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Abstract

The mechanical operation of a biologically inspired robot hopper is

presented. This design is based on the hind leg dynamics and jumping

gait of a desert locust (schistocerca gregaria). The biological mechanism

is represented as a lumped mass system. This emulates the muscle ac-

tivation sequence and gait responsible for the long, coordinated jump of

locusts, whilst providing an engineering equivalent for the design of a bi-

ological inspired hopper for planetary exploration.

Despite the crude simplification, performance compares well against bio-

logical data found in the literature and scaling towards size more typical of

robotic realisation are considered from an engineering point of view. This
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aspect makes an important contribution to knowledge as it quantifies the

balance between biological similarity and efficiency of the biomimetic hop-

ping mechanism. Further, this work provides useful information towards

the biomimetic design of a hopper vehicle whilst the analysis uncover the

range maximisation conditions for powered flight at constant thrust by

analytic means. The proposed design bridges concepts looking at the gait

dynamics and designs oriented to extended, full powered trajectories.

Keywords

Hopper, Hind Leg Modelling, Biomimetic, Space Exploration, Design Study,

Locust

1 Introduction

Beside being extremely interesting from the biological point of view, grasshop-

pers and locusts can provide inspiration for engineering design. The ability to

perform long jumps, with a wing-aided aerial stage [1], makes them a model

for a particular hybrid engineering vehicle known as “hopper”. As different

from wheeled robots, hoppers can overcome obstacles bigger than their size

by jumping over them: this characteristic makes them extremely useful for

traversing rocky and steep terrains, often found in the context of planetary ex-

ploration [2–4].

Popular designs foresee either pure hopping dynamics, or dynamics with an ex-

tended aerial motion enhanced by the application of thrust. In the first case

the hopper relies on the propulsive forces produced by the leg mechanisms (see

the examples in [5–7]). In the second, a flying stage is aided by rockets or other

means e.g. glider wings. In both cases the legs are used in the final stage to

land and possibly regain energy. An example can be found in [8]. The two

concepts are substantially different. Hoppers that are propelled by legs only are
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conceived in a framework of repeated, short jumps, with the attention focussed

on the gait dynamics.In contrast, hoppers making use of other forms of propul-

sion in addition to legs perform short powered flights rather than jumps. They

cover long distances and use the legs as support devices when on the ground.

Some examples of the two concepts can be found in the literature. Brown and

Zeglin [9], for example, proposed a simple bow mechanism storing energy by

bending through the aerial stage and releasing it at touchdown. This minimal-

ist design appears to be more applicable for small vehicles and relatively short,

frequent jumps.

In [10], the authors present a design for a jumping robot with two actuators

providing impulsive torques at the joints. This design does not consider flexible

elements. It focusses on actuators delivering impulsive torque at the joints so

that a gait, rather than a jump, is completed. The authors validate this de-

sign through experiments and analyse the dynamics mainly through numerical

means with the motion broken down in four main phases.

In contrast, Fiorini et al. [5] present a hopper design based on pure hopping

dynamics. This is considered through a concept of reduced design and analysis

complexity that makes the vehicle comparable to a bouncing ball. Kovač used

a similar concept to ensure the hopper passively regain its attitude after land-

ing [11].

At the opposite end of the scale, hopper designs have been proposed that make

use of a rocket powered system [2, 12–14]. Amongst these, the use of in-situ

resources is very popular for Mars based concepts: CO2 rich Martian atmo-

sphere can be used as propellant with a thermodynamic cycle to energise it.

Although this gas-rocket-based design provides long range hopping capabilities

(in the order of kilometers for the references quoted), it does not allow short

range mobility and the powered transition to aerial stage absorbs a substantial
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amount of energy.

Jumping mechanisms, coupled with devices extending the flight time, have been

proposed in the framework of “jump-gliding” dynamics, often linked to bio-

inspired concepts. This is the case of MultiMo-Bat [15] where a spring mech-

anism produces a ballistic jump and the range is extended by means of wing

spreading as the mechanism unfolds. Along the same lines, Kocač [16] assesses

the advantages of jump-gliding compared as simple jumping dynamics. Finally,

the work by Desbiens et al. [17] proposes design guidelines for the jump-gliding

approach analysing the dynamics of two hoppers of this sort. It is clear from

the references cited above that hopper designs based on coupling ballistic jumps

with devices to enhance the flight utilise gliding concepts. No design has been

considered as a viable alternative in the case of flight in vacuum conditions or

whenever the medium (atmosphere) characteristics do not allow for the exploita-

tion of aerodynamic effects. On one end rockets designs have been presented

with dynamics independent of the leg propulsive aid, on the other, when legs are

considered the aerial motion is either ballistic or aided through aerodynamics

means. It is then interesting to investigate how, taking advantage of the leg

dynamics to start the aerial stage, a hopper can be designed with the ability

of extending its range through active propulsion. This would increase the con-

trollability of the hopper with the advantage, amongst the others, of facilitating

the selection of the landing site. Moreover, this would improve the robustness

of a space exploration hopper by excluding the uncertainty linked to the aero-

dynamics of the glided flight in an extra-terrestrial atmosphere.

This paper focusses on a hopper design featuring active legs, capable of pro-

jecting the vehicle into the aerial stage. To this end, the design of the vehicle

is based on the physiology of the locust legs. Locusts contract their hind legs

and store energy in an elastic tissue known as “semilunar process” [18]. This

4



is then released in the final phase of the leg extension for the jump, with the

neural system triggering the activation sequence through electrical pulses [19].

A realisation of such a concept has been attempted by Birch et al. with the

resulting robot able to coordinate forward and hind legs to advance, without,

anyway reproducing the long jumps typical of crickets and locusts [20,21]. More

recently, locust inspired robots have been considered and studied in terms of per-

formance, see for example [22–24], which highlight how timely this theme is.

A modelling approach is used which is similar, and in some respect complemen-

tary, to the one used by Bonsignori et al. [25], who considered the Cicadella

Viridis and studied the jump dynamics connecting the geometry of the legs to

some characteristics of the acceleration. This approach involves the synthesis

of some key features of the locust leg (mainly geometry, mass distribution and

kinematics) with a simple mass-spring model. We show that it is in theory

possible to retrieve the key characteristics of the locust jump with engineering

artefacts. Our analysis extends to include scaling up towards sizes of interest

from the mechanical design point of view. In the same spirit, the flight stage is

considered as a design optimisation problem looking at the optimal direction of

a constant thrust vector to achieve maximum range.

The engineering of such a device is studied through substituting the muscles

and the semilunar process with elastic elements, e.g. springs. The result is a

simplified model which is compared to the biological data obtained from observ-

ing the hopping characteristics of locusts. Analysis of the proposed design is

illustrated in this paper via the development of analytic models. The motion is

broken into three stages i.e. pre-launch, launch and aerial. The landing stage is

not considered as a complete analysis would expand beyond reason the scope of

this work; this topic is however considered in the Discussion. The launch stage

is divided in two phases. The development of these models is based on appro-
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priate Euler-Lagrange representations. Key design parameters for this system

are developed based on desired performance requirements, biological data and a

backward integration process. These parameters and mathematical models are

used in numerical simulations to obtain response data for the system. Through

modelling, design and setting parameters are here defined using an accessible

mathematical development. These include the stiffness of the elastic elements

and the initial setting angles in the pre-launch stage. The launch angle, de-

fined to meet the desired range, is here shown to be obtainable considering the

magnitude and the direction of the thrust vector. The range is proved to be

maximised for the launch velocity parallel to the thrust vector, in case this is

constant throughout the aerial stage. These results are analysed and discussed

in depth in the latter part of this paper. Finally, conclusions drawn from the

results of this study are presented as a finale to this paper.

2 Derivation of Hopper Dynamics in the Launch

Stage

The hop dynamics are obtained by considering the vehicle as connected point

masses with a total of three degrees of freedom. These are activated by linear

springs. Fig. 1 shows the geometry of the concept considered with the notation

used. The model simplifies the locust jumping legs through a single leg device

and the motion is considered in the vertical plane only.

As previously discussed, the dynamics of the hopper can be considered as

three separate stages, i.e. pre-launch, launch and aerial, which replicate the

hopping gait of a locust. These are shown in the schematic of Figure 2. The

conditions to set the system at the end of the pre-launch stage are derived

6



Figure 1: Hopper scheme. The sketch shows the general arrangement of the
lumped masses and springs used to model the locust leg. The centres of mass
of the different bodies correspond to the origin of the local reference frames.
k1, k2 and k3 are indicate the springs with k2 represented as a torsional spring
although the case of an in-line spring is considered too. A prismatic connection
exist between the two ends of the femur allowing for the extension of k1 spring.
Angles are considered positive counter-clockwise, as arrows indicate.

through the analysis of the launch and the aerial stages. In order to reproduce

these dynamics the physiological aspects of locust legs are considered. Within

this framework the leg geometry can be approximated in two ways based on

different representations of the femur-tibia joint. In the first case this is rep-

resented by linear torsional spring, in the second, an in-line spring stretches

from the femur to an extension of the tibia. The two schemes are shown in Fig.

3. Both are modelled to isolate the advantages of a more faithful biomimetic

design or a more compact one. The in-line spring assembly is closer to the

actual geometry of a locust leg, with a mechanical advantage originated by the

variable lever arm during the rotation, but this design implies an in-line spring,

stretching between the femur and the tibia extension. Note that, at this level of

analysis there is no difference in considering the tibia metothoracic or mesotho-

racic, that is, considering the angle between the tibia and its extension [19].

More in detail, the launch stage is modelled considering the following main
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Figure 2: Stages of the Jump. In the Pre-launch stage the legs are contracted
and muscles are “loaded”. In the Launch stage legs are extended and, by result,
the body parts acquire momentum as indicated by the arrows. Finally, in the
aerial phase, locusts motion is aided by wings, whilst in this context constant
thrust, at an angle ψ with respect to the horizontal, is considered.

(a) (b)

Figure 3: Phase 1 schematic. Torsional springs are here represented as circular
bands. The centres of mass considered in this phase are indicated by the popular
2-colour circles.
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assumptions:

• The model is non-dissipative and the motion happens in absence of dissi-

pative forces;

• the motion is confined to the vertical plane;

• the motion is divided in two phases with two out of the degrees of freedom

involved in each: this makes the system a two-body system in each of the

phases;

• there is no slip in the contact between the foot and the ground;

• each of the parts of the multi-body system is perfectly rigid and are con-

sidered as lumped masses.

For any set of generic n coordinates ξi of the system with i ∈ {1....n}, and in

absence of dissipative terms, the Euler-Lagrange Equations are defined as

d

dt

(

∂Ke

∂ξ̇i

)

− ∂V

∂ξi
= 0 (1)

where, Ke and V are the kinetic and potential energy of the system respectively.

The kinematic relations linking the point mass coordinates to the system chosen

frame are

x1 = 2l3 cos θ2 −∆cos(θ1 + θ2)

y1 = 2l3 sin θ2 −∆sin(θ1 + θ2)

x2 = 2l3 cos θ2

y2 = 2l3 sin θ2 (2)

x3 = l3 cos θ2

y3 = l3 sin θ2
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The set of Equations (2) put in relations the three local reference frames, which

are centred on the body centre of mass (1), the femur-tibia joint (2) and the

tibia mid point (3). Moreover, as illustrated in Fig. 1, 2l3 is the tibia length, θ1

and θ2 are the angles between the femur and the tibia and between the tibia and

the horizontal plane, respectively. They are taken positive counter-clockwise.

The launch stage is broken into two phases, reflecting the activation sequence

of the locust and grasshopper hind legs. In the first phase the angular joints

are operated to extend the leg in a suitable direction and gaining momentum

for the final kick. This is provided in the second phase, which is triggered by

the full extension of the θ1 degree of freedom to 150◦, in accordance with [18].

The actual kick is provided by the linear spring k1, which, for the purpose of

this study, substitutes the semilunar process of a real locust. The second phase

ends when the linear spring reaches its natural extension. Note that spring k1

is released only when the femur-tibia joint is at full extension. This is necessary

due to the lack of control for the torque in the extension of the femur-tibia

joint, a simplification introduced in the engineering model. In real locusts, the

semilunar process starts unfurling when the femur-tibia joint is in motion. How-

ever, the torque in the joint has to increase in response to the additional load

brought by the semilunar process. The leg rotation and the unfurling of the

semilunar process end at the same time [26]. However, having the femur-tibia

joint activated by a simple spring prevents to increase the torque, when needed,

to contrast the action of the spring k1. The release of k1 is hence delayed until

the joint is completely extended and locked.

The presence of a spring k3 at the tibia-foot joint is considered, despite most

studies in the relevant biological literature neglect its contribution to the locust

jump. This is possibly because it has a control function only, providing negligi-

ble momentum compared to the other springs. This is reflected by the stiffness
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associated to it in this work. From the engineering point of view, k3 prevents

the tibia from collapsing backward while building up the momentum, provides

progression in the rotation, beside being sensible from the biological point of

view.

2.1 Launch Stage - First Phase

The first phase involves the rotational degrees of freedom θ1 and θ2. The

schematic of this first phase is shown in Fig. 3 for the two configurations con-

sidered. The lumped masses 1 and 2, representing the body and the femur,

respectively, are considered as one with a centre of gravity at the insertion of

the femur on the body. This is acceptable as the two masses do not change

relative positions and the body is substantially larger than the femur. The first

phase ends when joint 1 gets fully extended, that is, θ1 reaches and locks at

θ1fin = 150◦. In case of a torsional spring at femur-tibia joint, the kinetic and

potential energy associated with the motion in this phase are

Ke =
1

2

[

m12(ẋ
2

1
+ ẏ2

1
) +m3(ẋ

2

3
+ ẏ2

3
)
]

(3)

V =
1

2

[

k3(θ2 − θ20)
2 + k2(θ1 − θ10)

2)
]

+m12gy1 +m3gy3 (4)

where, m12 = m1 + m2, θ10 and θ20 are the values the angles take when the

respective springs are unloaded. Through the kinematic relationships (2) the

kinetic and potential energies can be expressed as

Ke =
1

2
m12

[

4l2
3
θ̇2
2
+ l2

10
(θ̇1 + θ̇2)

2 − 4l10l3θ̇2(θ̇1 + θ̇2)cosθ1

]

+
1

2
m3l

2

3
θ̇2
2
(5)

V =
1

2

[

k3(θ2 − θ20)
2 + k2(θ1 − θ10)

2)
]

+ m12g [2l3 sin θ2 − l1 sin(θ1 + θ2)] +m3gl3 sin θ2 (6)
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where, l10 is the length of the femur segment when the spring k1 is compressed.

The case of an in-line spring between an extension of the tibia of length a and

a point on the femur at distance b from the femur-tibia joint is shown in Fig.

3.b, the kinetic and potential energy associated to the motion in this phase are

Ke =
1

2

[

m12(ẋ
2

1
+ ẏ2

1
) +m3(ẋ

2

3
+ ẏ2

3
)
]

(7)

V =
1

2

[

k3(θ2 − θ20)
2 + k2(δ − δ0)

2)
]

+m12gy1 +m3gy3 (8)

where, δ =
√
a2 + b2 + ab cos θ1 and δ0 is the value δ takes at the end of the

first phase, corresponding to the unloaded length of the k2 spring.

The final forms of the Euler-Lagrange equations for the first phase are reported

in the Supplementary Materials S1.

2.2 Launch Stage - Second Phase

The second phase starts as soon as the femur-tibia joint reaches and locks at

150◦ angle. The coordinates considered in this phase are the angle θ2 and the

extension ∆ which is triggered by the locking of θ1. The model in this second

phase considers the lumped masses 2 and 3 as a single one with common centre

of gravity on the femur-tibia joint. This can be accepted as the two masses

do not change their relative position during this phase. Moreover, the femur

and the tibia have comparable masses according to the biological measurements

considered (see Section 4.3). This is pictured in the schematic of Fig. 4. The

kinetic and potential energy are given by

Ke =
1

2

[

(m2 +m3)(ẋ
2

2
+ ẏ2

2
) +m1(ẋ

2

1
+ ẏ2

1
)
]

(9)

V =
1

2

[

k3(θ2 − θ20)
2 + k1(∆−∆0)

2)
]

+ (m2 +m3)gy2 +m1gy1 (10)
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Figure 4: Phase 2 schematic. The torsional springs k3 is represented as a circular
band. The centres of mass considered in this phase are indicated by the popular
2-colour circles. θ1 is locked in this phase at its final value.

where ∆0 is the uncompressed length of spring k1. Through the kinematic

relations (2) the kinetic and potential energies can be expressed as

Ke =
1

2
m1

[

∆̇2 + (2l3 +∆)2θ̇2
2

]

+ (m1 +m3)2l
2

3
θ̇2
2

(11)

V =
1

2

[

k3(θ2 − θ20)
2 + k1(∆−∆0)

2)
]

+ 2(m2 +m3)gl3 sin θ2 +m1g(2l3 +∆)sin(θ2) .(12)

Through Eq. (1) the Euler-Lagrange equations for the second phase can be

obtained and these are reported in the Supplementary Materials S2.

3 Aerial Stage

The Aerial stage can be ballistic or powered. Both of them are covered for

the drag-free case. While for the ballistic case a simple algebraic development

can be used, for the powered case, differential relations have to be considered.

However, as the ballistic case can be considered a special case of the powered

one, its development is detailed in the Supplementary Materials S3. When

variable thrust, in magnitude and direction, is considered, then the maximum

range problem has to be undertaken through variational methods. These are

not considered here. The aerial stage is modelled considering the following

assumptions:
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• The model is non-dissipative and the motion happens in absence of dissi-

pative forces;

• the motion is confined to the vertical plane;

• the joints of the multi-body system lock at lift-off and the whole system

is perfectly rigid for the whole duration of the aerial stage.

The equations of motion for the powered aerial stage in the vertical plane are:

ẍ = T cosψ

ÿ = T sinψ − g (13)

where, T is the acceleration provided by any force (e.g. thrust, lift) acting at an

angle ψ with respect to the horizontal axis. This is considered constant during

the flight. Note that, given the point mass model for the flight stage, it is

possible to scale all the forces by the system mass and hence work only with the

accelerations. The range for the powered flight can be obtained by integrating

twice the Eqs. (13) with initial velocity vL at an angle Θ with respect to the

horizontal axis and initial position in the origin. This returns

R =
1

2
T cosψ t2f + vL cosΘ tf (14)

y =
1

2
(T sinψ − g)t2f + vL sinΘ tf . (15)

The flight time tf can be obtained from Eq. (15) for y = 0 assumed as the

landing height. Excluding the trivial solution tf = 0, it returns

tf = − 2vL sinΘ

T sinΘ− g
. (16)
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Substituting Eq. (16) into Eq. (14), the range becomes

R =
1

2
T cosψ

4v2L sin2 Θ

(T sinψ − g)2
− 2v2L cosΘ sinΘ

T sinψ − g
. (17)

The maximum range can be found in this conditions by simply taking the partial

derivatives of Eq. (17) with respect to the variables Θ, ψ and T and imposing

these to be identically null at the same time.

∂R

∂Θ
=

2Tv2L cosψ

(T sinψ − g)2
sin(2Θ)− 2v2L

T sinψ − g
cos(2Θ) = 0

∂R

∂ψ
= −4T 2v2L sin2 Θcos2 ψ

(Tsinψ − g)3
+

2Tv2L sinΘ cos(Θ + ψ)

(T sinψ − g)2
= 0 (18)

∂R

∂T
=

2v2L sin2 Θcosψ[(T sinψ − g)− 2T sinψ]

(T sinψ − g)3
+
v2L sin(2Θ)T sinψ

(T sinψ − g)2
= 0 .

By inspection, it can be seen that the derivative with respect to T is always

positive for Θ, ψ ∈ ]0, π/2[ and T < g, that is, the range is an always

increasing function of the thrust. The same could be trivially said about the

initial launch speed vL, although not shown here. The derivative with respect

to Θ instead is null for

Θ =
1

2
tan−1

(

T sinψ − g

T cosψ

)

+ n
π

2
(19)

where, n ∈ Z accounts for periodicity. A value of n = 1 returns an angle Θ in

the interval [0, π/2]. In case Θ = ψ, that is the thrust is parallel to the initial

velocity vector, the angle Θ maximizing the range reduces to

Θ = sin−1





T
g +

√

8 + T
g

4



 . (20)

For any other value of ψ 6= Θ, Eq. (19) can be substituted into the second
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of Eqs. (18) and the resulting expression solved numerically. However it can

be proved that, for Θ defined by Eq. (19), the range is maximised for Θ = ψ

(Supplementary Materials S4 and S5). This makes the optimal ψ elegantly

obtainable from Eq. (20). The values of Θ and ψ maximising the range are

hence function of the thrust and gravitational acceleration only.

4 Backward Integration and Parameter Map-

ping

The initial setting of the elastic elements producing a desired ballistic or pow-

ered jump is obtained through backward integration. This is a technique though

which the time history of a dynamical system is obtained starting from the final

conditions, rather than the initial ones. The final conditions used in this work

ar the conditions at lift-off. These are determined by the desired trajectory.

In particular, for a trajectory that maximises the range, the take off angle is

defined by Eq. (19) depending on the ballistic or powered flight conditions. The

resulting time history of the leg extension is compared with the biological data

after the mass and the stiffness have been traced down to their corresponding

quantities in the locust physiology. This is done for the lift-off angle that max-

imises the range in the ballistic case. This is to verify the lumped mass and

spring model is a faithful representation of the dynamics of the locust hop, the

model output. To this end, the measurement in [18,19,26] are considered.

4.1 Final Conditions for the Backward Integration

The lift-off velocity is defined as the vector sum of the velocity produced by the

extension of the k1 spring and the one induced by the rate θ̇2fin. Through the
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cosine law this is defined as

vdes =
√

∆̇2

fin + σ2 + 2∆̇finσ sin(θ1fin) (21)

where σ = (2l3 + l1 cos(θ1fin))θ̇2fin. Equation (21) can be solved for ∆̇fin to

define the final extension rate of the semilunar process, once the magnitude

of the desired take-off velocity vdes is set. The final length reached by the

semilunar process extends the femur to its given length. This implies that the

compression of the semilunar process modifies the geometry of the mechanism,

which is reflected in the equations of motion being dynamically coupled.

The final launch angle Θdes is the angle of the speed vector with respect to the

horizon at the end of the second phase. This is the sum with sign of the angles

θ2 and the complement of θ1 to π, but also includes the angle induced by the

θ2 rate of change. Θdes is expressed as

Θdes = θ2fin − (π − θ1fin) + tan−1

(

−vθ2 cos(θ1fin)
∆̇fin + vθ2 sin(θ1fin)

)

(22)

where, vθ2 = θ̇2fin(2l3 − l1 cos(θ1fin)) is the linear velocity at the end of the

femur induced by the angular rate θ̇2fin. θ1fin = 150◦ is the final angle of the

femur-tibia joint, θ̇2fin is the final angular rate of the tibia-foot joint and θ2fin

is the final angle of the tibia-foot joint needed to achieve an initial launch angle

Θdes. This is set to -1 rad/s based on the data found in [26] showing nonzero

angular rate at lift-off, yet much smaller than the average one throughout the

extension. The data in [26], however, refer to the femur-tibia joint which is here

assumed extending at the same speed of the tibia-foot joint, although, in the

present setting, the femur-tibia joint is already locked at lift-off.

Equation (22) can be solved for θ2fin to define uniquely the final value of the

angle for a given desired inclination of the launch speed vector Θdes, and the

17



final value of the semilunar process speed, with the other parameters fixed.

The final extension of the femur-tibia joint is set to 150◦, as already stated,

compliant with the literature. Its final angular rate θ̇1fin is set equal to the

instantaneous angular rate of the tibia-foot joint at the same time instant, that

is, at the end of the first phase.

The stopping conditions for the backward integrations are the achievement of

a null extension rates ∆̇ and θ̇1 respectively for the second and first phase.

∆̇ = 0 produces the switch from the second to the first phase and θ̇1 = 0 is

the condition to conclude the backward integration of the first phase and of the

whole dynamics.

4.2 Lengths

Lengths of the legs are taken from the measurement in [18] that reports similar

lengths for the femur and the tibia of about 24-25 mm. Consistently the femur

and tibia lengths are chosen as 24 mm. With reference to Fig. 3.b, length a is

considered 0.37mm as measured by Bennet-Clark [18]. Length b is not reported

in the relevant biological literature as the extensor muscle exerts a force along

all the length of the femur. However, wise engineering implementation would

recommend to reduce the burden of the elastic elements. For this reason b length

has been set to 1 mm.

4.3 Masses

The locust population analysed by Bennet-Clark [18] features a mass of 1.5-2.0

grams for male locusts and 2.5-3.5 grams for females. The values found in [27]

do not differ significantly from these values. In this work a total mass 2.8 grams

was chosen. This was subdivided as 2.2 grams for the body (m1), 0.3 grams for

each femur (m2) and 0.1 grams for each tibia and foot (m3). Just half of the
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body mass is considered for the calculation. This is because locusts use both

legs in a symmetric way to power the jump.

4.4 Spring Stiffness

By comparing the extensor muscle and the semilunar process to linear springs,

Bennet-Clark produced stress-strains relation with average slopes close to 20

N/mm and 40 N/mm. While the value for the semilunar process is obtained

through a mechanical test, the stiffness of the spring mimicking the extensor

muscle derives from more complicated tests, which also produced deformations

in the semilunar process. The values obtained are sensibly higher than other

examples in the literature, for example Heitler [19], as admitted by the author

himself [18]. For this reason, while keeping the value of 40 N/mm for the

semilunar process, the compression spring replacing the extensor muscle is given

a stiffness of 1 N/mm, which returns a time duration of the leg extension closer

to the biological data. To map this to the model where the extensor muscle is

replaced by a torsional spring in the femur-tibia articulation, it is considered

that the amount of energy stored in the springs must be the same. Hence,

1

2
k2comp

(

√

a2 + b2 − ab cos(π − θ1ini)− δ0

)2

=
1

2
k2tors (θ1ini − θ1fin)

2
(23)

where, k2comp and k2tors are the stiffness of the compression and the torsional

spring, respectively. Subscripts “ini” and “fin” refer to the initial and final

values of the variables. As previously stated, k2comp is given the value of 1

N/mm. Solving Eq. (23) for k2tors, considering θ1ini = π/4 returns k2tors =

9.810−9Nmmrad−1.

The value of k3 is chosen so to use the tibia-foot torsional spring to balance

the action of the femur-tibia joint. Suitable values for k3 stiffness depend on

the stiffness values of the other springs; in particular, the plots in Fig. 5 refer

19



to the case of k3 = 0.005Nmrad−1. The choice of the neutral angle for this

joint (the angle at which the spring k3 is unloaded) follows from the same

attempt of balancing the whole movement. The value of 120◦ chosen seems

however quite close to what can be considered a natural resting position of

the leg, although it was not possible to validate this against some reference

in the literature. The neutral angle for the femur-tibia joint is instead set

to 150◦, which also corresponds to the maximum extension considered for the

joint. This corresponds to assuming the momentum in the extension of the

joint is maximum at the end of the first phase, as it is reasonable to expect.

Neutral angles have no correspondence in the biological original, however they

are needed because of the modelling technique used.

5 Scaling up for typical robot-size devices

The Biological similitude unlocks the design of a mechanical device that uses

rods and springs to emulate locust leg. However, the size of the hopper robots

realised nowadays are in the order of decimetres, while the maximum length

for the biological examples considered here are not larger than 25 mm. This

makes scaling necessary to provide meaningful direction towards the design of

a robotic hopper.

The literature in the field proposes several scaling approaches, some better suited

than others depending on the application [28]. For this particular case we con-

sidered two possible scaling techniques. They both rely on accelerations re-

maining unchanged as gravitational environment does not depend on the size of

the robot. This is to say, as gravity cannot be scaled, all the accelerations the

robot undergoes shall be retained in the scaled model. With this assumption,

the approach followed by Rastogi et al. [29] considers also the Young module

of the material to stay the same being their study developed in a structural
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dynamics framework. According to this method, if N is the scaling factor, all

the linear lengths are scaled by N and times by
√
N , which return no scaling

for the accelerations, as previously discussed. Force and mass are scaled by N2

as mass density is scaled by N−1. This approach returns spring stiffness scaled

by N .

Alongside the approach by Rastogi et al., we also consider a density conserv-

ing approach where linear lengths are still scaled by N , but, to keep density

constant, mass is scaled by N3. This implies time and velocity to be scaled by

N1/2. Results obtained by scaling the mechanisms through these techniques are

reported in Section 6 and discussed in Section 7.

6 Numerical Integrations

6.1 Biological Comparison

The dynamics are numerically integrated for both models considered in the first

phase (i.e. two torsional springs or one torsional and one in-line spring), from

the take-off time, backwards using a DormandPrince routine with variable time

step. Both models track well the data in the relevant biological literature.

Figure 5 shows the time history of the three degrees of freedom for both the mod-

els considered. The time span over which the mechanism unfold matches quite

closely the data reported in [18] and [26]. This also applies for the conditions

at the beginning of the extension movement, which, because of the backward

integration, are an output of the model. Bennet-Clark [18] reports an initial

angle of the femur-tibia joint around 15◦ and an unfurling of the semilunar pro-

cess of 0.3-0.4 mm. With a final lift-off angle of 45◦ and a final take-off speed

of 2.5 m/s [18], the model predicts an initial angle at the femur-tibia joint of

44.5◦ for the model with the in-line spring and 46.4◦ for the model comprising a
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torsional spring and the femur-tibia joint. In Fig. 5 the effect of the mechanical

advantage is visible in the initially slower spreading of all the degrees freedom.

In particular, in Fig 5.b θ1 takes longer to deploy with the in-line spring. It

then matches and, in the central part of the plot, anticipates the deployment of

the system with the torsional spring. By design, both systems deliver the same

final angle and final rate.

6.2 Performance of the Scaled System

The simulations presented in the previous section were repeated for the model

scaled according to the methods discussed in Section 5. For both the scaling

methods proposed, the linear sizes were scaled by 5, 10 and 50 times, with

the other physical parameters scaled as consequence. This, compared with the

biological data, leads to consider a hopping robot from 10 cm to approximately

1 metre in length. For brevity, only the ×10 case is illustrated here in Fig.

6. The ×5 and ×50 scaled cases are reported in the Supplementary Materials,

Section S6. The plots show how the scaling conserves the trend of the biological

comparison just when a torsional spring is used in the femur-tibia joint. This

is independent from the scaling technique used. The scaling of the system with

an in-line spring, instead, shows a different trend. Further considerations about

the scaled system are provided in the Discussion, Section 7.

6.3 Simulation of the Aerial Stage

The effects of the thrust on the range in the aerial stage are illustrated in Figs.

7 and 8. Both figures are obtained considering a single point mass located at

the femur-body joint, which represent the main body section of the insect. The

plots in Fig. 7 show that the optimal launch angle is a nonlinear function of
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Figure 5: Time history of the system’s degrees of freedom for the model with
two torsional springs (red circles) and the model with one torsional and one
in-line spring (blue triangles). (a) extension of the spring k1, mimicking the
semilunar process (∆); (b) relaxation of the spring k2 at the femur-tibia joint
(θ1); (c) relaxation of the spring k3 at the tibia-foot joint (θ2). The end of the
second phase, that is, the lift-off time, is considered as the zero of the time axis.
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Figure 6: Time history of the system’s degrees of freedom for the model scaled
ten times. (a) extension of the spring k1, mimicking the semilunar process (∆);
(b) relaxation of the spring k2 at the femur-tibia joint (θ2); (c) relaxation of the
spring k3 at the tibia-foot joint (θ2). The end of the second phase, that is, the
lift-off time, is considered as the zero of the time axis.

24



the thrust angle. This is described by Eq. (19). The contour plots are reported

for 4 magnitudes of the thrust-resulting acceleration, accounted as fractions of

the gravity acceleration. For null thrust, Fig. 7.a, the purely ballistic case for

which the optimal launch angle is independent from ψ and is equal to 45◦. As

the magnitude of the thrust increases, the optimal ψ angle is obtained for the

thrust aligned to the launch angle, matching the value predicted by Eq. (20).

This is confirmed by the position of the maximum moving along the diagonal as

thrust increases from figure 7.b to d. For the same range of thrust magnitudes

Fig. 8 shows the trajectories in the x − y plane for the optimal launch angle,

that is Θ = ψ obtainable from Eq. (20) and a take-off speed of 2.5 m/s, typical

of real locusts.

As thrust is considered on in relation to gravity accelerations, the analysis of

the aerial stage is nor repeated for the scaled-up model. This would differ just

for the magnitude of the initial, take-off velocity: as discussed in Section 3, a

higher initial velocity would simply scale up the range without changing the

optimal launch angle.

7 Discussion

This work presented the engineering of a mechanical jumping system inspired

by locusts, relying on the sequential activation of springs with different stiffness.

This is done with the clear intent of exploring possible hopper design charac-

terised by long, ballistic hops, to which thrusting devices can be optionally

added to extend the flying stage. As such, this work proposes a concept that

inserts in the gap between gait-mimicking devices and hoppers often proposed

as means for planetary exploration in the literature.

The effectiveness of the engineering synthesis was evaluated by comparing the

performance obtained with the biological data about locust jump found in the
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Figure 7: Range contours for take-off angle Θ and thrust direction ψ, for four
values of the thrust magnitude. (a) Ballistic case; (b) Thrust acceleration magni-
tude is 1/4 of the gravitational acceleration; (c) Thrust acceleration magnitude
is half of the gravitational acceleration; (d) Thrust acceleration is 3/4 of the
gravitational acceleration in magnitude. The dotted line is the solution of Eq.
(19)
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Figure 8: Trajectory in the x − y plane for four values of the thrust to grav-
itational acceleration ratio at the optimum thrust and launching angle Θ = ψ
from Eq. (20)

literature. Data in [18], [19] and [26] are in line with the results reported here.

Despite the crude simplification of reducing muscles to a series of pre-loaded

springs, the main features of locust jump are retained. In particular, the time

history of the femur-tibia joint reproduces nicely the data in [18] and [26]. How-

ever, some expedients were necessary to account for the lack of control in the

relaxation of preloaded springs, as opposed to what real muscles provide. Of

these, the most important one is the subdivision of the movement in two phases

with the femur-tibia joint locked at the end of the first one. This is not what

happens in locust leg where the joint continues the extension, which ends when

also the semilunar process is fully unfurled. The relaxation of the k1 spring

with the femur-tibia joint not locked, would produce the contraction of the θ1

degree of freedom, unless this would be counteract by a torque feedback device.

This, due to the minimalist approach chosen, cannot be realised through the

preloaded springs.

Another deviation from the biological example was operated at the tibia-foot

joint, which was provided with a torsional spring. This has the effect of balanc-

ing the femur-tibia joint conferring progression in the joint relaxation. To this

end, the zero torsion angle of the tibia-foot joint has to be suitably set. The time

history of the tibia-foot joint alternates stretch and compression phases during

which the foot is assumed to keep contact with the ground. To the author best
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knowledge, there are no data in the biological literature about the mechanical

properties of the tibia-foot joint that could confirm or rule out the balancing role

assumed here. Considering the tibia-foot joint was necessary to overcome the

limitation of the minimalist design presented here, just relying on springs acti-

vated in sequence. The attaching point of the femur spring for the model where

the femur-tibia joint is activated by a compression spring was not selected on the

basis of the biological equivalent. Heitler [19] only provides the distance from

the joint at which the muscle is attached on the tibia extension. The extensor

muscle stretches along the whole femur as opposed to a spring which, for design

reason, may be chosen to be shorter. This determined the choice of considering

the spring attached at 1 mm from the femur-tibia joint. This choice, however,

influences the dynamics of the joint extension as it changes the time history of

the levering arm length, the so-called “mechanical advantage” [18,19,27].

The stiffness of the springs are defined considering measurements of locust tis-

sues’ mechanical properties. The contraction lengths confirm the validity of the

choice. The semilunar process is reported to shrink between 0.3 and 0.6 mm

in [18] and [26] respectively. The value indicated by our model is 4.5 mm, hence,

considering the scaling up of all linear lengths by a factor 10, this is in line with

the biological equivalent. This result is also in line with the mass selection by

averaging values available in the literature references quoted. The backward

integration uses the typical take-off velocity of a locust as initial condition. The

initial angle of the femur-tibia joint sets at about 45◦. This value is higher than

the 15◦ found in the literature [18]. This outcome depends on how the dynami-

cal system is set and corresponds to the angle at which the backward integration

reaches a null angular rate for the parameters provided. Different values of the

setting parameters would return a different angle. However, as these parameters

have been chosen by mimicking the characteristics of the biological tissues, the
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difference can be related to the simplifications introduced in the modelling.

Considering linear springs as energy storing devices in describing the biological

mechanism is, of course, a simplifying assumption. In a locust, the whole leg

presents a number of tissues with different rigidities. The outer cuticle of the

tibia, for instance, presents an area that buckles under compression stress en-

hancing the tibia folding movement in the pre-launch phase [19, 27]. The same

area presents little or no strain under tension stress. This is a variable geometry

that cannot be captured by the simple model presented. The same applies for

the bending moments in the tibia and femur producing elastic bending, hence

storing more energy and affecting the dynamics on release. Moreover, both the

femur and the tibia present a variable cross section, which is responsible for a

non-uniform distribution of the stresses, along their axes. This was also observed

in [18], where these effects were deemed too difficult to capture quantitatively.

The inclusion of these and other effects in the modelling and the analysis here

presented is beyond the scope of this work.

No data have been found about the joint friction in the entire biological leg,

but measurements were taken at the femur-tibia joint, and in particular about

the friction in this. Bennet-Clark [18] estimated the energy loss in the femur-

tibia joints to be not bigger than 20%. This is done considering the amount

of energy accumulated in the pre-launch stage and comparing to the kinetic

energy released in the launch stage. The analysis in [18] considers a number

of assumptions and does not consider the femur-body and the tibia-foot joints.

Because of the scarcity of data, it was decided not to consider energy losses in

this study. We looked at the kinematics and dynamics produced by the joints,

knowing that, an engineering design should take into account energy losses due

to friction, flexibility in the elements here considered rigid and, eventually, com-

pensate for these to meet the required performance.
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Attention has been paid to the effects of scaling such a mechanism to sizes more

typical of rovers and hopping mechanisms available in the literature. Several

scaling techniques have been proposed as each scaling transfers some character-

istics neglecting others. This makes scaling a compromise and the method used

should be tuned on a case by case basis [28]. In this study two strategies were

proposed, one keeping the density constant, the other, inspired by structural

engineering, keeping the Young module value constant. For the case of two tor-

sional springs, both scaling methods returned similar outcomes, reproducing the

trend of the locust-size device. However, for the case of one torsional, one in-line

spring, both scaling methods fail to reproduce the dynamics. As scaling factor

increases, so the motion of such a mechanism get farther from the one exhibited

at small scale. It can be concluded that the design, more faithfully representing

the geometry of locust legs presents some practical problems when it comes to

scaling. This suggest considering the design with two torsional springs when

moving beyond this theoretical study, onto the realisation of a mechanical pro-

totype. It is conceivable the difference in trend between the small scale and the

large scale mechanisms can be reduced by tuning parameters such as the natu-

ral (non stretched) length of the linear spring or the attaching point along the

femur, both finding no equivalent in the biological case, as previously discussed.

However, verifying these conjecture and understanding how the design can be

made unaffected by scaling would require an in-depth analysis which is beyond

the scope of this work. This study aims to assess the feasibility of the scaling

rather than optimising a design for its easiness in scaling. For this reason no

further analyses are done about the properties and performance of the scaled

system. In this framework, results such as the initial angle of the foot-tibia joint

for the scaled, two torsional spring system should not surprise. The research

presented in this paper is in this sense a comparative study aiming to prove a

30



concept rather than optimising a hopper design.

This work looked also at the range attainable in presence of lift or thrust ac-

celeration that effectively reduce the gravitational acceleration. The case for

constant thrust direction was included in this study. It can be part of a real

scenario when the main body of the vehicle has to keep a given attitude. This

includes the realistic case of an hopper tasked to survey the ground during the

aerial stages with an instrument mounted at a fixed angle with respect to the

body. In this case, excluding independent thrust vectoring, the thrust direction

remains constant in time. The analysis of this scenario highlights as, an in-

creasing value of the thrust magnitude produces, intuitively, longer flights. The

optimal launch angle is, in general, a function of the thrust direction. For arbi-

trary given magnitude and direction of the thrust, the inclination of the velocity

vector at the lift-off to maximise the range is a nonlinear function of these two

values. When just the thrust magnitude is assigned, the optimal launch angle

and thrust direction angle can be chosen as function of the thrust magnitude

only through Eq. (20). This ensures the maximisation of the range and provides

a valuable tool in the design of a hopper to set the angle of the thruster with

respect to the vehicle main body.

The option of using thrusters, as opposed to gliding devices, can be seen in a

framework of space operations. It widen the possible operative scenarios reduc-

ing the risks linked to the unknown aerodynamic behaviour in extra-terrestrial

atmosphere. Furthermore it allows for operations in vacuum (eg. asteroids or

Moon surface). Finally, this propulsion choice appears to be popular in the

literature about hopper for space exploration, especially in conjunction with

the exploitation of in-situ resources [2,4,12–14]. The choice of not including the

analysis of a landing stage is made as an analysis of the same depth as done with

the launch stage would extend the scope of the work beyond reason. First the
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attitude of the mechanism at the touch-down should be discussed, that would

imply renouncing to the point mass model used in the aerial stage. The land-

ing model should also include the terrain characteristics and an impact analysis

featuring the identification of the first point of contact. In the authors’ opinion

this is achievable, and will probably be achieved in future works, after having

refined the aerial stage and the attitude control of the mechanism during this.

8 Conclusions

This work presented a study on the design of a hopper where legs are inspired

by the physiology of locusts and a propulsion system is proposed for the aerial

stage. In this, it differs from the popular choice of considering gliding devices.

The model proposed emulates to a good degree relevant characteristics of the

locusts jumps. The proof of concept is obtained through a dry, yet efficient

simplification aimed to substitute actuators with preloaded springs to produce

the hop. Reproducing data referred to the mechanics of locust jump in the

literature by scaling the system physical parameters, proves the value of this

study.

The model presented can be used to map the hop range to the initial setting of

the spring-based momentum-providing mechanism, and, more in general, defin-

ing the design of hoppers coupling the impulsive hop with continuous, constant

thrust during the flight. The flight stage is analysed in as a range optimisation

problem and an analytic expression is derived for the launch angle as function

of the thrust characteristics. It is found that, for constant thrust, the optimal

launch angle coincides with the thrust angle.

The scaling up, towards sizes of interest for mechanical realisation, highlights

the limits of a too faithful mimicking of locust physiology, providing useful de-

sign directions in this sense.
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This work inserts and in part bridges the gap between hoppers producing long

range, powered hops and those relying on legs for short, subsequent jumps.
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Appendix 1 Notation

a length of the tibia extension where the in-line spring for the

femur tibia joint is attached

b distance along the femur from the femur-tibia joint at which the

in-line spring for the femur tibia joint is attached

g gravitational acceleration

k1 in-line spring in the femur

k2 in line or torsional spring for the femur-tibia joint

k3 torsional spring in the tibia-foot joint

Ke kinetic energy

l3 half length of the tibia

m1 mass of the body

m2 mass of the femur

m3 mass of the tibia and foot

N scaling factor

tf flight time

T acceleration produced by the thrust

V potential energy

vdes Desired take off velocity

vL take off velocity

x1 horizontal coordinate of the body centre of mass

x2 horizontal coordinate of the femur-tibia joint

x3 horizontal coordinate of the tibia mid-point

y1 vertical coordinate of the body centre of mass

y2 vertical coordinate of the femur-tibia joint

y3 vertical coordinate of the tibia mid-point

Continued on next page
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∆ distance between the femur-tiba joint and the body centre of mass

ξ generic lagrangian coordinate

ψ thrust angle with respect to the horizontal

Θ launch angle with respect to the horizontal

θ1 angle of the femur-tibia joint

θ2 angle of the tibia-foot joint

Z set of all integer numbers (positive, negative or 0)

Subscripts

comp identifies k2 as a compression spring

des desired value

fin value at the end of the dynamic phase

ini value at the beginning of the dynamic phase

tors identifies k2 as a torsional spring

0 value in static conditions
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