(

x1, x2 +
(a− b)(1 + x1y2 − χ1ψ2)

(1 + x1y2)2
y2, χ1, χ2 +

a− b

1 + x1y2
ψ2

)

, (4.8b)

where a, b ∈ G0 and Aa, Ab are level sets of the first integrals Φ and Ψ, namely

Aa = {(x1, x2, χ1, χ2, X) ∈ A5; Φ = a}, Ab = {(y1, y2, ψ1, ψ2, Y ) ∈ A
5; Ψ = b}. (4.9)
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3. The bosonic limit of map Ya,b is the Adler-Yamilov map.

Proof. 1. It can be readily verified that (4.3) implies U − u1u2 − ξ1ξ2 = X − x1x2 − χ1χ2

and V − v1v2 − η1η2 = Y − y1y2 −ψ1ψ2. Thus, Φ and Ψ are invariants, i.e. first integrals
of the map.

2. The existence of the restriction is obvious. Using the conditions X = x1x2 + χ1χ2 + a

and Y = y1y2 + ψ1ψ2 + b, one can eliminate X and Y from (4.3). The resulting map,
x→ u(x,y), y→ v(x,y), is given by (4.8).

3. If one sets the odd variables of the above map equal to zero, namely χ1 = χ2 = 0 and
ψ1 = ψ2 = 0, then the map (4.8) coincides with the Adler-Yamilov map.

Now, one can use the condition X = x1x2 + χ1χ2 + a to eliminate X from the Lax matrix
(4.1), i.e.

M(x; a, λ) =





a+ x1x2 + χ1χ2 + λ x1 χ1

x2 1 0
χ2 0 1



 , (4.10)

which corresponds to the Darboux matrix derived in [13]. Now, the Adler-Yamilov map’s
extension follows from the strong Lax representation

M(u; a, λ)M(v; b, λ) =M(y; b, λ)M(x; a, λ). (4.11)

Therefore, the extension of the Adler-Yamilov’s map (4.8) is a reversible parametric YB map.
Moreover, it is easy to verify that it is not involutive. Birationality of map (4.8) is due to Prop.
1.

To generate invariants of map (4.8) we use str(M(y; b, λ)M(x; a, λ)), and we obtain the
following

T1 = x1x2 + y1y2 + χ1χ2 + ψ1ψ2,

T2 = (a+ x1x2 + χ1χ2)(b+ y1y2 + ψ1ψ2) + x1y2 + x2y1 + χ1ψ2 − χ2ψ1,

where we have omitted the additive constants. However, T1 and T2 are linear combinations of
the following invariants

I1 = x1x2 + y1y2, (4.12a)

I2 = χ1χ2 + ψ1ψ2, (4.12b)

I3 = χ1χ2ψ1ψ2, (4.12c)

I4 = b(x1x2 + χ1χ2) + a(y1y2 + ψ1ψ2) + y1y2(x1x2 + χ1χ2) + x1x2ψ1ψ2+ (4.12d)

y1x2 + y2x1 + χ1ψ2 − χ2ψ1.

4.2 DNLS case

According to matrix M(p, q10, θ, φ10; 1, 1) in (3.16) we consider the following matrix

M(x;λ) = λ2





X 0 0
0 0 0
0 0 0



 + λ





0 x1 χ1

x2 0 0
χ2 0 0



+





1 0 0
0 1 0
0 0 1



 , (4.13)
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where x = (x1, x2, χ1, χ2, X) and, in particular, we have set

X := f, x1 := fp, x2 = fq10, χ1 := fθ and χ2 := ψ10f. (4.14)

In this case, the Lax equation implies the following equations

U + V + u1v2 + ξ1η2 = Y +X + y1x2 + ψ1χ2, (4.15a)

u2v1 = y2x1, u2η1 = y2χ1, ξ2v1 = ψ2x1, ξ2η1 = ψ2χ1, (4.15b)

Uv1 = Y x1, u2V = y2X, Uη1 = Y χ1, η2X = ψ2X, (4.15c)

ui + vi = xi + yi, ξi + ηi = χi + ψ1, i = 1, 2. (4.15d)

As in the previous section, the algebraic variety consists of two components. The first ten-
dimensional component corresponds to the permutation map

x 7→ u = y, y 7→ v = x, (4.16)

and the second corresponds to the following ten-dimensional YB map

x 7→ u =

(

y1 +
f(x,y)

g(x,y)
x1,

g(x,y)

h(x,y)
y2, ψ1 +

f(x,y)

g(x,y)
χ1,

g(x,y)

h(x,y)
ψ2,

g(x,y)

h(x,y)
Y

)

, (4.17a)

y 7→ v =

(

h(x,y)

g(x,y)
x1, x2 +

f(y,x)

h(x,y)
y2,

h(x,y)

g(x,y)
χ1, χ2 +

f(y,x)

h(x,y)
ψ2,

h(x,y)

g(x,y)
X

)

. (4.17b)

where f , g and h are given by the following expressions

f(x,y) = X − x1x2 − χ1χ2 − Y + y1y2 + ψ1ψ2, (4.18a)

g(x,y) = X − x1(x2 + y2)− χ1(χ2 + ψ2), (4.18b)

h(x,y) = Y − (x1 + y1)y2 − (χ1 + ψ1)ψ2. (4.18c)

4.3 Restriction on invariant leaves

In this section, we show that the map given by (4.17)-(4.18) can be restricted to a completely
integrable eight-dimensional YB map on invariant leaves. As in the previous section, the idea
of this restriction is motivated by the existence of the first integral (3.18).

Particularly, we have the following.

Proposition 5. 1. Φ = X − x1x2 − χ1χ2 and Ψ = Y − y1y2 − ψ1ψ2 are invariants of the
map (4.17)-(4.18).

2. The ten-dimensional map (4.17)-(4.18) can be restricted to an eight-dimensional map,
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Ya,b ∈ End{Aa ×Ab}, given by

x1 7→ u1 = y1 +
(a− b)(a− x1y2 + χ1ψ2)

(a− x1y2)2
x1, (4.19a)

x2 7→ u2 =
(a− x1y2 − χ1ψ2)(b− x1y2 + χ1ψ2)

(b− x1y2)2
y2, (4.19b)

χ1 7→ ξ1 = ψ1 +
a− b

a− x1y2
χ1, (4.19c)

χ2 7→ ξ2 =
a− x1y2
b− x1y2

ψ2, (4.19d)

y1 7→ v1 =
(b− x1y2 − χ1ψ2)(a− x1y2 + χ1ψ2)

(a− x1y2)2
x1, (4.19e)

y2 7→ v2 = x2 +
(b− a)(b− x1y2 + χ1ψ2)

(b− x1y2)2
y2, (4.19f)

ψ1 7→ η1 =
b− x1y2
a− x1y2

χ1, (4.19g)

ψ2 7→ η2 = χ2 +
b− a

b− x1y2
ψ2, (4.19h)

where a, b ∈ G0 and Aa, Ab are given by (4.9).

3. The bosonic limit of the above map is the four-dimensional YB map associated to the
DNLS equation.

Proof. 1. Map (4.17)-(4.18) implies U−u1u2−ξ1ξ2 = X−x1x2−χ1χ2 and V −v1v2−η1η2 =
Y − y1y2 − ψ1ψ2. Therefore, Φ and Ψ are first integrals of the map.

2. The conditions X = x1x2 + χ1χ2 + a and Y = y1y2 + ψ1ψ2 + b define the level sets, Aa

and Ab, of Φ and Ψ, respectively. Using these conditions, we can eliminate X and Y from
map (4.17)-(4.18). The resulting map, Ya,b : Aa × Ab −→ Aa ×Ab, is given by (4.19).

3. Setting the odd variables in (4.19) equal to zero, we obtain map (4.37) in [15].

Now, using condition X = x1x2 + χ1χ2 + a, matrix (4.13) takes the following form

M = λ2





k + x1x2 + χ1χ2 0 0
0 0 0
0 0 0



+ λ





0 x1 χ1

x2 0 0
χ2 0 0



+





1 0 0
0 1 0
0 0 1



 . (4.20)

Map (4.19) has the following strong Lax representation

M(u; a, λ)M(v; b, λ) =M(y; b, λ)M(x; a, λ). (4.21)

Therefore, it is reversible parametric YB map which is birational due to Prop. 1. It can also
be verified that it is not involutive.

Regarding the invariants of map (4.19), the ones which we retrieve from str(M(y; b, λ)M(x; a, λ))
are

K1 = (a+ x1x2 + χ1χ2)(b+ y1y2 + ψ1ψ2)

K2 = x1x2 + y1y2 + x1y2 + x2y1 + χ1χ2 + ψ1ψ2 + χ1ψ2 − χ2ψ1,
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where we have omitted the additive constants. However, K1 is sum of the following quantities

I1 = (a+ x1x2)(y1y2 + ψ1ψ2) + b(x1x2 + χ1χ2) + y1y2χ1χ2 (4.22a)

I2 = χ1χ2ψ1ψ2, (4.22b)

which are invariants themselves. Moreover, K2 is sum of the following invariants

I3 = (x1 + y1)(x2 + y2) and I4 = (χ1 + ψ1)(χ2 + ψ2). (4.23)

In fact, the quantities Ci = xi + yi and Ωi = χi + ψi, i = 1, 2, are invariants themselves.

4.4 Vector generalisations: 4N × 4N maps

In what follows we use the following notation for a vector w = (w1, ..., w4n)

w = (w1,w2,ω1,ω2), where w1 = (w1, ..., wN), w2 = (wN+1, ..., w2N)

and ω1 = (w2N+1, ..., w3N), ω2 = (w3N+1, ..., w4N),

where w1 and w2 are even and ω1 and ω2 are odds. Also,

〈ui| := ui, |wi〉 := wT
i and their dot product with 〈ui, wi〉. (4.24)

4.5 NLS case

Now, we replace the variables in map (4.8) with N−vectors, namely we consider the following
4N × 4N map



















〈u1| = 〈y1|+ f(z; a, b)〈x1|(1 + 〈x1, y2〉 − 〈χ1, ψ2〉),

〈u2| = 〈y2|,

〈ξ1| = 〈ψ1|+ f(z; a, b)〈χ1|(1 + 〈x1, y2〉 − 〈χ1, ψ2〉),

〈ξ2| = 〈ψ2|,

(4.25a)

and



















〈v1| = 〈x1|,

〈v2| = 〈x2|+ f(z; b, a)〈y2|(1 + 〈x1, y2〉 − 〈χ1, ψ2〉),

〈η1| = 〈χ1|

〈η2| = 〈χ2|+ f(z; b, a)〈ψ2|(1 + 〈x1, y2〉 − 〈χ1, ψ2〉)

(4.25b)

where f is given by

f(z; b, a) =
b− a

(1 + z)2
, z := 〈x1, y2〉. (4.26)

Map (4.25)-(4.26) is a reversible parametric YB map, for it has the following strong Lax-
representation

M(u; a)M(v; b) =M(y; b)M(x; a) (4.27)
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where

M(w; a) =





λ+ a + 〈w1, w2〉+ 〈ω1, ω2〉 〈w1| 〈ω1|
|w2〉
|ω2〉 I2N−1



 . (4.28)

Moreover, map (4.25)-(4.26) is birational and not involutive.
The invariants of this map are given by

K1 = a+ b+ 〈x1, x2〉+ 〈y1, y2〉+ 〈χ1, χ2〉+ 〈ψ1, ψ2〉, (4.29a)

K2 = b(〈x1, x2〉+ 〈χ1, χ2〉) + a(〈y1, y2〉+ 〈ψ1, ψ2〉) + (〈y1, y2〉+ 〈ψ1, ψ2〉)(〈x1, x2〉+ 〈χ1, χ2〉).
(4.29b)

The quantities
I1 = 〈x1, x2〉+ 〈χ1, χ2〉, and I2 = 〈y1, y2〉+ 〈ψ1, ψ2〉, (4.30)

are invariant themselves, while K2 can be written as sum of the following

I3 =〈χ1, χ2〉〈ψ1, ψ2〉, (4.31a)

I4 =b(〈x1, x2〉+ 〈χ1, χ2〉) + a(〈y1, y2〉+ 〈ψ1, ψ2〉)+ (4.31b)

(〈y1, y2〉+ 〈ψ1, ψ2〉)〈x1, x2〉+ 〈y1, y2〉〈χ1, χ2〉.

4.6 DNLS case

Now, replacing the variables in (4.19) with N -vectors we obtain the following 4N × 4N -
dimensional map



















〈u1| = 〈y1|+ h(z; a, b)〈x1|(a− 〈x1, y2〉+ 〈χ1, ψ2〉),

〈u2| = g(z; a, b)〈y2| − h(z; b, a)〈χ1, ψ2〉〈y2|,

〈ξ1| = 〈ψ1|+ f(z; a, b)〈χ1|,

〈ξ2| = g(z; a, b)〈ψ2|,

(4.32a)

and



















〈v1| = g(z; b, a)〈x1| − h(z; a, b)〈x1|,

〈v2| = 〈x2|+ h(z; b, a)〈y2|(b− 〈x1, y2〉+ 〈χ1, ψ2〉),

〈η1| = g(z; b, a)〈χ1|,

〈η2| = 〈χ2|+ f(z; b, a)〈ψ2|,

where f , g and h are given by

f(z; a, b) =
a− b

a− z
, g(z; a, b) =

a− z

b− z
, h(z; a, b) =

a− b

(a− z)2
, z :=< x1, y2 > .

(4.33)
Map (4.32)-(4.33) is reversible parametric YB map, as it has the strong Lax-representation

(4.27) where

M =





λ2(k + 〈x1, x2〉+ 〈χ1, χ2〉) λ〈x1| λ〈χ1|
λ|x2〉
λ|χ2〉 I2N



 . (4.34)

Moreover, it is a non-involutive map and birational.
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The invariants we retrieve from the supertrace of the monodromy matrix are given by

K1 = (a+ 〈x1, x2〉+ 〈χ1, χ2〉)(b+ 〈y1, y2〉+ 〈ψ1, ψ2〉)

K2 = 〈x1, x2〉+ 〈y1, y2〉+ 〈x1, y2〉+ 〈x2, y1〉+ 〈χ1, χ2〉+ 〈ψ1, ψ2〉+

〈χ1, ψ2〉 − 〈χ2ψ1〉,

where we have omitted the additive constants. In fact, K2 is a sum of the following invariants

I1 = 〈x1 + y1, x2 + y2〉, I2 = 〈χ1 + ψ1, χ2 + ψ2〉, (4.35)

and the vectors in the above dot products are invariant themselves, namely

〈x1 + y1|, 〈x2 + y2|, 〈χ1 + ψ1|, and 〈χ2 + ψ2|, (4.36)

are invariants.

5 Conclusions

We showed that there are explicit examples of birational endomorphisms of Grassmann alge-
braic varieties which possess the Yang-Baxter property. These YB maps are related to noncom-
mutative versions of integrable PDEs via their Lax representations which consist of Darboux
matrices for these PDEs. Specifically, we considered the cases of the Grassmann extensions of
Darboux transformations corresponding to

1. the NLS equation;

2. the DNLS equation.

In the former case a Darboux transformation appeared in [13] and, here, we constructed a
Darboux transformation for the latter case. Employing the associated Darboux matrices we
derived ten-dimensional maps, which we restricted on invariant leaves to eight-dimensional
birational parametric YB maps. The motivation for these restrictions was the fact that the
entries of the associated Darboux matrices satisfy particular systems of differential-difference
equations which possess first integrals. The latter indicated the invariant leaves. In the case of
the NLS equation the derived eight-dimensional YB map, namely map (4.8), is the Grassmann
extension of the Adler-Yamilov map, while in the case of the DNLS equation the result is a
novel eight-dimensional YB map, map (4.19), which, at the bosonic limit, is equivalent to a
four-dimensional YB map which appeared recently in [15]. Moreover, we considered the vector
generalisations of these eight-dimensional maps.

Our results could be extended in several ways.

i find the Poisson structure of the eight-dimensional YB maps;

ii study the case of the Lax operator with D2 symmetries;

iii study the corresponding noncommutative entwining systems;

iv study the transfer dynamics of all the Grassmann extended YB maps and the entwining
systems associated to the Grassmann extended Darboux matrices.
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Regarding (i) one needs to find the even-odd Poisson brackets [4] for the maps (4.8) and (4.19).
In the case of map (4.19), the invariants Ci and Ωi will be Casimirs for the associated Poisson
bracket. For (ii), in [16] we studied the Darboux transformations in the case of Lax operators
which are invariant under the action of the D2 reduction group, whereas in [15] we studied the
associated YB maps. The Grassmann extension of these Darboux transformations and their
associated YB maps in this case is an open problem. With regards to (iii), one can consider
Lax triples of Darboux matrices with even and odd entries. Finally, concerning (iv), one can
consider the transfer maps for the n-periodic problem as defined in [18].
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Bäcklund transformations for supersymmetric equations Phys. Lett. B 78 413–416.

[10] Dimakis A. and Müller-Hoissen F. 2005 An algebraic scheme associated with the
non-commutative KP hierarchy and some of its extensions J. Phys. A 38 5453–5505.

16



[11] Doliwa A 2014 Non-commutative rational Yang-Baxter maps Lett. Math. Phys 104 299–
309.

[12] Drinfeld V 1992 On some unsolved problems in quantum group theory Lecture Notes
in Math. 1510 1–8.

[13] Grahovski G and Mikhailov A 2013 Integrable discretisations for a class of nonlinear
Scrödinger equations on Grassmann algebras Phys. Lett. A 377 3254–3259.

[14] Kaup D and Newell A 1978 An exact solution for a derivative nonlinear Schrödinger
equation J. Mathematical Phys. 19 798–801.

[15] Konstantinou-Rizos S and Mikhailov A 2013 Darboux transformations, finite re-
duction groups and related Yang-Baxter maps J. Phys. A 46 425201.

[16] Konstantinou-Rizos S and Mikhailov A and Xenitidis P 2015 Reduction groups
and related integrable difference systems of nonlinear Schrödinger type J. Math. Phys. 56
082701.

[17] Kouloukas T and Papageorgiou V 2009 Yang-Baxter maps with first-degree-
polynomial 2× 2 Lax matrices J. Phys. A 42 404012.

[18] Kouloukas T and Papageorgiou V 2011 Entwining Yang-Baxter maps and integrable
lattices Banach Centre Publications 93 163–175.

[19] Kouloukas T and Papageorgiou V 2011 Poisson Yang-Baxter maps with binomial
Lax matrices J. Math. Phys. 52 404012.

[20] Lombardo S and Mikhailov A 2005 Reduction groups and automorphic Lie algebras
Comm. Math. Phys. 258 179–202.

[21] Nijhoff F and Walker A 2001 The discrete and continuous Painlevé VI hierarchy and
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[28] Xue L and Liu Q 2014 Bäcklund-Darboux transformations and discretizations of super
KdV equation SIGMA 10 paper 045 (10 pages).

17



[29] Xue L and Liu Q 2015 A supersymmetric AKNS problem and its Darboux-Bäcklund
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