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Mobility Diversity-Assisted Wireless

Communication for Mobile Robots
Daniel Bonilla Licea, Mounir Ghogho, Des McLernon, Syed Ali Raza Zaidi

Abstract—Mobile robots, that wish to communicate wirelessly,
often suffer from fading channels. They need to devise an energy
efficient strategy to search for a high channel gain position in a
near vicinity from which to begin communications. Such a strat-
egy has recently been introduced through the Mobility Diversity
with Multi-Threshold Algorithm (MDMTA). In this paper, we
establish the theoretical framework for a generalized version of
the MDMTA. This allows improved wireless communications in
fading channels for mobile robots via intelligent robotic motion
with low mechanical energy expenditure.

Index Terms—Autonomous Agents, Robotics Communications,
Fading

I. INTRODUCTION

A. Motivation

R
ECENTLY there has been an increasing interest in

robotics communications from both the communications

and the robotics communities. In this context some of the

problems treated are: how to improve the performance of

wireless sensor networks using mobile robots (MRs) [1]; how

to take advantage of collaborative communications among

numerous mobile robots to find their way out of a maze

[2]; how to optimize the position of robotic routers in a

wireless robotic network [3], [4] and some other related issues

associated with robotic networks [5], [6]; how to optimize

the trajectory of a mobile robot to maintain good quality

in the communications channel [7], [8]; and finally how to

compensate the small scale-fading in wireless channels using

the controlled motion of MRs [9], [10], [11], [12], [13]. This

last problem is the main topic of this article.

Small-scale fading [14] is a common phenomenon in mobile

communications that affects the gain of the wireless channel.

It produces random variations in the wireless channel gain

across the space. In some cases the fading is so severe that

it becomes impossible to communicate. MR communications

also suffers from this phenomenon. Therefore in order to make

MR communications robust it is necessary to compensate for

small-scale wireless channel fading. This can be accomplished

through diversity techniques [14].

The idea behind diversity is that due to small-scale fading

the channel gain varies randomly across different spatial
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positions and so the probability that all channels exhibit

simultaneously poor gain is lower than the probability that

a single channel exhibits poor gain [14]. Diversity techniques

construct a new ‘artificial channel’ by combining1 multiple

channels. In consequence, this ‘artificial channel’ has a low

probability of experiencing a poor gain.

Diversity techniques have been extensively studied and

developed in the wireless communications literature for more

than fifty years [15] [16], [14]. Classical diversity techniques

have been devised for transceivers that are either stationary

(e.g., a base station) or whose movement is random and

uncontrolled (e.g., a user of a cellular network). But mobile

robots, equipped with a wireless transceiver, can both know

and control their positions and so this opens the possibility

of developing a new class of diversity techniques collectively

called ‘Mobility Diversity’.

So in summary, the problem tackled in this article is the

design of a general intelligent mobility diversity technique to

compensate the small-scale fading in wireless channels for MR

communications.

B. Problem Overview

From the authors’ knowledge, the first articles that men-

tioned this new form of diversity are [12] and [13]. This

technique is known as ‘Mobility Diversity’ [9], [10], [11], ‘RF-

Mobility Gain’ [12] or simply ‘jittery movement’ [17], [3].

This technique combats small-scale fading as follows: if the

channel gain is poor the MR moves slightly in an intelligent

manner to find a position that experiences a better channel.

This technique is new, still underdeveloped and the amount of

literature dealing with it is very scarce.

In [12] the authors show with real measurements how, in

a MR to MR wireless link experiencing small-scale fading,

the channel gain can be improved considerably by moving

one of the robots a small distance. They show experimentally

that this principle actually works. The authors mention that

the ‘Mobility Gain’ principle consists of a searching strategy,

a searching goal and a termination criterion. The searching

strategies proposed are linear, circular, spiral and random

motions. Although the trade-off between the energy used

for locomotion and the improvement on the channel gain is

mentioned, the authors do not treat the problem of how to

optimize the searching space of the MR.

1This combination can take different forms. For example averaging all the
channels observed (e.g., equal gain combining [16]) or simply selecting the
channel with the highest channel gain (e.g., selection combining [16]).
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In [13] the authors consider the case in which a MR must

follow a predefined trajectory for surveillance purposes and

then transmit data to a base station. Real channel measure-

ments were used and the wireless channel presented small-

scale fading, in particular Rayleigh fading. The authors show

how to modify the trajectory of the MR so that it spends

more time in positions with high channel gain and less time

in positions with low channel gain, while completing some

predefined surveillance trajectory in a certain time.

In section IV-D of [17] the authors propose a “jittery

movement” for the MR in order to combat small scale fading.

To perform this movement a small circular region around the

MR’s current position is first defined and then N points are

randomly distributed. The MR measures the channel gain at

these points and then moves to the one which presents the

largest channel gain in order to establish communications.

In [18], the authors show experimentally how a wireless

robotic network can improve its performance by compensating

small scale fading through micro-movements. The authors

propose a distributed algorithm so that each MR explores

a number of positions to optimize some networks metrics.

The authors consider two different configurations of positions

per MR. The first configuration uses two points separated a

distance of half wavelength. The second configuration uses

five positions where four of them are uniformly arranged

into a circle with radius of half wavelength and the fifth

position is located at the center of the circle. In practice these

configurations produce nearly independent wireless channels

but they are not optimized.

Although [12], [13], [17] and [18] present the idea of

moving the MR (over a small area) to combat fading there

is not a clear understanding about the “optimum” way to

move. In our previous work [9] we presented the ‘Mobility

Diversity with Multi-Threshold Algorithm’ (MDMTA) for

MRs to combat small-scale fading in wireless links. In this

algorithm the MR measures the channel gain over a certain

number of stopping points according to some established rules.

We also derived the optimum spatial distribution of stopping

points for the special cases of 2, 3 and 4 points, presented a

method to determine the optimum number (i.e., 2, 3 or 4) of

points to be explored and introduced the concept of ‘Adaptive

Diversity Order’. We should mention that the MDMTA is a

more general case of the simple “jittery movement” proposed

in [17].

In all the previous works mentioned the location of the

stopping points do not depend on the channel gain observed

at previous stopping points but in [10] and [11] the authors

proposed adaptive methods to determine the location of the

points by using a function of the channel gain observed

at previous stopping points. We will refer to these kinds

of stopping point geometries presented in [10] and [11] as

‘adaptive geometries’ while the rest of the geometries will be

referred to as ‘predetermined geometries’. The disadvantage

of ‘adaptive geometries’ is that they require more knowledge

of the wireless channel and thus are computationally more

complex and less robust than ‘predetermined geometries’. In

this article we will focus only on mobility diversity algorithms

that use predetermined geometries; the study of adaptive

geometries will be the subject of another article.

C. Contribution and Organization

The main component of the MDMTA is the geometry of the

points explored by the MR to measure the channel but in the

current available literature dedicated to mobility diversity there

is not yet a method to optimize the stopping points geometry

for an arbitrary number of points. Therefore the main objective

of this article is to provide methods to optimize the stopping

points geometry for any number of points.

We also mentioned that the MDMTA presented in [9] is a

more general case of the algorithm presented in section IV-D

of [17], but this is not obvious because the diverse components

of the MDMTA have not been properly identified.

The identification and description of the elements compos-

ing the MDMTA provides us with a deeper understanding on

how this algorithm actually works. This understanding will

allow the designer to modify the MDMTA by customizing its

existing components or by adding new ones in order to create

improved mobility diversity algorithms.

To summarize, the main contributions of this article are:

1) New methods to determine the optimum geometries of

any number of stopping points.

2) Formalization of the MDMTA [9] and identification of

their components.

3) Optimization methods for the MDMTA parameters.

In section II we describe a realistic model for a particular

MR and we also present the model for the wireless channel. In

section III we describe the general MDMTA and then show

how to optimize it in section IV. Analysis for some simple

cases of the MDMTA are developed in section V. Simulation

results are presented in section VI and finally conclusions are

given in section VII.

II. SYSTEM MODEL

A. MR Model

In this article, we consider an omnidirectional MR2. In par-

ticular we select a three-wheel omnidirectional mobile robot3

(TOMR) [19]. A TOMR is a MR with three omnidirectional

wheels [20], where each wheel is driven by its own motor.

The distance from each wheel to the center of the robot is

denoted as L. The TOMR model described in this subsection is

a version of the model presented in [21]. The robot is equipped

with an antenna installed at the geometrical center of the robot

(see Fig. 1).

The TOMR position at time t in the global coordinate frame

is p(t) = [xg(t) yg(t)]
T and its pose is po(t) = [p(t) φ(t)]T

where φ(t) is its orientation. The TOMR pose is related to the

control inputs as follows:

ż(t) =

[

O3×3 I3×3

O3×3 R(t)ṘT (t)−A−1C

]

z(t)

+

[

O3×3

A−1R(t)D

]

u(t),

(1)

2An omnidirectional MR can move in any direction at any time.
3Although we restrict our analysis to a TOMR the technique presented in

this article can be applied to any other type of omnidirectional MR.
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Figure 1. Three-wheeled omnidirectional mobile robot at position p(t) =
[xg(t) yg(t)]T , orientation φ(t) and with an antenna at its centre.

where z(t) = [pT
o (t) ṗT

o (t)]
T , u(t) = [u1(t) u2(t) u3(t)]

T ,

ui(t) is the control input to the ith motor, O3×3 is a 3 × 3
zero matrix and I3×3 is a 3× 3 identity matrix. Matrix A is

given by

A =





m+ 3Jw
2r2 0 0

0 m+ 3Jw
2r2 0

0 0 Jc +
3JwL

2

r2



 , (2)

where m is the total mass of the robot, r is the radius of

the wheels, L is the distance from the geometric center of the

robot to each wheel and Jw and Jc represent the inertia for

the robot rotation and for each wheel respectively. We also

have C = k1diag[1, 1, 2L
2], with k1 being a robot-specific

parameter, and the matrix D is:

D = k2





0 −sin(π/3) sin(π/3)
1 −cos(π/3) −cos(π/3)
L L L



 , (3)

where k2 is another robot-specific parameter. The rotation

matrix R(t) is given by:

R(t) =





cos(φ(t)) −sin(φ(t)) 0
sin(φ(t)) cos(φ(t)) 0

0 0 1



 , (4)

The energy draw from the battery by the MR for motion (we

will refer to this as the mechanical energy) from time ti to

ti+1 is:

Emech(ti, ti+1,u(t)) = k3

∫ ti+1

ti

uT (t)u(t)dt

− k4

∫ ti+1

ti

ṗTo (t)R(t)Du(t)dt,(5)

where k3 and k4 are robot-specific parameters. All four param-

eters (k1, k2, k3 and k4) depend on various electromechanical

parameters of the MR’s motors but to avoid introducing more

parameters and keep the notation as simple as possible we do

not present more details here. The interested reader can find

the detailed expression of k1, k2, k3 and k4 by matching the

model presented in [21] to our version.

B. Wireless Channel Model

We consider a communication link between a MR and a

stationary node. We assume that there are many scatterers

around the MR. This implies that if an electromagnetic wave

is radiated by the stationary node’s antenna then due to the

scatterers there will be many copies of this wave with different

angles and different phases arriving at the MR’s antenna.

These copies combine at the MR’s antenna and randomly

produce constructive or destructive interference depending on

the MR’s location. This phenomenon is called small-scale

fading or multi-path fading in the communications literature

[14]. We also assume that there is neither line of sight between

the stationary node and the MR nor a predominant reflected

wave. So this particular type of fading is called “Rayleigh

fading” [14], as the channel gain has a Rayleigh p.d.f. (proba-

bility density function) [14]. Note that this fading is the same

type observed in the experimental results of [13]. We also

consider that the signals transmitted are narrowband, meaning

that their bandwidth is narrow compared to radio frequency

carrier of the transmitter. This implies that the wireless channel

model is frequency independent. We also assume that the MR’s

environment is stationary (i.e., it does not change with time

during the execution of the mobility diversity algorithm) and

so the wireless channel is time invariant (for a given MR

position). So taking all the above into account, then the signal

received by the MR, when it is located at point p(t), is:

y(t) = s(p(t)) · h(p(t)) · x(t) + n(t) (6)

where x(t) is the narrowband signal transmitted by the

stationary node, n(t) ∼ CN (0, σ2) is4 the additive white

Gaussian noise (AWGN) generated at the MR’s receiver. Then

s(p(t)) and h(p(t)) ∼ CN (0, 1) are the shadowing (also

known as large-scale fading) [14] and small scale fading terms

respectively (both depending on the MR’s position, p(t)).The

area explored during the execution of the mobility diversity

algorithm is small and so we will assume s(p(t)) ≈ s. We

also assume Jake’s model [15] for the multi-path fading and

so the channel gain |h(p(t))| can be considered a bidimen-

sional homogenous and isotropic [22] random scalar field with

Rayleigh p.d.f. (standard parameter σ2 = 1
2 ) and the following

spatial covariance function:

Cv(p,q) =
E [(H(p)− E[H(p)])(H(q)− E[H(q)])]

√

var(H(p))var(H(q))
,

= J2
0 (2π‖p− q‖2/λ) . (7)

where λ is the wavelength used in the radio frequency trans-

mission by the stationary node, p,q ∈ R
2 are any two points

on the search space and H(p) = |h(p)|.

III. MDMTA

In this section we discuss the MDMTA. This algorithm

combats small-scale fading in a wireless link between a MR

and a fixed node5. The fixed node uses time division duplex

4Note that CN (0, σ2) means a complex normal random variable with zero
mean, variance σ2 and whose real and imaginary parts are independent and
identically distributed.

5This node has to remain stationary only during the execution of the
MDMTA. So it can be a base station or another MR that remains still during
the MDMTA execution.
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transmission6. During the transmission time the fixed node

sends a training signal so that the MR can estimate the channel

gain.

The MDMTA is divided into two phases: a searching phase

and a selection phase, respectively over the periods t1 ≤ t <
tN and tN ≤ t ≤ tN+1. During the searching phase the MR

stops and estimates the channel gain at N different points

called stopping points. By definition the first stopping point

q1 is p(t1). If at time instant ti the estimation of the ith
channel gain is greater than the threshold ηi the MDMTA

terminates prematurely and the MR then transmits (at point

qi) its data to the stationary node. In this case we will say that

the optimum stopping point qopt is qi. If the ith channel gain

is less than ηi, then the MR moves to qi+1 in ti+1−ti seconds

and repeats the process. If it reaches the N th stopping point

then the searching phase terminates and the selection phase

initiates. During the selection phase the MR uses a selection

rule (Rs) to determine the optimum stopping point qopt from

which to transmit (the optimum position is not always the

one with the highest channel gain as we shall later see) and

Hopt = |h(qopt)|. Then the MR moves from the stopping

point qN to qopt in tN+1 − tN seconds.

The MDMTA requires: N , the number of stopping points

to be explored; a matrix QN = [q1, q2, · · · ,qN ]
T

containing

the positions of the N stopping points to be explored; an N+1
dimensional temporal vector t = [t1 t2 · · · tN+1]

T ; an N − 1
dimensional vector η = [η1, η2, · · · , ηN−1]

T of thresholds;

a selection rule Rs (to be explained later in this section) and

optionally an estimate of the shadowing term s denoted by

ŝ. To simplify notation we will write Hi instead of H(qi)
in the rest of the article. The pseudocode of the MDMTA

is summarized below in Algorithm 1 where p represents the

position of the MR.

Algorithm 1 MDMTA(N,QN , t,η,Rs, (ŝ))
1: p← q1

2: for k = 1 to N − 1 do

3: ŝĤk ← Estimate[sH (p)] {Channel gain estimation .}

4: if Ĥk ≥ ηk then

5: Terminate Algorithm

6: end if

7: p ← qk+1{The MR moves to the next stopping point

in tk+1 − tk seconds.}

8: end for

9: ŝĤN ← Estimate[sH (p)]
10: qopt ← Rs{A ‘selection rule’ is used to determine the

optimum position.}

11: p← qopt{The MR moves to the optimum stopping point

in tN+1 − tN seconds.}

12: Terminate Algorithm

The thresholds in the MDMTA are used to terminate pre-

maturely the algorithm when the MR finds a stopping point

with high channel gain. This is in order to avoid expending

more energy by exploring the rest of the stopping points.

6This means that the fixed node alternates periodically its behaviour acting
either as a receiver or a transmitter.

If the thresholds are too low the probability that Ĥ1 ≥ η1
occurs is high and so the MR will stop most of the time

at the first stopping point. This implies that the probability

of finding a stopping point exhibiting a high channel gain

will be low. On the other hand, if the thresholds are too high

then the probability that any channel gain is superior to its

corresponding threshold will be considerably low and then

the MDMTA will almost never be prematurely terminated, so

making the thresholds useless.

Now, as mentioned above, during the execution of the

MDMTA the stationary node sends a training signal to the MR.

This training signal allows the MR to estimate sHi (see lines 3

and 9 of Algorithm 1) but the thresholds need to be compared

with Hi and not with sHi (see lines 4 to 6 of Algorithm 1).

So the estimation (ŝ) of the shadowing term7 is used to obtain

Ĥi from the estimation of sHi for the thresholding (lines 4 to

6 of Algorithm 1).

If the MR does not have an estimate of s and wants

to compare ηi directly with sHi, it would be equivalent to

comparing ηi/s with Hi. Since in this case s is unknown, this

action would be equivalent to using random thresholds which

can be too low or too high (and so having the consequences

previously explained). Therefore, if the MR wants to execute

the MDMTA but does not know ŝ, then it would be better to

set ηi = +∞ to avoid choosing the thresholds too low and

so reducing significantly the probability of obtaining a high

channel gain. This is why ŝ is an optional input parameter for

the MDMTA.

The selection rule selects the optimum point (qopt) based

on estimates of the product sHi and so, as opposed to the

thresholding issues, it is not necessary to estimate s and Hi

separately to implement the selection rule. Nevertheless, for

the remainder of the article we will assume that the MR knows

ŝ.
The simplest selection rule Rs is the Maximum Channel

Gain Rule which selects the stopping point with the highest

estimated channel gain. This selection rule was used in [17]

and also in the original MDMTA [9].

Assume that the MR uses the Maximum Channel Gain

Rule, qopt 6= qN and that ŝĤopt = ŝĤN + ǫ, where ǫ
is a small positive number. If this happens, then due to

the estimation errors, the following can occur with a non

negligible probability. That is, although ŝĤopt > ŝĤN , we

have in fact sHopt < sHN , which means that the MR would

expend energy by moving from qN to a stopping point with

a lower channel gain (qopt). Now, another possibility is that

sHopt > sHN , but the difference is really small and so the

MR would expend energy by moving from a qN to a stopping

point with marginally higher channel gain (qopt).

In order to solve these problems with the Maximum Channel

Gain Rule we propose a new selection rule: the Minimum

Effort Rule (see Algorithm 2). The key idea of this new

selection rule is to avoid wasting mechanical energy in

movement that does not provide a good improvement in the

channel gain. So, the MR now moves from qN to the point

7The MR can estimate the shadowing term prior to the MDMTA execution
with a technique like the one stated in [23] (implemented by this robot or by
a robotic network).
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with the highest estimated channel gain only if the difference

((ŝĤkmax
− ŝĤN )–see Algorithm 2) is significant, in other

words, larger than some threshold µ, see Algorithm 2. Note

that if µ = 0 then this selection rule becomes the Maximum

Channel Gain Rule.

Algorithm 2 qopt ← Rs(µ) Minimum Effort Rule

1: kmax ← arg max
k=1,2,···,N−1

{

ŝĤk

}

2: if ŝĤkmax
− ŝĤN > µ then

3: qopt ← qkmax

4: else

5: qopt ← qN
6: end if

7: return qopt

Now that we have explained in detail the behavior and the

components of the MDMTA we will proceed to explain how

to optimize this algorithm in the next section.

IV. MDMTA OPTIMIZATION

First, we will assume that the number of stopping points

N is given and then in the last subsection we will show how

to optimize it. The general MDMTA optimization problem

(MDMTA-OP-1) to be solved is:

MDMTA-OP 1.

min
η,t,µ,QN ,u(t)

f (Hopt, Emech (t1, tN+1,u(t)))

s.t.
qi ∈ X , i = 1, 2, · · · , N
tN+1 − t1 − Tmax(N) = 0

(8)

where η is the threshold vector, t is the temporal vector, µ
is the Minimum Effort Rule input parameter, QN is the matrix

describing the geometry of the ordered stopping points (i.e., in

the order in which they must be visited), X is the exploration

area8 in which the stopping points are allowed to lie, Tmax(N)
is a design parameters to limit the maximum execution time

of the MDMTA and f (Hopt, Emech (t1, tN+1,u(t))) is a

general cost function (described later in this section) that

depends on both the random variable Hopt and the me-

chanical energy spent during the MDMTA execution, i.e.,

Emech (t1, tN+1,u(t)).

This optimization problem is extremely complicated be-

cause it is non-linear, non-convex and it involves the si-

multaneous optimization of the MDMTA parameters jointly

with the geometry of the stopping points (including the order

in which they must be visited) and the control law for the

MR. A suboptimal but much simpler approach is to partially

decouple the optimization of the MDMTA parameters from

the optimization of the stopping points geometry, as described

in the following subsections.

8The exploration area X must be small enough to ensure that s(qi) = s
for i = 1, 2, · · · , N .

A. Stopping Points Optimization

The geometry of the stopping points is the main element

of the MDMTA. In [9] we presented optimum geometries for

two, three and four stopping points. Now, in this section we

significantly expand that work by showing how to obtain op-

timum geometries for any number of stopping points through

different procedures.

The stopping points optimization is divided into two sub-

problems: the geometry optimization, which consists of the

optimization of the stopping points’ spatial distribution and the

visiting order optimization which consists of the optimization

of the order in which the stopping points must be visited. We

will first discuss the geometry optimization problem and then

the visiting order optimization problem.

An omnidirectional MR can traverse any geometry of stop-

ping points in any order always moving in straight line from

point to point, but other types of MR may have difficulties in

traversing certain geometries. Thus, the omnidirectionality of

the TOMR that we are considering in this article allows us to

freely design the geometry without incorporating the robot’s

kinematic constraints [20] into the geometry design.

We present two different approaches to obtain the optimum

geometry for the stopping points. In the first approach we

restrict the points to lie on a predefined exploration area and

then we arrange them in such a way that the expected value

of the maximum of the channel gain at all the points is

maximized. Mathematically this can be stated as follows:

Geometry-OP 1A.

max
Qu

N

E[maxj H(qu
j )] (9)

s.t.

qui ∈ Xe(ρ), i = 1, 2, · · · , N (10)

where Qu
N = [qu1 , q

u
2 , · · · ,quN ]T is the matrix of unordered

stopping points (i.e., this matrix describes the stopping points

geometry but it does not indicate the order in which they

must be explored). By contrast, QN has the stopping points

arranged in the order that they must be visited. Later in this

section we will explain how to derive QN from Qu
N . Note

that:

Xe(ρ) = {[x y]T | x2 + y2 ≤ ρ2}. (11)

The solution of this optimization problem depends on the

exploration area Xe(ρ) which in this case was arbitrarily

selected to be circular with radius ρ. Other choices are also

possible (e.g., a rectangular, elliptic or even a non-convex

shape). Note that the exploration area Xe(ρ) represents the

area in which the stopping points can be located and not the

area in which the MR can move. A more detailed discussion

about the exploration area shape is outside the scope of this

article.

Although in general there is no analytical expression for the

cost function in Geometry −OP 1A, in theory we could

use some heuristic optimization algorithm to solve this prob-

lem. But due to the lack of an analytical expression for the cost

function its true value would have to be estimated via Monte
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Figure 2. Geometries obtained by solving Geometry −OP− 1B with
Xe(0.5z0) using the SA for N = 3, 4, · · · , 8 stopping points.

Carlo simulations. If the variance of the estimation error is not

small enough the optimization algorithm could have trouble

converging or delivering a reliable solution. To make this

variance small enough we need to perform a high number of

Monte Carlo simulations to estimate the true value of the cost

function thus making the optimization process significantly

slow. Therefore, although in theory Geometry −OP 1A

can be solved, in practice solving this can be problematic, in

particular as the number of stopping points N increases.

In order to avoid the aforementioned problems we propose

a more tractable approach which consists in minimizing the

Frobenius norm of the spatial covariance matrix Cu
N of

the channel gains where the entry of the ith row and jth
column is Cu

N (i, j) = J2
0

(

2π‖qui − quj ‖2/λ
)

. This follows

from the fact that as the channel correlation increases the

term E[maxj H(qj)] decreases, this is well known in the

communications literature [14] and we shall illustrate this in

section V-A. The resulting optimization problem is now:

Geometry-OP 1B.

min
Qu

N

‖Cu
N‖2F (12)

s.t.

qui ∈ Xe(ρ), i = 1, 2, · · · , N (13)

where ‖ · ‖F is the Frobenius norm.

This optimization problem is non-linear, non-convex, with

multiple local minima and is 2N -dimensional (2 variables per

stopping point). Antenna array geometry optimization prob-

lems [24] have been solved before using the simulated anneal-

ing (SA) algorithm [25] which is a heuristic searching method.

Mathematically, the stopping points geometry problem is a

similar problem (although the cost function is different) in

the sense that both problems have to determine an optimum

distribution of points in the space. Therefore we will also use

SA to solve Geometry −OP 1B. We have to mention that

for N = 2 and N = 3 both Geometry −OP 1A and

Geometry −OP 1B are equivalent.

In Figs. 2 to 5 we observe the geometries obtained by

solving Geometry −OP 1B with the SA algorithm for
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Figure 3. Geometries obtained by solving Geometry −OP− 1B with
Xe(0.7z0) using the SA for N = 3, 4, · · · , 8 stopping points.
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Figure 4. Geometries obtained by solving Geometry −OP− 1B with
Xe(z0) using the SA for N = 3, 4, · · · , 8 stopping points.

N = 3, 4, · · · , 8 and with different sizes of the exploration

area (i.e., radii of the circles). The SA algorithm aims to

find the global solution of the optimization problem through a

well designed random search. This implies that in general (in

our problem) the geometries obtained by the SA will be very

close to the optimum. For example in Fig. 2 for N = 8 we

observe that the geometry is quite close to a uniform circular

array (UCA) and so we may reasonably deduce that the actual

optimum geometry is the UCA. This deduction was confirmed

by comparing the cost function evaluated with the geometry

obtained by the SA with the one evaluated with the UCA

geometry.

It is interesting to note that for small exploration areas9

(ρ ≤ z0/2) the optimum geometries (at least for N ≤ 8) are

points on a UCA. But as ρ grows the shape of the optimum

geometries changes. The case of N = 4 is particularly

interesting because the geometry transforms gradually from

a perfect square, for small ρ, to a rhombus, for higher values

of ρ. This shows that, in general, the shape of the optimum

geometries depends on the size of the exploration area. In

addition, these results are obtained using a circular exploration

9z0 is the smallest value of z that satisfies J2
0
(2πz/λ) = 0.
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Figure 5. Geometries obtained by solving Geometry −OP− 1B with
Xe(2z0) using the SA for N = 3, 4, · · · , 8 stopping points.

area and so if we change the shape of the exploration area (e.g.,

elliptic or rectangular) the shapes of the optimum geometries

may also change. Now, if we observe Fig. 5 we note that

the geometries obtained are no longer regular and look more

random and spread out. This is because for ρ ≥ z0 and a

low number of stopping points the number of local minima

increases considerably as the exploration area increases. Many

of these local minima will have a high value of E[max
j
Hj ]

but they will also demand the MR to travel longer distances.

The second approach for deriving optimum geometries

consists of arranging the points in such a manner that they

provide us with high channel gain while making the points lie

as close as possible so that the MR has to move as little as

possible. Mathematically this problem can be stated as follows:

Geometry-OP 2.

min
Qu

N

(1− θ)‖Cu
N‖2F + θ

N
∑

j=1

(

quj −
1

N

N
∑

i=1

qui

)2

(14)

where θ is a design parameter. The cost function minimized

in Geometry −OP 2 is a convex combination of both the

correlation among the channels and the actual spatial spread of

the stopping points. Therefore, this cost function will allow us

to obtain geometries with channels that have low correlation

(i.e., large E[max
j
Hj ]), with points that are close together (and

so will require a small amount of mechanical energy from the

MR while traversing this geometry).

In Figs. 6 to 9 we can see the geometries obtained by

solving Geometry −OP 2 with the SA algorithm for N =
3, 4, · · · , 8 and different values of θ. In general we can see that

the geometries obtained by solving Geometry −OP− 2

and Geometry −OP 1B are different. For high values of θ
(see Fig. 6) and N > 3 we can observe a curious phenomenon:

the optimum geometries have two points overlapping on the

center while the remaining N−2 points form a UCA. It seems

to happen for N = 8 and θ = 0.9 (see Fig. 7).

This phenomenon commences when the second term in (14)

(i.e., point spatial spread) is very large compared to the first

term (i.e., spatial correlation) — i.e., when θ and/or N are
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Figure 6. Geometries obtained by solving Geometry −OP− 2 with θ =
0.95 using the SA for N = 3, 4, · · · , 8 stopping points. For N > 3 the central
circle represents two overlapping points.
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Figure 7. Geometries obtained by solving Geometry −OP− 2 with θ =
0.9 using the SA for N = 3, 4, · · · , 8 stopping points. For N = 8 the central
circle represents two overlapping points.

too high. The reason for this phenomenon is that under such

conditions the point spatial spread term contributes much more

to the cost function than the spatial correlation term. Then by

overlapping points at the origin the point spatial spread term

is considerably reduced and since most of the cost function

value is given by this term then the cost function is also

considerably reduced even though the spatial correlation is in-

creased. Therefore it is advisable not to use large values of θ in

order to avoid this. We should emphasise that if θ is not large

enough then the optimum geometries for N = 3 and N = 4
are the equilateral triangle (as in Geometry −OP 1B )

and the rhombus geometry (as in Geometry −OP 1B for

ρ > 0.5z0 ). It is interesting to note that the UCA (with

an additional extra central point) frequently appears as an

optimum geometry for this optimization problem. Finally, we

should note that as the number of stopping points N increases

and/or the parameter θ decreases it becomes more difficult to

solve Geometry −OP 2 using the SA algorithm.

It is important to highlight that the geometries shown in

Figs. 2 to 9, which are typical cases, can easily be contained

into a square of side 2λ. So, given these small dimensions,

then along with experimental results relating to the spatial
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Figure 8. Geometries obtained by solving Geometry −OP− 2 with θ =
0.8 using the SA for N = 3, 4, · · · , 8 stopping points.
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Figure 9. Geometries obtained by solving Geometry −OP− 2 with θ =
0.5 using the SA for N = 3, 4, · · · , 8 stopping points.

autocorrelation function of the shadowing term (s) presented

in [26], our assumption that s is approximately constant for

all stopping points is clearly justified.

Once we have the optimum matrix10 Qu
N of unordered

points we have to establish the optimum visiting order for

the stopping points (i.e., the matrix QN ). A matrix QN is

optimum11 if it minimizes the following cost function:

J (QN ) =

N−1
∑

k=1

‖qk+1 − qk‖2 +
1

N

N−1
∑

j=1

‖qj − qN‖2. (15)

The first summation on the right hand side of (15) is the dis-

tance travelled by the MR while traversing the whole geometry

starting at q1 and finishing at qN ; the second summation is the

average distance that the MR needs to travel (after exploring

the whole geometry) from qN to the point with the highest

channel gain. So, the optimum ordering problem can be stated

as:

10Obtained by solving either Geometry −OP 1B or
Geometry −OP 2.

11Because of the symmetry of the geometries there will be many equivalent
orders and thus many equivalent minima.

Ordering-OP.

min
QN

J (QN ) (16)

s.t.

QN = PQu
N (17)

where P is a permutation matrix and Ordering −OP is a

combinatorial optimization problem. This problem can easily

be solved using “branch and bound [27]” as follows: we first

create a tree, where the jth level (the root node is considered

the zeroth level) of the tree represents the possible values for

qN+1−j (which are included in Qu
N ). Then we set a bound

B = +∞ (a required parameter for the algorithm [27]) and

we explore the leftmost path in the tree until reaching the leaf.

Once we reach the leaf we update the value of B with (15)

evaluated along the path explored in the tree. After this, we

proceed to explore the next path to the right in the tree. At

the jth level of that path we evaluate the partial cost function:

JBB (j) =
N−1
∑

k=N+1−j

‖qk+1 − qk‖2 +
1

N

N−1
∑

k=N+1−j

‖qj − qN‖2. (18)

if JBB (j) ≥ B we prune the corresponding subtree and

proceed to explore the next path in the tree. If we reach a

leaf (i.e., j = N ) then we update the bound B = JBB (N)
again and explore the next path in the tree. Once we reach the

rightmost path the algorithm is terminated and we take as solu-

tion the rightmost path that reached a leaf. This method is not

necessarily the most efficient way to solve Ordering −OP

but finding the most efficient algorithm to solve it is outside

the scope of this article.

We should mention that Ordering −OP is slightly dif-

ferent from the classical travelling salesman problem in that

we are not looking to optimize a tour that starts at q1, passes

through all the stopping points and finishes at q1 but rather to

optimize a path that starts at q1, passes through all the stopping

points until qN and then whose finishing position is a random

variable uniformly distributed among all the stopping points;

the cost function (15) to be minimized is the expected value

of the distance travelled during this path.

In Fig. 10 we observe an optimum unordered set of points

taken from the optimum matrix Qu
N obtained by solving

Geometry −OP 1B with the SA for Xe(z0) and also we

observe the ordered set of stopping points taken from the

optimum matrix QN . If we do not optimize the permutation

matrix and we simply select P = I then the MR, when using

the MDMTA without thresholds and using Maximum Channel

Gain Rule, will travel an average distance of ≈ 5.88z0. On

the other hand if we optimize P then the MR, under the

same conditions, will travel an average distance of ≈ 4.8z0. In

general, by optimizing the visiting order of the stopping points

the MDMTA will require the MR to travel smaller distances

and so it will be more energy efficient.

Finally, the partial decoupling of the geometry optimization

(together with the optimum ordering) from the optimization

of the MDMTA parameters allows us to create an ‘optimum
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Figure 10. Geometry obtained using the SA with Xe(z0) for N = 5 stopping
points.

geometry dictionary’. This ‘optimum geometry dictionary’ is

indexed by12 N, ζ and contains at each entry the optimum

ordered geometry for those particular parameters. As we will

show in the next section, the use of this ‘optimum geometry

dictionary’ can help us to reduce the complexity of the

MDMTA optimization.

B. Optimization of the MDMTA parameters

In the preceding subsection we have shown two methods

to obtain optimum geometries. Thus we can say that each

valid pair of parameters (N ,ζ) is associated with a particular

optimum geometry. Therefore in this subsection when we

refer to a particular geometry optimization problem (either

Geometry −OP 1B or Geometry −OP 2) and to a

valid pair (N, ζ) we are actually referring to a particular

optimum geometry.

Now, the optimization of the MDMTA parameters will

depend upon the application from which we present two

possibilities:

1) An MR wants to transmit a finite amount of data

(e.g., pictures, video, measurements or part of a map)

consisting of M bits to a stationary node and the bit

duration is Tb. The MR uses power control to ensure a

reference receive power Pref at the stationary node. In

addition the MR cannot radiate more power than Pmax
and if it cannot satisfy Pref at the receiver then it does

not transmit at all. In this application the MR uses the

MDMTA to minimize the amount of energy used. So,

the MDMTA must be optimized to minimize the total

amount of energy expended (i.e., the energy used for

transmission plus energy used for motion during the

MDMTA execution).

2) An MR wants to establish a wireless link with the

stationary node to exchange an undetermined amount of

data. In this application the MDMTA is used by the MR

in the establishment of the wireless link to maximize its

signal to noise ratio (SNR). So, in this application the

MDMTA is optimized to obtain a good SNR while using

as little as possible mechanical energy in the process.

12Whether ζ = ρ or ζ = θ depends upon whether we chose
Geometry −OP 1B or Geometry −OP 2 for the geometry opti-
mization.

In the first application we want to minimize the total amount

of energy. If we take into account Pmax and the outage

probability then the statement of the problem becomes more

complicated. A simpler approach is to assume Pmax = +∞
for this optimization. The resulting optimization problem is

now:

MDMTA-OP 2.

min
η,t,µ,ζ,u(t)

E

[ α
H2

opt

+ Emech (t1, tN+1,u(t))

α
H2

1

]

s.t.
tN+1 − t1 − Tmax(N) = 0

(19)

where α =
MTbPref

s2
, η is the threshold vector, t is the

temporal vector, µ is the input parameter for the Minimum

Effort Rule and ζ is the design parameter for the geometry op-

timization (i.e., ζ = ρ if we optimize Geometry −OP 1B

and ζ = θ if we optimize Geometry −OP 2). Inside the

expected value of the cost function we have, in the numerator,

the total amount of energy that the MR will use if it adopts the

MDMTA and, in the denominator, the total amount of energy

that the MR will use if it transmits from its initial position

and does not use the MDMTA. So, this cost function tells us

(on average) how much the energy consumption is decreased

by the use of the MDMTA. This optimization problem is a

modified and extended version of the optimization problem

presented in [9].

Now, the second application can be seen as an investment

problem: we want to maximize the revenue (the SNR) while

minimizing the investment (the mechanical energy). Therefore,

the optimization problem for this application can be stated13

as:

MDMTA-OP 3.

min
η,t,µ,ζ,u(t)

(β − 1)E
[

H2
opt

]

+ βE [Emech (t1, tN+1,u(t))]

s.t.
tN+1 − t1 − Tmax(N) = 0

(20)

where η is the threshold vector, t is the temporal vector,

µ is the input parameter for the selection rule, ζ is the

input parameter for the geometry optimization (ζ = ρ if we

optimize Geometry −OP 1B and ζ = θ if we optimize

Geometry −OP 2) and β ∈ [0, 1] is a design parameter.

The cost function is a convex combination of −E
[

H2
opt

]

with

E [Emech (t1, tN+1,u(t))]. Therefore, decreasing β means that

the improvement in the SNR becomes more important and so

the MR is allowed to use more mechanical energy to achieve

this goal.

We have to mention that the cost functions of the optimiza-

tion problems MDMTA−OP 2 and MDMTA−OP 3

are two different forms of the cost function for the more

general optimization problem MDMTA−OP 1.

13We modelled our problem as an investment problem but we multiplied
the cost function by −1 to re-state it as a minimization problem so that all
the MDMTA parameter optimization problems in this article are minimization
problems.



10

Now, for both optimization problems, MDMTA−OP 2

and MDMTA−OP 3, the MR must move from one stop-

ping point to the next one in a finite time ti+1−ti. It is intuitive

that in both optimization problems we must use a control

law that performs such movements but using minimum energy

in order to maximize the energy efficiency of the MDMTA.

Therefore the optimum control law u(t) for t ∈ [ti, ti+1] for

the TOMR considered in this article is obtained as follows14:

Control Law-OP.

min
u(t)

Emech (ti, ti+1,u(t))

s.t.
Ap̈o(t) +Cṗo(t) = Du(t)
po(ti) = [qTd (i) φ(0)]T , po(ti+1) = [qTa (i) φ(0)]T

ṗo(ti) = 0, ṗo(ti+1) = 0
(21)

where i = 1, 2, · · · , N , t1 = 0 and qd(i) and qa(i) are

the departure and arrival points at the ith iteration15. The cost

function corresponds to the mechanical energy consumed by

the TOMR, see (5). The first additional condition describes

the dynamical model of the TOMR (as described in section

II-A) and the remaining restrictions ensure that the TOMR

is motionless at both the departure point qd(i) and at the

arrival point qa(i), and it completes the movement in ti+1−ti
seconds.

This is a classical optimum control problem that can be

solved analytically using the calculus of variations [28]. The

resulting optimum control law for16 t ∈ [ti, ti+1], is given by

u∗
i (t) =

A1,1v̇
∗
i (t)+k1v

∗
i (t)

k2







2 sin(ψa,b(i))
3

− sin(ψa,b(i))
3 − cos(ψa,b(i))√

3

− sin(ψa,b(i))
3 +

cos(ψa,b(i))√
3







(22)

where17 ψa,b(i) = ∡(qa(i)−qd(i)) and v∗i (t) is the optimum

translational velocity for t ∈ [ti, ti+1] and is given by:

v∗i (t) = ‖qa(i)− qd(i)‖2 ·
(

Kv1(∆i)e
−t
√

τ

+ Kv2(∆i)e
t√
τ +Kv3(∆i)

)

(23)

with ∆i = ti+1 − ti and:

τ =
2A2

1,1k3

2k21k3 − 3k1k22k4
, (24)

14In order to be able to obtain an analytical expression for the optimum
control law we restricted the MR so that its orientation remains constant
during the whole movement, i.e., φ̇(t) = 0 (see Fig. 1).

15At the ith iteration qd(i) = qi, qa(i) = qi+1 for i = 1, 2, · · · , N −1,
qd(N) = qN and qa(N) = qopt, where qopt is the optimum point chosen
by the selection rule.

16We assume that the MDMTA has not been terminated.
17∡(a) represents the angle of the vector a.

Kv1(∆i) =
1−e

∆i√
τ

4
√
τ
(

1−cosh
(

∆i√
τ

))

+2∆i sinh
(

∆i√
τ

) ,

Kv2(∆i) =
e

−∆i√
τ −1

4
√
τ
(

1−cosh
(

∆i√
τ

))

+2∆i sinh
(

∆i√
τ

) ,

Kv3(∆i) =
2 sinh

(

∆i√
τ

)

4
√
τ
(

1−cosh
(

∆i√
τ

))

+2∆i sinh
(

∆i√
τ

) .

(25)

Therefore, when the optimum control law u∗
i (t) is used

for moving during the ith iteration the mechanical energy

consumed over that movement is:

Emech (ti, ti+1,u
∗
i (t)) = g(∆i)‖qa(i)− qd(i)‖22 (26)

where g(∆i) is given by (27).

Using the optimum control law u∗(t) and having an ‘opti-

mum geometry dictionary’ (see subsection IV-A) calculated

a-priori, then the searching space of MDMTA−OP 2

and MDMTA−OP 3 is reduced to 2N variables:

η1, η2, · · · ηN−1, t2, t3 · · · , tN , ζ and µ. If we do not dispose

of an ‘optimum geometry dictionary’ then we would have

to embed the geometry optimization problem into the opti-

mization of the MDMTA parameters. But this would increase

considerably the amount of calculations needed.

If the designer does not have access to the MR model then

she/he can replace the mechanical energy term in the cost

functions of MDMTA−OP 1, MDMTA−OP 2 and

MDMTA−OP 3 with the distance travelled by the MR.

Note that if we want to implement the MDMTA with a non-

omnidirectional MR (e.g. a differential drive mobile robot)

then the design of the stopping points geometry would have

to take into account the kinematic restrictions. In addition,

in general the MR could not move in straight line from

stopping point to stopping point and probably a joint design of

both the optimum stopping points geometry and the minimum

energy control law would be necessary. We consider that

these modifications are complex enough to constitute the main

subject of a future paper and so we will not discuss them in

more detail here.

Finally, we have to say that in general there is no analytical

expression for the cost functions of MDMTA−OP 1,

MDMTA−OP 2 and MDMTA−OP 3 and so the cost

function must be calculated by simulations. When calculating

the value of the cost function by simulations we will obtain

the true value plus a random error (which will be small if we

use a large enough number of iterations to calculate it). This

makes it more complicated to exactly solve these optimization

problems. In this article (see simulation section) we use the SA

algorithm to solve these optimization problems, but this does

not guarantee us an optimum solution18 but rather a good or

a near optimum solution if we let the SA run for a significant

amount of time.

C. Adaptive Diversity Order

We have already shown how to optimize the geometry of the

stopping points, the points visiting order and all the parameters

18This is because the space search is continuous.
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g(∆i) =

(

2k3A
2
1,1 −

√
τA1,1(4k1k3 − 3k22k4) + τk1(2k1k3 − 3k22k4)

6
√
τk22

)

(

1− e
−2∆i√

τ

)

K2
v1
(∆i)

+

(

A1,1(3k
2
2k4 − 4k1k3) + 2k1

√
τ(2k1k3 − 3k22k4)

3k22

)

(

1− e
−∆i√

τ

)

Kv1(∆i)Kv3(∆i)

+

(

k1(2k1k3 − 3k22k4)

3k22

(

2Kv1(∆i)Kv2(∆i) +K2
v3
(∆i)

)

− 4k3A
2
1,1

3k22τ
Kv1(∆i)Kv2(∆i)

)

∆i

+

(

A1,1(4k1k3 − 3k22k4) + 2k1
√
τ(2k1k3 − 3k22k4)

3k22

)

(

e
∆i√

τ − 1
)

Kv2(∆i)Kv3(∆i)

+

(

2k3A
2
1,1 +

√
τA1,1(4k1k3 − 3k22k4) + τk1(2k1k3 − 3k22k4)

6
√
τk22

)

(

e
2∆i√

τ − 1
)

K2
v2
(∆i) (27)

of the MDMTA, except for the actual number of stopping

points N . In this subsection we address this optimization

problem.

The optimization of N prior to each invoking of the

MDMTA is called Adaptive Diversity Order [9]. The Adaptive

Diversity Order is one of the elements that differentiates

the MDMTA from other diversity techniques in which the

diversity order is fixed once the system is deployed (e.g.,

multi-antenna systems). Now, N is optimized by solving the

following problem:

Diversity Order-OP.

min
N

f∗(N, ξ, Tmax(N))

s.t.
Tmax(N) ≤ TM
N ≤ Nmax

(28)

where ξ = α (ξ = β) if we chose the

MDMTA−OP 2 (MDMTA−OP 3) to optimize

the parameters of the MDMTA, f∗(N, ξ, Tmax(N))
denotes the minimum value of the cost function of the

optimization problem selected (MDMTA−OP 2 or

MDMTA−OP 3), Nmax is a predefined maximum

value that N may take19, and Tmax(N) is the

maximum execution time allowed20 for N stopping points

while TM is the maximum execution time allowed for any

number for stopping points.

There are many possible choices for Tmax(N) but we will

only mention two. One option is to set the same duration

independently of the number of points Tmax(N) = TM and

another option is to set the duration proportional to the number

of stopping points Tmax(N) = TMN
Nmax

. The mechanical energy

is a decreasing function of Tmax(N) and since TM ≥ TMN
Nmax

in general the first option uses less energy while the second

option results in a lower MDMTA execution time. So, depend-

ing on the particular design requirements we can choose one

option or the other.

Now, the minimum value of Tmax(N) depends on the

maximum velocity of the MR, the number of stopping

19A reasonable value for Nmax can be around 10 or lower.
20The actual execution time is a random variable that at most take the value

of Tmax(N).

points and the distance between adjacent stopping points.

To give a rough idea of typical values of Tmax(N) for the

MDMTA we develop a loose upper bound for its minimum

value. As mentioned previously, in typical scenarios the opti-

mum geometries obtained by solving Geometry −OP 1 or

Geometry −OP 2, the distance between adjacent stopping

points is in general less than a wavelength λ, see Figs. 2

to 9. If the carrier frequency used is higher than 1GHz
then the wavelength is smaller than 30cm and according to

the experimental results in [21], the article from which we

extracted the TOMR model for this article, this particular MR

can at least travel 50cm in one second. Therefore the MR can

now move from qN to qopt in less than one second. Now,

the time taken for the MR to estimate the channel at each

stopping point will depend on the amount of data utilized for

this process but in general the time required for this task can

easily be assumed less than one second21. Considering all this

information we can say that the minimum value for Tmax(N)
is loosely bounded by 2N seconds: N −1 seconds to traverse

all the N stopping points, N seconds to measure the channel

at all the stopping points and one second to go from qN to

qopt.

With the introduction of DiversityOrderOP we have

completed the discussion about all the aspects of the MDMTA.

In the next section we will analyze the MDMTA in more detail.

V. MDMTA ANALYSIS

A general analysis of the MDMTA is extremely complicated

and in most cases it is not possible to obtain analytical results.

Nevertheless there are some particular cases of interest in

which we can obtain exact analytical expressions for the

c.d.f. (cumulative distribution function) of Hopt and the p.m.f.

(probability mass function) of Emech. These cases are:

1) The MDMTA with two stopping points, using the Max-

imum Channel Gain Rule and assuming perfect channel

estimation.

2) The MDMTA with three stopping points, an equilateral

triangle geometry with sides of length z0, using the

21In this paper for simplicity we are not considering this time but it should
be considered when the MDMTA is implemented.
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Maximum Channel Gain Rule and assuming perfect

channel estimation.

Although we neglected the localization error in this section

we analyze how it affects the MDMTA.

A. Two Stopping Points and Perfect Channel Gain Estimation

In this subsection we derive the c.d.f. of Hopt and the

p.m.f. of Emech for the MDMTA when using the Maximum

Channel Gain Rule as the selection rule and assuming perfect

channel estimation (i.e., the MR measures the channel gain

without error). From the MDMTA description we can derive

the following expression for the channel gain at qopt:

Pr(Hopt < x) = Pr(H1 < x,H1 ≥ η1) (29)

+ Pr(max (H1, H2) < x,H1 < η1),

where the first probability of the right hand side represents

the case where the channel gain at the first stopping point is

higher than the threshold η1 and so qopt = q1. The second

term represents the case where the MR reaches q2 and uses

the Maximum Channel Gain Rule to determine qopt. Doing

some probability calculations on (29) we obtain:

Pr(Hopt < x) = Pr(η1 ≤ H1 < x) (30)

+ Pr(H2 < H1 < x,H1 < η)

+ Pr(H1 < H2 < x,H1 < η)

In order to simplify the analysis we first analyze the c.d.f. for

x < η1 and then for x > η1. For x < η1 we have:

Pr(Hopt < x) = Pr(H2 < H1 < x)

+ Pr(H1 < H2 < x), (31)

and Pr(H2 < H1 < x) = Pr(H1 < H2 < x), so

Pr(Hopt < x) = 2Pr(H1 < H2 < x). (32)

Now, using the integrals from [29], (32) reduces to:

Pr(Hopt < x) = 1− e
−2x2

1−γ2 I0

(

2γx2

1− γ2
)

− 2e−x
2

(33)

+ 2e−x
2

Q1

(

γ
√
2x

√

1− γ2
,

√
2x

√

1− γ2

)

where γ =
√

Cv (q1,q2), see (7). And for x ≥ η1 we have:

P (Hopt < x) = P (η1 ≤ H1 < x) (34)

+ P (H2 < x,H1 < η1)

which again using the integrals from [29] reduces to:

Pr(Hopt < x) = 1− 2e−x
2

+ e−η
2
1 (35)

− e−η
2
1Q1

( √
2x

√

1− γ2
,

√
2γη1

√

1− γ2

)

+ e−x
2

Q1

( √
2xγ

√

1− γ2
,

√
2η1

√

1− γ2

)

.
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Figure 11. P (Hopt < x) for different γ values.
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Figure 12. Normalized values for E[Hopt] and E[Emech] as a function of
the threshold η1 for different γ values and T1 = T2.

The p.m.f. of the mechanical energy consumed by the TOMR

when using the optimum control law (22) is:

Pr(Emech = 0) = Pr(H1 ≥ η1) = e−η
2
1

Pr(Emech = g(T1)‖q1 − q2‖22)
= Pr(H1 < η1, H2 > H1) =

1
2

(

1 + e
−2η2

1

1−γ2 I0

(

2γη21
1−γ2

)

)

−e−η21Q1

(

γ
√
2η1√

1−γ2
,

√
2η1√
1−γ2

)

Pr(Emech = (g(T1) + g(T2)) ‖q1 − q2‖22)
= Pr(H1 < η1, H1 > H2) =

1
2

(

1− e
−2η2

1

1−γ2 I0

(

2γη21
1−γ2

)

)

+e−η
2
1

(

Q1

(

γ
√
2η1√

1−γ2
,

√
2η1√
1−γ2

)

− 1

)

.

(36)

In Fig. 11 we observe the c.d.f. of Hopt for different

values of γ. We note that as γ increases then Pr(Hopt < x)
increases and it is not difficult to show that E[Hopt] will also

reduce. Thus E[Hopt] is maximized when both channels are

statistically independent. This result is easily extrapolated to

any number of channels and as mentioned in section IV-A it

is a well known fact in the communications literature [14].

In Fig. 12 we observe the normalized versions22 of E[Hopt]
and E[Emech] (calculated from equations (33), (35) and (36))

as functions of η1. We observe that as η1 decreases then

E[Emech] reduces more than E[Hopt]. This is why we can use

the thresholds to slightly reduce E[Hopt] while significantly

22The normalization is made with respect to their values when η1 = +∞.
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reducing the mechanical energy consumption. For example,

from Fig. 12, we observe that if η1 = 1.5 then E[Hopt] is

practically unaffected but E[Emech] is reduced a little bit more

than 10%.

B. Three Stopping Points and Perfect Channel Gain Estima-

tion

In this subsection we derive the c.d.f. of Hopt and the p.m.f.

of the mechanical energy used considering three stopping

points and assuming that the stopping points are arranged in

an equilateral triangle geometry with sides of length z0. This

geometry is obtained when we solve Geometry −OP 1B

with ρ = z0. In addition, we assume that the MDMTA uses the

Maximum Channel Gain Rule and that the MR measures the

channel gain without estimation error (therefore this analysis

represents the best case).

From the algorithm description we have for x <
min(η1, η2):

Pr(Hopt < x) = P (max (H1, H2, H3))

= (1− e−x2

)3, (37)

then for η2 > η1 and η1 < x < η2 we have:

Pr(Hopt < x) = Pr(η1 ≤ H1 < x)

+ Pr(max
i

(Hi) < x,H1 < η1)

= e−η
2
1 − e−x2

+ (1− e−x2

)2(1− e−η21 ), (38)

while for η1 > η2 and η2 < x < η1 we have:

Pr(Hopt < x) = Pr(η2 ≤ H2 < x,H1 < η1)

+ Pr(max
i

(Hi) < x,H2 < η2)

= (e−η
2
2 − e−x2

)(1− e−η21 )
+ (1− e−x2

)2(1− e−η22 ), (39)

and finally for x > max(η1, η2) we have:

Pr(Hopt < x) = Pr(η1 ≤ H1 < x) (40)

+ Pr(η2 ≤ H2 < x,H1 < η1)

+ Pr(max
i

(Hi) < x,∩2i=1Hi < ηi)

= e−η
2
1 − e−x2

+ (e−η
2
2 − e−x2

)(1− e−η21 )
+ (1− e−x2

)(1− e−η21 )(1− e−η22 ).

Regarding the p.m.f. of the mechanical energy we have:

Pr (Emech = 0) = Pr(H1 ≥ η1) = e−η
2
1

Pr
(

Emech = z20g(T1)
)

= Pr(H2 ≥ η2, H1 < η1) = (1− e−η21 )e−η22

Pr
(

Emech = z20 (g(T1) + g(T2))
)

= Pr(H3 ≥ max (H1, H2) < x,∩2i=1Hi < ηi)

= 1− e−η21 − e−η22 + e−η
2
1−η

2
2 − (1− e−min(η1,η2))2

− 1
2 (e

−min(η1,η2)
2 − e−max(η1,η2)

2

)

·(1− e−min(η1,η2)
2

)

+
∫min(η1,η2)

0

∫min(η1,η2)

0
4xye−2(x2+xy+y2)dxdy

Pr
(

Emech = z20
∑3
i=1 g(Ti)

)

= Pr(H3 < max (H1, H2) < x,∩2i=1Hi < ηi)
= (1− e−min(η1,η2))2

+ 1
2 (e

−min(η1,η2)
2 − e−max(η1,η2)

2

)

·(1− e−min(η1,η2)
2

)

−
∫min(η1,η2)

0

∫min(η1,η2)

0
4xye−2(x2+xy+y2)dxdy.

(41)

We will now attempt to give some interpretation to these

mathematical results (in terms of both channel gain and

mechanical energy used). Consider two arbitrary positive real

numbers a and b with a > b. Now, consider two cases:

(i)η1 = a and η2 = b; (ii) η1 = b and η2 = a. We observe from

(37) to (40) that for x > b Pr(Hopt < x) is lower in the first

case (i) than in the second case (ii). So the first case presents

higher E[Hopt] than the second case. And regarding the p.m.f.

of Emech we observe from (41) that it is more “skewed” to

the left side in case (ii) than in case (i). So the second case

presents lower E[Emech] than the first case. This means that in

the MDMTA thresholds selections with η1 > η2 will produce

higher E[Hopt] but will also consume more mechanical energy

than threshold selections with η1 < η2. The reason behind this

is that in the case with η1 < η2 the MR will tend to terminate

the MDMTA prematurely in more occasions, move less (lower

E[Emech]) and explore less stopping points (lower E[Hopt]).

C. Localization Error Impact

In this subsection we briefly discuss the impact of the

localization error on the MDMTA. By definition the initial

position of the MR is q1. We assume that the MR uses “dead

reckoning [20]” to estimate its relative location to q1. Then as

the MR starts to move from stopping point to stopping point,

during the exploration phase the localization error starts to

accumulate and so the actual geometry of the stopping points

deviates more from the intended geometry as the number

of stopping points increases. This is the first effect. Now,

during the selection phase, if the jth stopping point was

selected as the optimum stopping point then the MR will move

believing that it is moving from qN to qj while in reality it

will be moving from p(tN )(6= qN due to localization error)

to a random point centered at p(tj). Note that p(tN ) is a

random variable (centered at qN ) whose variance depends

on both the accuracy of the MR motion and the number
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Table I
TOMR PARAMETERS

m = 1.989kg Jc = 0.020691kg ·m2 Jw = 0.060g ·m2

r = 3cm L = 12.55cm k1 = 35.0330N/m

k2 = 38.7342N k3 = 72.9114W k4 = 1

Table II
MDMTA RESULTS FOR THE GEOMETRY Gz0 (N).

N 2 3 4 5

E[Emech] 0.1432 0.2521 0.4221 0.5305

E[H2
opt] 1.4775 1.7944 2.0143 2.1774

of stopping points in the explored geometry. In other words

|h(p(tN+1))| 6= |h(p(tj))|, and this is the second effect. If

the localization error is small then p(tN+1) and p(tj) will be

close enough, and their channels will be highly correlated and

so that |h(p(tN+1))| ≈ |h(p(tj))|.
Finally we have to mention that as the effects of the

localization error accentuate more with the number of stopping

points then localization error is one of the elements that (in

practice) limits the maximum number (Nmax) of stopping

points that the MR can explore during the MDMTA.

VI. SIMULATIONS

In the simulations, we selected the robot parameters to fit

the TOMR used in [21] which describes a real robot. These

corresponding parameters are shown in table I. In addition, we

will assume throughout this section that the error term in the

channel gain estimation has a variance σ2
n = 0.05.

We first compare three different types of geometries:

1) The linear geometry Lz0(N): In this geometry there are

N linear points arranged uniformly spaced at a distance

z0. These points are ordered from left to right.

2) The random geometries Rz0(N) and R1.5z0(N):
In these geometries the points are arranged

randomly inside a circle of radius z0 and 1.5z0
respectively. The points are not optimally ordered. The

random geometries inside a circle to combat fading was

suggested in [17].

3) The optimized geometry Gz0(N): This is obtained by

solving Geometry −OP 1B for a circular area of ra-

dius ρ = z0. The points are optimally ordered according

to Ordering −OP.

In order to compare the geometries we use the MDMTA

without thresholds and with the Maximum Channel Gain Rule.

We assume a wavelength λ = 30cm and ti+1 − ti = 1s for

i = 1, 2, · · · , N .

In tables II to V we observe, for different number of

stopping points, the expected value of the mechanical energy

spent by the MDMTA for each geometry as well as the

power of the optimum channel obtained. We first observe

that with the geometry Lz0(N) we obtain a channel gain

with the same characteristics as with Gz0(N), but using more

mechanical energy. The random geometry Rz0(N) has the

Table III
MDMTA RESULTS FOR THE GEOMETRY Lz0 (N).

N 2 3 4 5

E[Emech] 0.1432 0.3496 0.6186 0.9529

E[H2
opt] 1.4780 1.7812 2.0034 2.1779

Table IV
MDMTA RESULTS FOR THE GEOMETRY Rz0 (N).

N 2 3 4 5

E[Emech] 0.0952 0.1706 0.2404 0.3087

E[H2
opt] 1.3658 1.5818 1.7279 1.8364

same exploration area as Gz0(N) but provides a poorer channel

gain than when using the MDMTA. If the TOMR adopts

the geometry R1.5z0(N) then it will use more mechanical

energy while still obtaining poorer channel gains. Therefore,

incorporating an optimum geometry into the MDMTA will

allow the MR to obtain good channel gains while using less

mechanical energy.

Now, we optimize all the parameters of the MDMTA by

solving MDMTA−OP 3 with β = 0.6, Tmax(N) = N
and optimizing it assuming the estimation error for the channel

gain mentioned at the beginning of this section. The selection

rule chosen was the Minimum Effort Rule. The results for

this optimized algorithm are shown in table VI. Now, if we

compare tables II and VI we observe that the power of the

optimum channel gain obtained with the optimized algorithm

is around 97% to 92% of the one for the non optimized

version. But the mechanical energy used by the optimized

algorithm is around 50% (and in some cases even 31%) of the

one for the non optimized version. Therefore, by choosing the

parameter β appropriately we can slightly reduce the channel

gain but at the same time significantly reduce the mechanical

energy consumption thus making the MDMTA more energy

efficient.

Now, we consider the case in which the TOMR must

transmit a file of M = 100MB to the stationary node. The

duration of each bit is Tb = 500ns. The MR must satisfy a

minimum power of Pref = 100µW at the stationary node

receiver and it cannot transmit more than Pmax = 40mW.

We assume that the shadowing term s = 0.5 is known. The

wavelength used for this transmission is λ = 15cm. We op-

timize the MDMTA with the Minimum Effort Rule according

to MDMTA−OP 2 for N = 2 and Tmax(2) = 5s. By

using this optimized MDMTA the outage probability decreases

from 10−2 to 10−3. In addition, when the communication is

successful the energy reduction factor reaches 78%. In other

words, when the communication is successful the MR saves

22% of the energy that it would use if it did not employ the

MDMTA at all and if Pmax = +∞. This results show that the

MDMTA reduces the outage probability and in the successful

communication cases can also reduce considerably the amount

of total energy expended (energy used in transmission plus

energy used in motion).

Now, we illustrate a possible implementation of the

MDMTA in a practical scenario. Consider a robotic wireless

network that needs to communicate with a MR in order to
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Table V
MDMTA RESULTS FOR THE GEOMETRY R1.5z0 (N).

N 2 3 4 5

E[Emech] 0.2147 0.3829 0.5393 0.6915

E[H2
opt] 1.4093 1.6598 1.8369 1.9647

Table VI
OPTIMIZED MDMTA-OP-3 RESULTS.

N 2 3 4 5

E[Emech] 0.0774 0.1274 0.1602 0.1651

E[H2
opt] 1.4470 1.7321 1.9038 2.0055

connect it to the robotic network. To do this a node (another

MR) from the robotic network that remains temporally station-

ary starts to operate in a time division duplex mode. During

the transmission period it transmits a training signal to the

MR. During the receiving period it waits for an "answer"

from the MR. Now, the MR receives this signal but due

to small scale fading the received signal has poor SNR.

Then it decides to implement the MDMTA to improve the

quality of the wireless link before answering to the stationary

node. To avoid making the stationary node wait too long the

designer sets in the MR’s program the time limit TM = 5
seconds. The MR has in memory a number of geometries of

different sizes and a different number of stopping points (up

to N = 5) optimized according to Geometry −OP 1B

and Ordering −OP. The MR also has in memory two

preloaded tables containing the optimum parameters of the

MDMTA according to MDMTA−OP 3. It will also have

the corresponding value of the cost function for up to N = 5
stopping points and different values of the parameter β.

The first preloaded table has the optimum parameters of the

algorithm using the thresholds ηi = +∞, while the second

preloaded table gives the optimum value of all the parameters

including the thresholds. If the MR’s battery is almost full,

and establishing communication with the robotic network is

very important, it will select β small to prioritize finding a

large channel gain (as opposed to expenditure of mechanical

energy, see (20)). Now, in order to apply the adaptive diversity

mechanism it first realizes that in this particular case it does not

have an estimate of the shadowing term (s) and so it explores

all the entries of the first table having small β and then selects

the row with the lowest cost function value. Then the MR reads

that row, picks the values for all its parameters and executes the

MDMTA according to Algorithm 1. Finally, when it reaches

qopt it communicates with to the robotic network.

VII. CONCLUSIONS

We have generalized the MDMTA and we have provided

two different answers in relation to what an optimum search

geometry actually means. We have shown how to obtain this

geometry for any number of stopping points. We showed

that there are different possibilities as regards defining the

optimization problem for the MDMTA when searching the

optimum channel gain and these depend on the particular

application. We also highlighted the importance of optimizing

the search geometry as well as the parameters of the MDMTA

in order to make the algorithm more (mechanical energy)

efficient when searching for the optimum channel gain. So in

summary, we have developed the theory for a new generalized

MDMTA, verified its advantages via simulation and analytical

results, and laid the foundations for future intelligent/energy

efficient mobility diversity algorithms.

This paper shows how to design the optimum geometries

for omnidirectional MRs. In future work we will extend the

problem of designing the stopping point geometries to non-

omnidirectional MRs which take into account their kinematic

constraints. Furthermore, instead of using predetermined ge-

ometries as with in this paper, it could be possible to create

a technique to determine adaptively the best position of the

next stopping points based on the knowledge of the channel

at previous stopping points, their spatial correlations and the

position of near obstacles. Finally, we considered the case of

a single wireless link and so this technique can be extended to

consider multiple wireless links thus making this method more

appealing for an application in robotic wireless networks.
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