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Extending and Applying Spartan to Perform

Temporal Sensitivity Analyses for Predicting

Changes in Influential Biological Pathways in

Computational Models
Kieran Alden MIEEE, Jon Timmis SMIEEE, Paul S Andrews, Henrique Veiga-Fernandes, and Mark Coles

Abstract—Through integrating real time imaging, computa-
tional modelling, and statistical analysis approaches, previous
work has suggested that the induction of and response to cell
adhesion factors is the key initiating pathway in early lymphoid
tissue development, in contrast to the previously accepted view
that the process is triggered by chemokine mediated cell re-
cruitment. These model derived hypotheses were developed using
spartan, an open-source sensitivity analysis toolkit designed to
establish and understand the relationship between a compu-
tational model and the biological system that model captures.
Here we extend the functionality available in spartan to permit
the production of statistical analyses that contrast the behaviour
exhibited by a computational model at various simulated time-
points, enabling a temporal analysis that could suggest whether
the influence of biological mechanisms changes over time. We
exemplify this extended functionality by using the computational
model of lymphoid tissue development as a time-lapse tool. By
generating results at twelve-hour intervals, we show how the
extensions to spartan have been used to suggest that lymphoid
tissue development could be biphasic, and predict the time-point
when a switch in the influence of biological mechanisms might
occur.

Index Terms—Sensitivity Analysis, Peyer’s Patches (PP), Spar-
tan, Lymphoid Organs, Computational Model.

I. INTRODUCTION

THE development of computational models that aim to

provide insights into biological systems has become

more prevalent. For this approach to successfully inform our

biological understanding, the relationship between the simula-

tion and the real-world system has to be established. Given

that these computational models typically have to capture

systems where substantial aspects of the biological detail are

unknown, it can be difficult to understand how results from an

abstract simulation should be interpreted in terms of the real

biology. Previously we noted that for a majority of simulation

results in the literature, little attempt was made to reveal how

Kieran Alden, Paul Andrews, Mark Coles, and Jon Timmis are all members
of York Computational Immunology Lab, University of York, UK (www.york.
ac.uk/ycil)

In addition, Kieran Alden and Mark Coles are associated with the Centre for
Immunology and Infection, Dept of Biology and Hull York Medical School,
University of York UK; Kieran Alden, Paul Andrews, and Jon Timmis are
associated with the Dept of Electronics at the University of York UK; Paul
Andrews, Jon Timmis, and Mark Coles are also associated with SimOmics
Ltd.

Henrique Veiga-Fernandes is based at the Instituto de Medicina Molecular,
Faculdade de Medicina de Lisboa, Lisboa, Portugal

representative a simulation result is in terms of the biological

system it was designed to represent [1]. This observation drove

us to develop and release spartan [1], [2], an open-source

software toolkit that provides a researcher with statistical tools

to help understand the relationship between a simulator and

the biological system it represents. The included techniques

were designed to be applicable to traditional ordinary or

partial differential equation simulations as well as agent-based

implementations.

We have previously adopted a principled approach to the

design and implementation of a computational model that

aimed to further understand the pre-natal development of sec-

ondary lymphoid tissue [3], [4]. These tissues include lymph

nodes, Peyer’s Patches (PP) and the spleen: each having a key

role in triggering adaptive immune responses to infection. An

understanding of the key cellular and molecular mechanisms

involved in the development of secondary lymphoid tissue has

previously been derived through the analysis of gene-deficient

mice [5]–[7]. Although this approach has provided significant

insight into the role of individual cell types and molecules,

current experimental techniques cannot fully explain how

lymphoid tissues develop through complex temporal interac-

tions between these biological components. By complementing

these approaches with computational modelling techniques,

in silico experiments could be performed that cannot be

conducted using conventional technologies: generating addi-

tional, novel, hypotheses that can address interesting research

questions and inform laboratory studies.

The modelling approach we applied ensures that there

is clear separation between the biological understanding to

be captured in the model and the description of how this

understanding is to be implemented as a simulation platform:

the overall objective being to ensure researchers are confident

that predictions generated by the platform are grounded in

the biological system being studied [8]–[10]. This model was

constructed to examine the role of the hematopoietic CD4-

lymphoid tissue initiator (LTin) and CD4+ lymphoid tissue

inducer (LTi) cells, and their interactions with VCAM+ lym-

phoid tissue organiser cells (LTo), in PP development (Fig. 1).

As such, our implementation adopts an agent-based modelling

(ABM) approach, where each cell can be captured as an

individual agent that possesses attributes and state, located

within a specified environment, allowing for an exploration

of the dynamics that emerge from interactions between these
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three cell types and their environment [11]. The executable

model simulates the 72 hour period of murine pre-natal

development where PP organogenesis is thought to occur

[5]. Populations of hematopoietic LTin and LTi cells migrate

into the developing gut from embryonic day 14.5 [12], and

move randomly, with a velocity within a range previously

determined [7]. Interactions between CD4- LTin cells and

VCAM+ LTo cells induces LTo cell differentiation, and the

simulated expression of adhesion factors VCAM-1, ICAM-

1, and MaDCAM-1. Receptors for these adhesion factors

are expressed on the surface of LTin and LTi cells, which

if bound to expressed adhesion factors impacts the motility

and observed behaviours (velocity and displacement) of the

LTin/LTi cell [5], [7]. Further interactions between CD4+ LTi

cells and differentiated LTo cells induces LTo expression of

chemokines CXCL13, CCL19, and CCL21: factors thought to

be key in recruiting further LTi cells to a developing PP [13]–

[15] With LTi cells expressing CXCR5 and CCR7 receptors

for these chemokines [16], a positive feedback loop is created

that induces migration of LTi cells towards a differentiated

LTo cell, promoting cellular interactions that further influence

key hematopoietic cell behaviour responses, forming large cell

aggregations that mature to become PP [17].

The mathematical constructs that have been used to model

chemokine and adhesion factor expression and response are

detailed and justified in our previous work [4]. By performing

a process of model parameter calibration, values have been

assigned for parameters within these constructs, named in

Figure 1, such that our model exhibits emergent cell behaviour

responses at early stages of PP development (12h) that are

statistically similar to those observed in ex vivo cell culture;

for both cells in the vicinity of a developing PP (<50 µm)

and those more distant [3]. This statistical evidence and the

transparent approach to implementation provided us with the

confidence to utilise this simulation platform as a tool for

performing in silico experimentation to further understand the

mechanisms that give rise to this emergent behaviour.

We used this model as an exemplar of how the statisti-

cal analysis approaches in the spartan toolkit could provide

additional biological insight [1]. These statistical techniques,

specifically Sensitivity Analysis techniques, were used to

perturb the values of parameters controlling the mathematical

constructs that represent aspects of the biological system [1],

[18]–[20]. We previously concluded that, at hour 12 in murine

PP development, tissue formation was highly dependent on

adhesion factor expression and response [3]. This model-

derived prediction is in contrast to the widely accepted view

that PP development is triggered by chemokine production

[15], [21]. Yet we have also shown that the simulation can

replicate previously published experimental work conducted

at the end of the development time-period (hour 72), showing

that PP do not form in mice deficient for chemokine receptors

CXCR5 and CCR7 [4], [15]. This suggests that the simulated

process does become chemokine dependent at some point

within the time-course, and by extension suggests that PP

development could potentially be split into two distinct phases.

Such an hypothesis raises the important question of when

a biological factor, such as an adhesion factor or chemokine,
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Fig. 1: A schematic overview of our computational model

of PP development. For full detail of the implementation,

the reader is directed to our previously published work [4].

a: Hematopoietic cell populations (LTin/LTi cells) migrate

into the developing gut at E14.5. Both LTin and LTi cells

express receptors for adhesion integrins VCAM-1, ICAM-1,

and MaDCAM-1, modelled using a mathematical construct

described in our previous work. This construct uses the pa-

rameter maxProbabilityOfAdhesion to model the probability

the receptor binds to the expressed integrins. In addition,

the LTi cell expresses receptors for chemokines CXCL13,

CCL9, and CCL13. This construct utilises the parameter

chemokineExpression Threshold to determine whether an LTi

cell responds to chemokine expression in the vicinity. VCAM+

stromal cells (LTo) are expressed within the gastrointestinal

tract. Adhesion factors expression by an LTo cell are modelled

using a linear slope that is adjusted with each stable cell

contact (adhesionFactorExpressionSlope). b: Contact between

an LTin and LTo cell triggers LTo cell differentiation, and an

adjustment of adhesion factor expression. Successful stable

receptor binding is modelled using a probability (stableBind-

Probability). c: Contact between an LTi and LTo cell triggers

further cell differentiation and increase in adhesion factor ex-

pression. This also causes the LTo cell to express chemokines

CXCL13, CCL19, and CCL21, modelled using a sigmoidal

curve function we previously described [4]. The two parame-

ters initialChemokineExpressionValue and maxChemokineEx-

pressionValue control the extent to which the chemokine can

diffuse through the gut. With each stable LTi/LTo contact, the

amount of chemokine expression increases by adjusting the

sigmoidal curve. d: At E17.5, aggregations of hematopoietic

cells around an LTo cell are visible: an aggregation mediated

by chemokine expression.

becomes the key pathway influencing an observed biologi-

cal phenomenon. Although the integration of computational

models with laboratory studies is becoming more popular,

applying the developed simulation as a tool to perform a

temporal analysis of the influence of simulated biological

factors has been limited. The only prominent example of

such an application to date lies in studies of granuloma

performance for controlling Mycobacterium tuberculosis in-

fection [22], where agents within the system have been tracked

constantly through the simulation time period, and sensitivity
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analysis techniques utilised to examine behaviour at regular

time intervals. Utilising such an approach has the potential

to not only suggest the biological factors that are highly

influential, but suggest time-points where system dynamics

are influenced by particular parameters, potentially revealing

that behaviour which emerges through these system dynamics

occurs in distinct phases.

To demonstrate this concept, we previously presented

a proof-of-concept experiment that tracked simulated

hematopoietic cells for a simulated one hour period, at twelve

hour intervals up to hour 48 of tissue development [4]. The

distributions of cell behaviour responses for each time-point

were then compared with responses generated at hour 12,

revealing that there is no significant change in cell behaviour

until after hour 36 of PP development, where cell behaviours

become significantly different. Whereas earlier analyses in

that paper were able to suggest the key simulated biological

pathways at hour 12, no statistical analyses were completed

to determine the factors that cause this significant behaviour

change, and the analysis omitted a further 24 hour period

where further behavioural changes may become apparent.

Yet the proof of concept does suggest that a full temporal

analysis of the 72 hour period could potentially increase our

understanding of the entire process of PP development.

The limited application of more detailed temporal analyses

in both our study and that of others may be due, in part, to

a lack of suitable statistical tools that have this capability. To

both counter this gap in available tools and encourage the

adoption of simulated temporal analyses in further research

studies, we have released an extended version of spartan

that possesses the capability to perform a temporal analysis

of simulation responses. The objective of this paper is to

demonstrate the use of this new functionality to suggest the

influence of key simulated biological pathways throughout

the 72 hour period of PP development. As we possess ex

vivo culture cell responses at hour 12 and observed biological

phenomena at hour 72 (the development of the tissue), while

considering computational complexity and available resources,

we have configured the simulator such that behaviour re-

sponses (velocity and displacement) for hematopoietic cells

in the vicinity of developing PP are recorded for an hour

at twelve hour intervals. By utilising the three sensitivity

analysis techniques available in spartan, simulations were

performed that replicate different physiological conditions, and

cell behaviour responses analysed to determine if a change

in behaviour is observed under those conditions at each

time-point. These physiological conditions are simulated by

perturbing the values of a key set of simulation parameters

that capture expression of and response to chemokines and

adhesion factors, and parameters that influence the probability

of cell receptor binding. By perturbing these values, we can

gain greater insight into how robust the simulator is to each

simulated physiological condition throughout the time course,

in turn suggesting the time-points when simulated biological

pathways are influential. This could act as vital information

for informing future laboratory experimentation.

The focus of this paper is on the application of the tech-

niques in spartan in performing a temporal analysis. For com-

plete detail of the statistical techniques themselves, we direct

the reader to the available spartan publications [1], [2]. For

full detail of the lymphoid tissue model, we direct the reader

to the relevant model publications [3], [4], [10]. To encourage

wider adoption of the approach demonstrated here, our com-

putational model, the data from which the following results

have been generated, and the spartan toolkit are all available

to download from our website (www.york.ac.uk/ycil).

II. RESULTS

A. Parameter Value Selection and Simulation Platform Exe-

cutions

The spartan package contains three methods to generate

simulation parameter value sets, one for single parameter

robustness analysis and two for global parameter sensitivity

analyses. The single parameter robustness is used to alter the

value of just one parameter, whereas the global techniques

permit perturbation of the value of a number of parameters

simultaneously. The parameter sampling methods are detailed

in Section C of the Methods, and described in further detail in

the publication that accompanies the spartan package [1]. The

following sections of this manuscript detail how behaviours

at simulated time-points under the conditions specified in the

generated parameter value set can be used to gain insight into

the both the behaviour of the computational model and the

biological system of interest.

As an exemplar, we perform a temporal sensitivity analysis,

using the three parameter value sampling techniques, of our

model of lymphoid tissue development [3], [4]. We describe

how each approach perturbs the values of the six key param-

eters of interest described above and shown in Fig. 1. For

each parameter sampling technique, the appropriate spartan

method (Methods, Sections E-G) was then applied to analyse

the cell behaviour responses for all parameter value sets, at all

time-points.

As our model adopts an agent-based approach in implemen-

tation, it is vital that we mitigate the impact that any inherent

stochasticity has on the results produced, as each run can

produce slightly different results. As such we used spartan

to deduce the number of simulation replicate runs required, as

described in section D of the Methods. In each run behaviour

responses (velocity and displacement) were calculated for each

cell within 50 µm of a developing PP for a one hour period,

at simulated twelve hour intervals.

B. Understanding Robustness of Identified Parameters to Sim-

ulated Chemokine Expression and Response

The objective of a single parameter robustness analysis is to

explore the implication of biological uncertainty or estimation

of that parameter on simulation result. This analysis is very

useful to simulations of biological systems, which will feature

parameters that either cannot be determined experimentally or

which are part of an abstract mathematical construct derived

to capture a biological element. By applying the procedure

detailed in section G of the Methods, the values of simulation

parameters of interest are perturbed individually. A significant

change in simulation behaviour when this perturbation is
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performed can reveal the parameters for which the simulation

is sensitive. Where a simulation is highly sensitive to one or

more parameters, caution should be applied when interpreting

model-derived results, as these may be artefacts of model

parameterisation rather than a true representation of the bi-

ology. The extended functionality in spartan will provide an

indication as to whether parameter sensitivity changes over

simulated time.

Taking the conclusions from our previous studies into

account, that chemokine expression does not appear influential

at early PP development yet PP are not observed in chemokine-

deficient mice, the initial stage of this study considered how

robust each identified simulated cell response measure is is

over time to when the parameters that control the chemokine

mechanism are individually altered. Parameter samples were

generated as described in the previous section and simulation

executions under each generated parameter set condition were

analysed using the procedure described in the Methods (Sec-

tion E).

Figures 2a-2b show a comparison between simulation be-

haviour for different values of a specified parameter and that

where the parameter value has been perturbed, at twelve hour

intervals. This comparison is made using the Vargha-Delaney

A-Test [23], an effect magnitude test that can reveal the

difference between two non-parametric distributions. An A-

Test score of 0.5 indicates no difference in the simulation

platform response distributions, whereas values closer to 0

and 1 indicate a significant difference between the two sets

of simulation results.

Figures 2a-2b focus on the parameter that controls maxi-

mum chemokine expression level by an LTo cell. The analyses

in both plots support our previous findings that a change in

this chemokine expression has little impact on cell behaviour

at the twelve-hour time-point. However, as time increases, the

impact this parameter has on the recorded velocity (Fig. 2a)

and displacement (Fig. 2b) of cells increases. One notable

result from both analyses is how, as the value of this parameter

is either increased or decreased, there is a large difference

between the impact this has at the 24 hour time-point and that

at hour 36. This could suggest that, between these time-points,

the model is less robust to a change in chemokine expression;

thus the expression level of chemokines could be an influential

factor at a later time-point. Related to this, figures 2c-2d

show the impact that a change in the parameter that controls

LTi cell response to chemokine has on cell velocity and

displacement respectively. An increase in solely this parameter

value makes it more likely that a cell will respond to a level

of chemokine expression in the environment. Thus as the

response becomes more likely, the cell is more likely to move

towards a developing PP and be affected by adhesion factor

expression, thus impacting the cells velocity and displacement

measures recorded over a one hour period. The analyses are

showing both behaviour measures to be increasingly sensitive

to the value of this parameter as the period of simulated PP

development elapses.

C. Identifying Key Biological Factors at Each Time-point

Using Global Parameter Sensitivity Analysis Approaches

A single parameter robustness analysis does however only

indicate the impact of a change of that parameter alone:

it cannot elucidate any higher-order effects that occur due

to interactions between parameters. By perturbing the value

of a number of parameters simultaneously, while covering

the complete parameter value space of interest, parameters

having the greatest influence on simulation response can

be identified, thus indicating the key simulated biological

pathways in the model at various time-points. By extension,

these conclusions can be used to suggest the key pathways in

the biological model if the implementation is well grounded

in the biological domain. The spartan toolkit includes two

global sensitivity analysis techniques, one sampling-based

and one variance-based, both detailed in sections F and G

of the Methods respectively. We note here that the global

analysis techniques we are applying in spartan are designed

to provide statistical information regarding the contribution of

each of the parameters of interest to changes in simulation

response, in this case simulated cell measures. This differs

from alternative applications of global parameter sampling,

such as that applied in [24], where global parameter sampling

has proven advantageous in determining both the robustness

of simulation behaviour under different conditions, and the

volume of the parameter space where the simulation behaves

as one would expect or observe biologically. Instead the

techniques in spartan utilise simulation results obtained for

each parameter set generated during sampling to calculate

a statistical measure for each parameter of interest. Below

we discuss the extension of both global parameter analysis

techniques to permit a temporal global sensitivity analysis of

a simulation, and exemplify their application on the lymphoid

tissue development simulation.

1) Sampling-based Global Parameter Sensitivity Analysis

(Partial Rank Correlation): This approach utilises latin-

hypercube sampling to generate 500 sets of model parameters

where the values of the six key parameters were perturbed (see

Methods, Section C). Simulation runs have been performed for

each set, with replicate runs produced to mitigate aleatory un-

certainty (Methods, Section D). For each parameter, the Partial

Rank Correlation Coefficient (PRCC) has been generated using

the procedure described in the Methods (Section F). Through

an examination of the change in PRCC over simulated time, it

is possible to determine whether the influence of each of the

six parameters, each an abstract representation of a biological

feature, changes in the course of simulated PP development.

Figure 3 shows the PRCC for both cell velocity and dis-

placement responses at twelve-hour intervals, for each of the

six parameters, indicating the extent of the correlation between

the value assigned to this parameter and the change in model

response. Values closer to 1 or -1 indicate that there is a

strong correlation. As the procedure is altering a range of

parameters simultaneously, a higher PRCC value suggests a

highly influential parameter, and by extension a key biological

pathway at that time-point.

Considering cell velocity first, there is no significant in-
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Fig. 2: An examination of single parameter robustness over simulation time. A and B show how a change in maximum

expression level of chemokines impacts LTin and LTi cell behaviour as simulated development time elapses. C and D show

how a change in LTi cell response to chemokine expression impacts cell behaviour over the same time period. In this case

these parameters have been altered individually, with all other parameters remaining at their calibrated values.

crease in the strength of correlation between the parameters

that capture the initial and maximum levels of chemokine

expression by an LTo cell (Fig. 3a-3b). Discounting direction

of correlation, the same conclusion can be drawn for the

parameter that captures the probability an LTi cell does not

respond to chemokine expression in the cells locality (Fig.

3c). Examining the parameter controlling the probability two

cells form a stable bind, thus inducing LTo cell differentiation,

it can be noted that the PRCC values are higher than those

for the chemokine parameters above, yet the value remains

relatively stable over simulated time (Fig. 3d). The higher

PRCC values are expected due to the side effect that setting

this parameter to values close to and including zero has on

simulation response: that LTo cells cannot differentiate and

express adhesion factors and chemokines. We have previously

shown that this parameter has a huge impact on simulation

response for values between 0 and 4%, yet further increases

do not impact simulation response [4]. As such we deduce that

the high PRCC values are contributed to by impact of this side

effect. In contrast to the previous four parameters, there is a

strong correlation between the value assigned to the parameter

that captures the probability an LTin/LTi cell responds to

adhesion integrins expressed in the vicinity of a developing

PP and cell velocity, at all simulated time-points (Fig. 3e).
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This suggests that the response to adhesion integrins VCAM-

1, ICAM-1, and MaDCAM-1 has a key influence on all stages

of PP development, in addition to our previous findings that

this is the highly significant factor in early PP organogenesis.

The correlation between the parameter controlling the level of

adhesion factor expression upon LTo cell differentiation (Fig.

3f) and cell velocity further supports that conclusion from our

previous study, yet this influence does decrease between 12

and 36 hours. This potentially suggests that adhesion factor

expression and response is influential in the early stages of

PP development, but not through the entire time period.

Considering cell displacement in Figure 3, it is clear

that there is a correlation between the simulated chemokine

pathway and cell behaviour as simulated time progresses. In

support of our previous study, that found no significant role

for chemokines in early PP development [3], [4], there is no

correlation between the value assigned to these two parameters

and cell displacement at hour 12, yet this increases between

hours 12 and 36 (Fig. 3b-3c), after which there is a clear

trend between the value of the parameter and displacement.

This indicates that the process may change from adhesion

to chemokine dependent between hours 24 and 36. Yet the

influence of the parameter that captures LTin/LTi cell response

to adhesion factor expression (Fig. 3e) is initially stronger

and does increase, suggesting that cell response to adhesion

integrins is influential throughout the entire period. Although

this is the case, interestingly no correlation becomes apparent

between the level of adhesion factor expression and cell

displacement, at any time-point in development (Fig. 3f).

2) Variance-based Global Parameter Sensitivity Analysis

(eFAST): In contrast to the above method that focuses on

correlation between each parameter and model response, the

extended Fourier Amplitude Sampling Test (eFAST) approach

can partition the variance in simulation platform response

between parameters of interest. For each simulated time-point,

spartan has been used to calculate the First Order Sensitivity

Index (Si) of each parameter, indicating the fraction of output

variance that can be explained by the value assigned to that

parameter. By examining this value over simulated time, we

can further deduce the impact of each simulated biological

pathway over the course of PP development.

Figure 4 shows the Si values for each of the six parameters

at twelve hour intervals. Values closer to 1.0 indicate that a

large fraction of variance in the output can be attributed to

the value assigned to that parameter, thus determining this

parameter to be highly influential.

Considering cell velocity (Fig. 4a), this analysis supports

the conclusions drawn from Figure 3. We have previously

shown that the expression level of adhesion factors (adhesion-

FactorExpressionSlope) accounts for a statistically significant

amount of variance in simulation response at hour 12 [1],

[4], yet here this reduces in the same manner as observed in

the previous results section. In contrast, the fraction of output

variance explained by LTin/LTi cell response to adhesion inte-

grin expression (maxProbabilityOfAdhesion) vastly increases

between hours 12 and 24, and continues to increase for the

remaining simulated time, becoming the only parameter to

have a significant impact on cell velocity.

Examining cell displacement (Fig. 4b), the eFAST results

suggest a vast increase in the variance accounted for by the

LTin/LTi cell response to adhesion integrins and the level

of chemokine expressed by the LTo upon cell differentiation

(maxChemokineExpressionValue) between hours 12 and 36,

after which the value stabilises. In contrast to the results in

the previous section, no significant increase is observed in

the Si value for LTi response to chemokine (chemokineEx-

pressionThreshold), a value that remains close to constant

throughout. Yet for all simulated time-points for hours 24

onwards, the variance accounted for by that parameter is

statistically significant in comparison to the dummy parameter,

suggesting this parameter does have an effect, albeit not the

major influence on development.

III. DISCUSSION

The application of computational models of biological sys-

tems is becoming more prevalent: for providing an interpre-

tation of biological data, or acting as a scientific tool through

which new hypotheses can be developed [25], [26]. It is rare

to see a combination of a computer model and sensitivity

analysis techniques applied to suggest whether the influence

of modelled biological pathways changes over time. Yet this

provides further experimental capacity that cannot currently

be performed in the laboratory. An example we have noted

previously is a flow cytometry analysis: running a biological

sample through a flow cytometer irretrievably destroys that

sample, making it impossible to study further time-points [27].

Yet computational models can produce output at numerous

time-points, which if analysed appropriately, may be then used

to design appropriate laboratory experiments.

Previous experimental studies have produced the generally

accepted hypothesis that there are three phases of PP develop-

ment: the appearance of VCAM+ LTo cells in the developing

gut, the appearance of clusters of hematopoietic LTin/LTi cells

around these LTo cells, and the recruitment of lymphocyte

cells from E18.5 [13]. Yet through in silico experimentation

using our computational model, we have previously found that

there may be an additional development phase between the

first two phases [3], one that is dependent on the expression

of and response to adhesion integrin rather than chemokine

expression. This hypothesis, in addition to the finding that

our computational model does indeed replicate chemokine

knockout experiments [4], led us to question whether, through

simulation, we could determine the time-points at which these

changes in phase occur.

The initial analyses in this study sought to understand

how robust our computational model was to changes in

the mathematical constructs that capture the expression of

and response to chemokine expression (Fig 2). By using

the Single Parameter Robustness technique in spartan, we

have compared cell behaviour responses where the levels of

expression of chemokines by an LTo cell and response to

chemokines by an LTi cell are adjusted individually. Both

analyses reveal similar trends: a change in the value of the

parameters that capture chemotaxis become more influential

as simulated PP development time elapses. Thus although the
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Partial Rank Correlation Coefficients Over Simulation Time
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(c) Chemokine Expression Threshold

Partial Rank Correlation Coefficients Over Simulation Time
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Partial Rank Correlation Coefficients Over Simulation Time
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Fig. 3: Partial Rank Correlation Coefficients (PRCC) for each of the six parameters identified in Figure 1, calculated at

simulated twelve-hour intervals. Parameter values were sampled using the latin-hypercube approach in the spartan package

[1]. Examining how the PRCC changes over time gives an indication of when a parameter begins to become influential in

affecting cell velocity and displacement. P-Values for both measures are shown in the table in the graph, and produced in a

CSV file by spartan. Where the p-value becomes very small, 0 may be displayed due to the display of significant figures.
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Fig. 4: eFAST First-Order Sensitivity Indices (Si) for each of the six parameters in Figure 1, calculated at simulated

twelve-hour intervals. This shows the fraction of output variance in simulation platform response that, at each time-point,

can be explained by a particular parameter.

conclusions in our previous studies of early PP development

are supported, these initial findings suggest that there is a time-

point where this simulated pathway becomes influential. Yet

these conclusions are drawn from studying each parameter

individually: identification of this time-point requires us to

determine the parameters influence in comparison with the

other five of interest in this analysis. To do this, we move

from the use a single parameter analysis to the application

of sampling techniques that consider a number of parameters

simultaneously.

When considering use of global parameter sensitivity anal-

ysis techniques over time, an exploration of changes in Partial

Rank Correlation Coefficients (PRCC), as demonstrated in

this study (Figure 3), is not novel, having previously found

application in determining correlations between simulated

biological factors and extracellular bacterial load to study TNF

in controlling tuberculosis in a granuloma [22]. However, by

adding the capability to perform such an analysis to spartan,

the methods exemplified in this paper can be easily replicated

and adapted for use in other computational modelling studies.

In contrast, we are unaware of any study that has examined

the first-order sensitivity indexes, generated using the eFAST

technique [20], [28], over simulation time in the manner that

we have presented here.

The results from both global parameter sensitivity analysis

techniques presented in this study again support our previous

findings from hour 12 of PP development [3].Yet the expres-

sion of adhesion integrins by a VCAM+ LTo cell becomes less

of an influential pathway by hour 36 (Figure 3(f), Figure 4(a)).

Thus an initial stage could exist, mediated by cell adhesion

factors, covering the first 36 hours of development, after which

point the effect of a change in adhesion factor expression level

reduces amid a growing influence of other factors.

Conversely, the analyses in this paper suggest that the

level of chemokine expression from a differentiated LTo cell

becomes more influential as simulated time progresses: sup-

porting previously published experiments that suggest mice

deficient for chemokine receptor genes do not form PP [4],

[12], [21]. By performing a sensitivity analysis of simulation

platform responses over time, we can suggest when the process

becomes chemokine dependent. For chemokine expression

from an LTo cell, the analyses in this paper suggest this

occurs between hours 12 and 36 ((Figure 3(b), Figure 4(a-b)),

with the LTi cell response to this expression becoming more

influential after hour 24 (Figure 3(c)). This would suggest that

the chemokine expression level has to be sufficient for LTi

cells to respond, a reaction that then drives the process of

hematopoietic cell aggregation. This effect continues through

to the end of the simulated time, suggesting no further change

in the key pathways until the aggregation has formed at

hour 72, after which the third of the accepted development

phases begins [13]. Our model covers only the first two

phases, stopping at aggregation and prior to recruitment of

lymphocytes.

Although the level of adhesion factor expression has been

determined to only have a significant influence on cell be-

haviour for the first 36 hours (Figure 3(f), Figure 4(a)), the

parameter that captures LTin/LTi cell response to adhesion

factors has been shown to be highly influential throughout

the time period (Figure 3(e), Figure 4(b)). Thus although

we proposal a biphasic stage of development between the

aforementioned phases 1 and 2, one that moves from adhe-

sion integrin expression to chemokine dependency, LTi cell

response to adhesion does have an influential role in both these

stages.

The conclusions drawn from our previous studies using
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our computational model, the identification of an adhesion

integrin dependent stage, have been examined and verified in

cell culture systems [3]. By providing a statistical analysis of a

number of time-points of PP development, the conclusions in

this paper may inform future laboratory studies that target later

time-points, to determine if the development stages identified

here can also be verified. Through extending spartan such that

others can adopt this technique in their own research studies,

and releasing our simulation platform responses as examples,

we hope that other researchers are encouraged to adopt this

promising approach that has real potential to further our

understanding of computational model behaviour and inform

informing future laboratory work.

IV. METHODS

A. Computational Model of Lymphoid Tissue Development

Our previously developed model of PP development in the

mouse, available from www.york.ac.uk/ycil/software/ppsim/,

adopts an agent-based approach where each cell is explicitly

captured as an agent, each possessing individual attributes,

with results of interactions between other agents and the

gastrointestinal tract environment given by a set of rules [4].

Mathematical constructs are utilised to represent the expres-

sion of and response to adhesion factors and chemokines. By

changing the values of parameters within these constructs,

we can examine how key cell behaviour responses change

under a variety of physiological conditions. To produce the

model output required for the analyses in this study, the

simulation platform has been altered such that the LTin/LTi

cell behavioural responses, namely velocity, displacement,

meandering index, displacement rate, and total migration dis-

tance, all calculated for a period of one simulated hour, are

output to CSV files at twelve-hour intervals. The analyses in

this study focus on cell velocity and displacement of cells in

the vicinity of a developing PP (<50 µm).

B. The Statistical Package: spartan

spartan is a package of statistical techniques that has been

compiled with the specific aim of assisting researchers under-

stand the relationship between their computational or mathe-

matical model and the biological system it represents, with the

aim of providing novel biological insight [1], [2]. The package

is open source, implemented within the R statistical environ-

ment, and available from both the Comprehensive R Archive

Network (CRAN) and www.york.ac.uk/ycil/software/spartan.

Accompanying the package are comprehensive tutorials and

example simulation data that aid the adoption of all the

techniques demonstrated in this paper. For the purposes of

the study in this paper, spartan has been extended such that

these analyses can be performed for model results generated

at a number of time-points in an execution. This enables

the researcher to contrast the behaviour of the model at

various time-points, to determine if the influence of simulated

biological pathways alters over time.

C. Parameter Value Selection

Similar to our previously published studies [3], [4], we

focus this analysis on six parameters that influence the

mathematical constructs used to model the expression of

and response to chemokine and adhesion factors (Figure 1),

each constrained such that a value is selected from a given

range: chemokineExpressionThreshold (0-1), maxChemoki-

neExpressionValue (0.015-0.08), initialChemokineExpression-

Value (0.1-0.5), stableBindProbability (0-1), adhesionFactor-

ExpressionSlope (0.25-2), and maxProbabilityOfAdhesion (0-

1). These value ranges either explore the full parameter value

space (where the parameter is 0-1) or a wide range established

when the model was originally analysed in previous studies

[3], [4]. As these constructs are abstract representations of a

biological phenomena for which parameter values could not

be directly obtained, baseline values of these parameters have

been set through a process of calibration. The full detail of the

constructs used to model adhesion and chemoattractant factors

is detailed in our previously published model description [4].

Values for these six parameters were selected using three

parameter sampling techniques in the spartan package, intro-

duced briefly below. Full detail of each sampling algorithm

can be found in the papers describing the software [1], [2].
1) Single Parameter Robustness: The first, aiming to exam-

ine how robust the simulated system is to a single parameter

alteration, changes the value of each parameter of interest

independently, assigning the parameter a different value within

the respective ranges specified above. The algorithm works

through each parameter in turn, initially setting the parameter

value to a specified minimum, and increases the value by a

set increment until a specified maximum value is reached.

In this case, increments of 0.1, 0.005, 0.05, 0.1, 0.05, and

0.1 were used respectively the six parameters in the above

section. spartan outputs these simulation parameter value sets

to a CSV file for post-processing into simulation parameter

files or reading into a simulation directly.
2) Latin-Hypercube Sampling: Perturbing each parameter

independently however does not elucidate any compound

effects where the influence of one parameter is directly linked

to the value of another. Thus we utilise two global parameter

sensitivity analysis sampling techniques from the spartan

package that simultaneously selects different values for all

six parameters from the parameter space. The first, latin-

hypercube sampling [29], selects values for each parameter

from the value space, aiming to reduce any possible corre-

lations while ensuring efficient coverage of the space over a

minimal number of samples [18]. Using spartan, 500 sets of

parameters were generated for the analyses in this paper.
3) Fourier Frequency Sampling: This sampling technique

selects parameter value sets through the use of sinusoidal

functions of a particular frequency through the parmaeter value

space. Each parameter of interest is considered in turn. On

its particular turn, that parameter is assigned one frequency,

with its complementary parameter set assigned a significantly

different frequency [20]. A number of parameter values are

selected from points along each of these curves. This creates

a set of simulation parameters for each parameter of interest.

Due to the symmetrical properties of sinusoidal functions, it is
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probable that the same parameter value sets could be selected.

To address this, a re-sampling scheme is encouraged where

a phase shift is introduced into each frequency, and sampling

repeated [20], [28]. Thus, a number of parameter value sets are

created for each parameter of interest. This process is repeated

for an extra parameter, the dummy, which has an arbitrary

value range but no impact on simulation behaviour, yet exists

to enable a comparison between the impact of each parameter

and one known to have no effect on simulation response.

For the analyses in this paper, that consider six parameters

of interest plus the dummy, we used three re-sample curves

and selected 65 parameter values from points along the curves,

leading to 1,560 parameter value sets on which the model was

executed.

D. Addressing Stochasticity-Derived Uncertainty in Model

Response

As our model adopts an agent-based approach, agent (cell)

behaviour is affected by the use of pseudo-random number

generation, and as such no two sets of simulation responses

will be identical [30]. To ensure that the results generated from

the model are representative of the simulated physiological

conditions and the impact of the inherent stochasticity is mit-

igated, a number of replicate model executions are performed

for each set of parameter values for which model results are

required. This number of runs has been determined using the

Consistency Analysis technique in the spartan package [1],

[31]. For all experiments documented in this paper, 500 sets

of model executions have been performed for each set of

parameter values. The median of each cell behaviour response

is calculated for all 500 runs, producing a distribution that

is compared to median results gained from an alternative

parameter set.

E. Model Robustness to Single Parameter Value Alteration

Taking each of the six parameters of interest in turn, the

parameter value was perturbed across the range specified in

the Parameter Value Selection section above, with the other

five parameters remaining at their calibrated values. spartan

was used to calculate the median values for both cell velocity

and displacement responses for each simulation run under a

specified parameter condition. With these calculated, spartan

compares this distribution of medians to a set generated

under calibrated parameter value conditions using the Vargha-

Delaney A-Test [23], an effect magnitude test that provides

an indication of the difference between two distributions. The

A-Test results were used to determine whether the change

in a single parameter value has a significant impact on the

behaviour of our computational model. An A-Test score of 0.5

suggests there is no difference between the simulation runs at

calibrated values and those where the value of one parameter

has been perturbed. Scores towards 0 and 1 suggest that the

behaviour of the simulation significantly changes due to the

new value assigned to that parameter. This comparison was

performed for distributions of medians generated at twelve

hour intervals up to hour 72, and is shown in Figure 2.

F. Identifying Key Biological Pathways from Parameters Sam-

pled using Latin-Hypercube Approach

For each parameter value set generated from the hypercube,

spartan was used to calculate the median values for both cell

velocity and displacement responses at twelve hour intervals

for each run under those parameter conditions, and in turn the

overall median values for each response was calculated from

the time-point medians of each run. These overall time-point

median values for cell displacement and velocity are deemed

to be representative of model behaviour under those parameter

conditions.

Taking each of the six parameters in turn, correlations

between the value assigned to that parameter and the model

response were determined through calculation of the Partial

Rank Correlation Coefficient (PRCC): a robust measure for

quantifying non-linear relationships between an input and

output [20]. Where the PRCC value is high, this suggests

that, although a number of complementary parameters are

also being perturbed, this parameter has a significant impact

on model response. For the analyses presented in this paper,

the PRCC for each time-point was calculated and plotted, to

ease identification of the simulated time-points in development

where a relationship between this parameter and the model

response changes.

G. Identifying Key Biological Pathways from Parameters Sam-

pled using Sinusoidal Frequency Approach

Similar to the approach above, spartan was used to generate

overall median responses to summarise the results of all model

executions under the 1,560 parameter value conditions the

sampling process generated. Again these overall responses

were calculated for model responses generated at twelve-hour

intervals.

The simulation responses were analysed by taking into ac-

count the frequencies that were used to generate that parameter

set. Through Fourier analysis using these frequencies, variation

in output was partitioned between the parameters, giving an

indication of the impact each has on model response. Two

sensitivity indexes are calculated for each parameter [20], [28]:

an eFAST First-Order Sensitivity Index (Si) and eFAST Total-

Order Sensitivity Index (STi). The first indicates the fraction

of output variance that can be explained by the value assigned

to that parameter. The latter indicates the variance caused by

higher-order non-linear effects between that parameter and the

others explored. In this case we were interested in the first

statistic. For each of the six parameters studied, Si values

were calculated at twelve-hour intervals, and plotted to ease

identification of any correlation in Si value over simulation

time.
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