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SUMMARY

Interface elements are a powerful tool for modelling discontinuities. Herein, we develop an interface element
that is based on the isogeometric analysis concept. ThroughBézier extraction the novel interface element
can be cast in the same format as conventional interface elements. Consequently, the isogeometric interface
element can be implemented in a straightforward manner in existing finite element software by a mere
redefinition of the shape functions. The interface elementsshare the advantages of isogeometric continuum
elements in that they can exactly model the geometry. On the other hand, they inherit the simplicity of
conventional interface elements, but also some deficiencies, like the occurrence of traction oscillations when
a high interface stiffness is used. The extension towards poroelasticity is rather straightforward, and in
this situation the smoother flow profiles and the ensuing preservation of local mass balance are additional
advantages. These are demonstrated at the hand of some example problems.
Copyright c© 2013 John Wiley & Sons, Ltd.
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KEY WORDS: Cohesive zone model, crack propagation, isogeometric analysis; B-splines; Bézier
extraction

1. INTRODUCTION

Zero-thickness interface elements have been an important tool for modelling discontinuities such
as cracks, faults and shear bands since the early 1990s, e.g., [1, 2, 3]. Their availability in
many commercial software packages and their easy use have made them popular for a range of
applications, including fracture in ductile and quasi-brittle materials, delamination in composites,
and shear band formation in sand and other granular materials. More recently, they have been
extended to include fluid flow in fully saturated granular materials in Reference [4].

Interface elements are easy to use, but their applicabilityis restricted to stationary discontinuities,
or to situations where the path along which the discontinuity will evolve is known a priori [1], as in
lamellar materials [5, 6, 7]. A first step towards the arbitrary propagation of discontinuities, in which
the path along which the discontinuity can evolve is not known in advance, was made by Xu and
Needleman [8], who inserted interface elements betweenall continuum elements. A more rigorous
approach is to apply remeshing at each load or time increment, as in [9, 10]. The extension of
remeshing schemes to poroelasticity was made in Reference [11] for the simulation of hydraulically
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2 F.IRZAL, J.J.C. REMMERS, C.V. VERHOOSEL AND R. DE BORST

driven fracture propagation using linear elastic fracturemechanics, and in Reference [12] for
modelling hydraulic cohesive crack growth.

Exploiting the partition of unity property of finite elementshape functions, an elegant method
to allow for arbitrary crack propagation without remeshingwas introduced by Belytschko and co-
workers [13, 14] for linear elastic fracture mechanics, while the extension towards cohesive fracture
was made in [15, 16, 17, 18]. In a series of papers de Borst and co-workers showed how this concept
can be extended to crack and shear band propagation in fluid-saturated media [19, 20, 21, 22, 23].

Exploiting the possibility to simply lower the order of spline functions, Verhooselet al. [24],
introduced arbitrary discontinuities in isogeometric analysis. The present paper builds upon this
development, and simplifies it in the sense that an isogeometric equivalent of interface elements
is developed, which is easy to implement in standard finite element software. This holds in
particular since it has been formulated using Bézier extraction, which makes it compatible with
standard finite element datastructures, see Bordenet al. [25] for continua modelled using NURBS,
and Scottet al. [26] for the extension to T-splines. As indicated in the preceding, fracture in
geotechnical engineering, petroleum engineering and in biomechanical engineering usually involves
fluid-saturated porous media. For this reason, we have extended the Bézier interface element to
situations where fluid flow in the interface and in the surrounding poroelastic medium become
important.

To provide a proper setting, we begin with a brief summary of the relevant physics in Section
2. In Section3 we review some fundamental concepts of isogeometric analysis and the concept of
Bézier extraction, which enables to cast isogeometric analysis in a standard finite element format.
The weak form and the discretisation scheme are presented inSection4. It is shown that the Bézier
interface element inherits many properties of standard interface elements, but salient differences are
also pointed out. Numerical examples on mechanical and poromechanical problems demonstrate
the possibilities of the approach in Section5.

2. GOVERNING EQUATIONS

In this section, we briefly summarize the problem of interestand the governing equations. The
section is divided in two parts; one related to the description of the mechanical problem, while the
next part describes the poromechanical problem. In the firstpart, the discontinuity is introduced as an
internal boundary equipped with a traction-separation relation. In the second part, the behaviour of
the bulk material is modelled using an elementary poroelasticity theory, while the traction-separation
relation over the interface is supplemented by a local mass balance equation to take into account the
fluid flow in the discontinuity.

2.1. Mechanical problem

We consider a bodyΩ which is crossed by a discontinuityΓd. The displacement of the material
pointx ∈ Ω is described by the displacement vector fieldu. The external boundary of the body is
composed of a boundaryΓu, on which essential boundary conditions are provided, and aboundary
Γt with natural boundary conditions. The internal boundaryΓd represents an adhesive interface
between two parts of the domain.

Under the assumption of small displacements and small displacement gradients, the deformation
of the solid matrix is described by the infinitesimal strain tensorε = 1

2

(
∇u+ (∇u)T

)
. The crack

openingv is defined as the difference between the displacement on either side of the internal
boundaryΓd. In the absence of body forces, the strong form of the quasi-static equilibrium equations
for the solid material are given by:





∇ · σ = 0 x ∈ Ω

u = ū x ∈ Γu

n · σ = t̄ x ∈ Γt

nΓd
· σ = t(v) x ∈ Γd

(1)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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AN ISOGEOMETRIC ANALYSIS BÉZIER INTERFACE ELEMENT 3

with σ the Cauchy stress tensor andn is the vector normal to a boundary. The prescribed
displacement and traction at the boundary are given byū andt̄, respectively.

We assume that the stress rate in the bulk material,σ̇, is linearly related to the strain rateε̇ through
a linear stress-strain relation:

σ̇ = D : ε̇ (2)

whereD represents the fourth-order tangential stiffness tensor of the bulk material. In the examples,
a linear elastic, rate-independent constitutive relationhas been used. The traction at the discontinuity
Γd is expressed in terms of the corresponding local displacement jumpsvd:

ṫd = Td · v̇d (3)

where td denotes the tractions defined in a local coordinate system which is aligned with the
discontinuity andTd is the tangent stiffness of the traction-separation relation.

Restricting the treatment to a two-dimensional configuration, the tractions can be written as:td =
tnnΓd

+ tstΓd
, wheretn andts are the normal traction and the shear traction. The local displacement

jumpvd is denoted byvd = vnnΓd
+ vstΓd

, so that the transformation of the constitutive relation
(3) to the global coordinate system results in:

ṫ = RT · ṫd = RT ·Td · v̇d = RT ·Td ·Rv̇ = T · v̇ (4)

with R the standard rotation tensor, e.g. [27].

2.2. Poromechanical problem

Next, an isotropic fully saturated porous medium is considered, which consists of a solid matrix
and an interstitial fluid. The balance of momentum, Equation(1), is now supplemented by the mass
balance: 




α∇ · u̇+M−1ṗf +∇ · q = 0 x ∈ Ω
pf = p̄ x ∈ Γp

n · q = q̄ x ∈ Γq

nΓd
· q = qd x ∈ Γd

(5)

with σ the total stress tensor defined as:

σ = σeff − αpfI (6)

andσeff is the effective stress of the solid skeleton,α is the Biot-Willis coefficient,pf is the pore
fluid pressure andI is the second-order unit tensor. Herein,

M−1 = (α− φ)/Ks + φ/Kf

is the constrained specific storage of the porous medium, i.e. the inverse of the Biot coefficientM ,
that is governed by the porosity of the mediumφ and by the compressibility of the solid and fluid
constituents, denoted byKs andKf , respectively. The flow of the pore fluid is assumed to obey
Darcy’s relation:

q = −
k

µ
∇pf (7)

with k the intrinsic permeability of the porous medium andµ is the dynamic viscosity of the
interstitial fluid.

As in purely mechanical problems, the traction at the discontinuity td = td(vd) is captured using
a traction-separation, or cohesive-surface relation as inEquation (3). However, the traction from the
solid at the interface is now coupled to the pressure of the fluid. Assuming stress continuity from
the cavity to the bulk, we have:

nΓd
· σ = td − pfnΓd

(8)

When the mass balance, Equation (5), is interpreted as a global mass balance equation for the
entire body, and is cast into a weak format, a surface integralat the internal discontinuityΓd arises

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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Figure 1. Local and global coordinate systems in the discontinuity.

with the integrandnΓd
· q. This term can be quantified by averaging thelocal mass balance, which

is also given by Equation (5), over the opening of the discontinuity [19, 20, 21, 22, 23]:

∫ h

−h

(
α∇ · u̇+

1

M
ṗf +∇ · q

)
dn = 0. (9)

In this equation,2h is the normal opening of the discontinuity, see Figure1. Defining the local(s, n)
coordinate system and taking into account that the crack opening is small compared to its length,
the integral can be approximated to give:

nΓd
· q = 2h

∂qs
∂s

−
2h

M
ṗf − 2hα〈

∂u̇s

∂s
〉 − 2αḣ. (10)

with qs the relative fluid velocity in the tangential direction:

qs = −
h2

12µ

∂pf
∂s

(11)

and 〈∂u̇s

∂s
〉 represents the average value of the tangential acceleration of the solid phase at the

discontinuity faces. Upon substitution of Equation (11) into (10) it can be observed that the
interfacial fluxnΓd

· q is proportional to the second spatial derivative of the porefluid pressure
pf .

3. ISOGEOMETRIC FINITE ELEMENT ANALYSIS

An advantage of isogeometric analysis over traditional finite element analysis is the possibility to
control inter-element continuity conditions. This evidently facilitates the discretisation of higher-
order differential equations as encountered in e.g. phase field models [28] or gradient-damage
models [29]. Besides the possibility to increase the inter-element order of continuity, isogeometric
analysis also offers the possibility to (locally) reduce this continuity. In [24] it was demonstrated
how this concept can be used to model discrete cracks. Here, we briefly review this isogeometric
analysis approach for creating discontinuities, and then we propose a Bézier interface element as a
finite element data structure that can be incorporated in standard finite element programs.

3.1. Discontinuities in B-splines

The key idea of isogeometric analysis is to use the basis functions used for the parametrisation of
the geometry in computer-aided design (CAD) also for discretisation purposes. The introduction
of discontinuities in isogeometric analysis is here discussed for B-splines. B-splines are the
fundamental technology underlying Non-Uniform Rational B-splines (NURBS), which is the

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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AN ISOGEOMETRIC ANALYSIS BÉZIER INTERFACE ELEMENT 5

industry standard technology in CAD, and many state-of-the-art technologies such as e.g. T-splines.
We refer to [30] for a detailed discussion of introducing discontinuitiesin NURBS and T-splines.

A univariate B-spline is a piecewise polynomial defined overa (non-decreasing) knot vector
ΞΞΞ = {ξ1, ξ2, · · · , ξn+p+1}, with n and p denoting the number and order† of basis functions,
respectively [31]. For analysis purposes open B-splines are generally used,which are constructed
by taking the multiplicity of the first and last knot value equal top+ 1. The knot vectorΞΞΞ partitions
the parameter domain,̂Ω = [ξ1, ξn+p+1], intom segments of positive length, which are referred to
as elements. B-spline basis functions over this parameter domain of orderp, {Ni,p}

n
i=1, are defined

recursively, starting with the zeroth-order(p = 0) functions

Ni,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(12)

after which the higher-order basis functions (p > 0) are defined using the Cox-De Boor recursion
relation [32, 33]

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (13)

In the context of modelling discontinuities, the primary property of interest of B-spline basis
functions is their inter-element continuity. B-spline basis functions areCp−1 continuous over the
element boundaries corresponding to non-repeated internal knots, which is in contrast to standard
Lagrange finite element bases which are onlyC0 continuous over the element boundaries (regardless
of their polynomial order). The number of continuous derivatives over a particular element boundary
is decreased by one by the duplication of the corresponding knot. As a consequence, a weak
discontinuity (C0) can be created by repeating a knotp times, and a strong discontinuity (C−1)
by repeating itp+ 1 times (Figure2). We refer to [31] for a complete overview of the properties
of B-splines, and to [34] for a detailed discussion of the properties of interest in the context of
poroelasticity.

0

1

0

1

0
0 1 2 3 4 5

1

ξ

C−1 C0

C1

Figure 2. Second-order B-spline basis functions defined over the knot vector ΞΞΞ =
{0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 5, 5, 5}, where the knot value of 2 is repeated three times to make the basis

discontinuous across the corresponding element boundary.

B-spline surfaces and volumes, referred to as patches, are constructed as tensor products
of univariate B-splines. A surface patch, for example, is defined by the knot vectorsΞΞΞ =
{ξ1, ξ2, · · · , ξnξ+pξ+1} andH = {η1, η2, · · · , ηnη+pη+1}, over which the sets of basis functions
{N ξ

i,pξ
(ξ)}

nξ

i=1 and{Nη
i,pη

(η)}
nη

i=1 are defined, respectively. Using a tensor product structure, n =
nξnη bivariate basis functions are then defined as

Ni(ξ) = N ξ
ı (ξ)N

η
 (η) with i = ı+ (− 1)nξ andξ = (ξ, η). (14)

†As is common in finite element literature, the terms ’order’ and ’degree’ are used synonymously in this manuscript. It
is noted that in computer graphics literature it is common todefine the order of a B-spline as the polynomial degree of
the curve plus one.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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6 F.IRZAL, J.J.C. REMMERS, C.V. VERHOOSEL AND R. DE BORST

Note that the subscriptsp, pξ andpη have been dropped for notational convenience. In the remainder
of this work we will consider equal orders in both parametricdirections, i.e.pξ = pη = p. The order
p will be clear from the context. The set of control points,{Xi ∈ R

nd}ni=1, associated with the
multivariate basis functions (14) is referred to as the control net.
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Figure 3. The parameter domain and control net for a mode-I delamination test of a double cantilever
beam. (a) The parameter domain is partitioned by the global knot vectorsΞΞΞ = {0, 0, 0, 13 ,

2
3 , 1, 1, 1} and

H = {0, 0, 0, 12 ,
1
2 ,

1
2 , 1, 1, 1}. The interface is inserted through the repeated knot value at η = 1

2 . The
bivariate basis functions for the B-spline patch are constructed as the tensor product of the univariate
basis functions in each parametric direction. (b) The control net defines the physical domain through
the isoparametric map. The discontinuity in theη-direction permits the creation of discontinuities in the

geometry.

The tensor product structure of B-spline surfaces and volumes allows for the creation of discrete
cracks by repeating a knot value in one of the tensorial directions p+ 1 times. The resulting
discontinuity in the univariate basis is then propagated throughout the complete specimen by
virtue of the tensor product structure of B-splines. Evidently, this concept can be used directly
to mimic adhesive layers that run throughout the entire domain. To localise the discontinuity and
make the same strategy suitable for modelling propagating interfaces T-splines can be used [24]. In
Figure3 we show an example of a B-spline surface with a discontinuityinserted in a single tensorial
direction.

3.2. The B́ezier mesh

Over the past few years it has been shown that the spline basesunderlying isogeometric analysis
can be incorporated in standard finite element tools using B´ezier extraction [25]. The idea of
Bézier extraction is to represent the B-spline basis functions as element-wise polynomials. In this
respect, the only difference between isogeometric analysis and traditional finite element is that the
basis functions in isogeometric analysis are generally different per element. However, the element-
specific basis functions,Ne, can be constructed using a canonical set of polynomial element basis
functions,BBB, by means of a linear transformation:

Ne = CeBBB (15)

The element-specific transformation matrix,Ce, is referred to as the Bézier extraction operator. For
the canonical set of basis function,BBB, in principle any basis for the polynomial space of the same
order as the B-spline can be used. A natural choice in the context of isogeometric analysis is to
use the Bernstein polynomials. We refer to [25] for a detailed discussion on the construction of the

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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AN ISOGEOMETRIC ANALYSIS BÉZIER INTERFACE ELEMENT 7

<Control_Points>
1 0.0 0.0;
2 1.0 0.0;
. ...
. ...
30 6.0 2.0;

<Connectivity>
1 ’Bulk’ 1 2 3 6 7 8 11 12 13;
2 ’Bulk’ 2 3 4 7 8 9 12 13 14;
. ...
. ...
6 ’Bulk’ 18 19 20 23 24 25 28 29 30;

<Extraction_Operators>
1 [[ 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ],

[ 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 ],
[ 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 ],
[ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ],
[ 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.0 ],
[ 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 ],
[ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 ],
[ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 ],
[ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 ]];

. ...

. ...
6 [[ ...

[ ... ]];

Figure 4. Mesh file for the bulk part of the double cantilever beam of Figure3. The coordinates of the control
points are given after the label<Control Points>. The control point ID number is given first, followed
by thex- and y-coordinate of the point. The element connectivity is givennext. In this case, each bulk
element is supported by 9 control points. Finally, the extraction operator matrix for each of the 6 elements
is given. The dimension of these matrices is[9× 9] and they are generally sparse. In this example, the full

matrices are stored. In order to reduce the length of the input file, one can use a sparse format instead.

extraction operators for B-spline patches. Note that, fromthe perspective of implementation, the
element extraction operators are implemented at the level of basis function evaluations, and hence
do not need to appear in the model-specific parts of a finite element implementation. In this way, we
can utilize the spline functions without changing the model.

Using Bézier extraction a finite element data structure forsplines can be constructed. An example
of this data structure, referred to as the Bézier mesh, is shown in Figure4. For the continuum domain,
the Bézier mesh consists of a set of control points, a connectivity table (IEN-array) in which the
control points are listed that support a given element, and the element extraction operators [25]. In
Figure4 the extraction operators are represented by full matrices.In practice, the sparsity of the
operators is exploited to reduce the size of the mesh files. Moreover, the fact that the extraction
operators coincide for many elements can be exploited. We illustrate the Bézier extraction concept
in Figure5 for the B-spline patch introduced in Figure3. Note that the discontinuous basis is fully
represented by the Bézier extraction.

3.3. The B́ezier interface element

In this contribution we demonstrate how the Bézier extraction concept can be used to provide a finite
element data structure for isogeometric interface elements. Similar to the interface elements used in
traditional finite element models, an interface element in isogeometric analysis essentially provides
an interpolation of the jump in the field variables over an interface. As indicated in the previous
section, an interface in a B-spline patch is created by increasing the multiplicity of a knot in one

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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Parent element Physical element

ξ̃

η̃

1

1

-1
y

C
e

x

Figure 5. The Bézier continuum element consists of a set of basis functions defined over a parent element,
which are mapped to the physical domain by means of an isoparametric map. It is noted in this paper that the
Bézier mesh is denoted in solid line, while the control net is denoted in dash line, as described previously

on Figure3.

of the parametric directions. This interface is then parametrised by a lower dimensional spline (a
univariate spline in two dimensions or a bivariate spline inthree dimensions).

As for the basis functions over the bulk material, the interface basis functions can also be
constructed using Bézier extraction. Again the idea is to map a canonical set of basis functions
defined over a parent element to a set of element-specific B-spline basis functions, see Figure6.
The interface extraction operators can either be constructed directly from the univariate knot vector
in the direction of the interface, or be inherited from the extraction operators of the neighbouring
bulk elements. A fundamental difference between a standardline element and an interface element
is that the interface element is connected to the surrounding bulk elements on two sides. Since
the isogeometric interface element is an isoparametric element, the consequence of this two-side
connectivity is that the geometry definition can be ambiguous. In the case that the geometry is
merely described in the undeformed configuration, the interface control points can be taken as the
control points on the boundary of the bulk material on eitherside of the crack (e.g. points 1–3 in
Figure6). In the case of large deformations a common assumption is touse the average of the control
points on the two sides of an interface, see e.g. [16].

The isogeometric interface extraction for the B-spline patch in Figure3 is shown schematically in
Figure7. The finite element data structure for the interface elementis shown in Figure8. The control
points remain unaltered compared to the case of a bulk mesh, since the interface is fully defined by
the bulk control points. The control point numbers on eitherside of the interface are collected in the
connectivity table. Although it is possible that only the control points on one side of the interface are
used for the geometry parametrisation, it is an essential feature of the interface element to couple
the field variables on either side of the interface. The operations required to interpolate the jump in
the field variables over the interface are discussed in detail in Section4.

4. WEAK FORM AND DISCRETISATION

A Bézier interface element is obtained by discretising theinternal boundary term of the linear
momentum equation are discretised using B-splines and the aforementioned Bézier extraction
technique. In addition, a concise derivation of a poromechanical Bézier interface element is given.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2013)
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Figure 6. The Bézier interface element consists of a set of basis functions defined over a parent element,
which are mapped to the physical domain by means of an isoparametric map. The interface element connects
the continuum basis functions on both sides of the interface. The©’s indicate the control points which

influence the location of Bézier points, indicated by�’s.
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Figure 7. The deformed state of quadratic Bézier interfaceelements under mode-I loading condition, denoted
by the blue lines. For each elemente the©’s indicate the control points which influence the location of
Bézier points, indicated by�’s. The Bézier extraction operatorCe, e = 1, 2, 3, maps a canonical set of

element functions, defined over the parent element, onto theelement-specific basis functionsNe

4.1. Discretisation of the linear momentum equation

The derivation of the interface element follows the same steps as the derivation of a classical
interface element as presented by Schellekens and de Borst [2]. The weak form of the balance
equation is obtained by multiplication of the linear momentum equation (1) with an admissible
displacement fieldδu and integrating over the product over the domainΩ:

∫

Ω

δu · ∇σdΩ = 0 (16)

Applying Gauss theorem, using the symmetry of the Cauchy stress tensor, introducing the internal
boundaryΓd and the corresponding admissible interface openingδv, and using the boundary
conditions at the external boundaryΓt gives: the product over

∫

Ω

∇δu : σ dΩ +

∫

Γd

δv · t dΓ =

∫

Γt

δu · t̄ dΓ (17)
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<Connectivity>
7 ’Interface’ 11 12 13 16 17 18;
8 ’Interface’ 12 13 14 17 18 19;
9 ’Interface’ 13 14 15 18 19 20;

<Extraction_Operators>
7 [[ 1.0 0.0 0.0 ],

[ 0.0 1.0 0.5 ],
[ 0.0 0.0 0.5 ]];

8 [[ 0.5 0.0 0.0 ],
[ 0.5 1.0 0.5 ],
[ 0.0 0.0 0.5 ]];

9 [[ 0.5 0.0 0.0 ],
[ 0.5 1.0 0.0 ],
[ 0.0 0.0 0.1 ]];

Figure 8. Mesh file for the interface elements of the double cantilever beam of Figure3. The interface
elements are supported by six control points, which have been defined in Figure4. The extraction operator

matrices have the dimensions[3× 3]

.

The first term of this equation is the weak form of the linear momentum of the bulk material. The last
term represents the external, distributed load, see Reference [34]. In the remainder of this section, we
will confine attention to the derivation of the Bézier elements of the second term of Equation (17),
the cohesive interface.

The interface is represented as a discontinuity in the mesh.In a discrete sense, it consists of
adjacent planes (or lines in a two-dimensional system) which are connected to the bulk elements,
see Figure6. Each plane has its own displacement field: the displacementof the plane that is
associated to theΩ+ part of the domain is denoted byu+, and the continuous displacement field of
the plane associated to theΩ− part of the domain, is denoted byu−. Both displacement fields can
be approximated in terms of the same, element-specific B-spline basis functions of a given element
e, Ne

i (ξ), according to

u+ =

ne∑

i=1

Ne
i (ξ)a

e
i+ne ; u− =

ne∑

i=1

Ne
i (ξ)a

e
i (18)

whereξ is the parametric coordinate,ne is the number of control pointsi that construct a single face
of elemente andaei are the discrete displacements in these control points. In the case of a quadratic
Bézier element, as depicted in Figure6, ne is equal to 3. Note that an interface element consists of
two faces and therefore the total number of control points equals2ne.

The opening of the interfacev is defined as the relative displacement of a pointξ on both faces
of the element:

v(ξ) = u+(ξ)− u−(ξ) (19)

In the discrete version, this can be written as:

v(ξ) = H(ξ)a (20)

The matrixH(ξ) that maps the discrete displacements of the control points to the interface opening
contains the element interpolation functions. In the case of a two-dimensional element this matrix
has dimensions[2× 4ne] and is structured as follows:

H(ξ) =

[
−Ne

1 0 −Ne
2 0 ... −Ne

ne 0 Ne
1 0 ... Ne

ne 0
0 −Ne

1 0 −Ne
2 ... 0 −Ne

ne 0 Ne
1 ... 0 Ne

ne

]
(21)

For the sake of brevity, the dependence onξ has been dropped in the matrix description above. The
opening of the interface elementv is transformed to the interface local frame of reference using
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Equation (4). In conventional interface elements, the rotation matrixR is assumed to be constant
over the element and is constructed by evaluating the nodal positions of the element, see [2]. In the
case of Bézier elements, it is possible to construct a unique rotation matrix for each material point
of the element by using the continuous displacement fields.

To this end, we describe the position of the mid-surface of the interface element, denoted by the
dashed line in Figure1, in the deformed configuration

xd(ξ) = Xd(ξ) +
1

2

(
u+(ξ) + u−(ξ)

)
(22)

The tangential vectorsΓd
in this point is equal to the derivative of the spatial position with respect

to the isoparametric coordinateξ:

sΓd
(ξ) =

∂xd

∂ξ

||∂xd

∂ξ
||

(23)

The normal vectornΓd
is perpendicular to this vector,nΓd

· sΓd
= 0 in the case of a two-dimensional

implementation. Finally, the rotation matrix is equal to:

R =
[
nT
Γd
, sTΓd

]
(24)

Introducing the rotation matrix in the discretised interface internal force vectorf intΓd
yields:

f intΓd
=

∫

Γd

RTHTtddΓ (25)

Straightforward linearisation of this equation gives:

KΓd
=

∫

Γd

RTHTTdHRdΓ (26)

where the higher order terms that contain the derivatives ofthe rotation matrixR with respect to the
displacements have been omitted at the expense of a slightlyslower convergence. The matrixTd is
the consistent tangent of the cohesive constitutive law in the interface local frame of reference, as
defined in Equation (3).

4.2. Numerical integration

The spatial numerical integration is an important issue in conventional interface elements when
applied in the context of cohesive surface models. They can suffer from spurious traction
oscillations, in particular in quasi-brittle fracture where there is no compliant interface prior to
reaching the tensile strength. The magnitude of these oscillations increases with an increasing
dummy stiffness, which is used prior to the opening of the discontinuity in order to ensure
continuity [6]. A solution that is generally accepted is to abandon Gauss integration of the interface
element and to resort to Newton-Cotes integration or to lumped integration techniques. This
approach suppresses the oscillations in classical zero-thickness interface elements [2], but also in
thin layer interface formulations such as in the cohesive band method [35].

We now investigate whether the Bézier interface elements inherit this deficiency. For this
purpose, we employ a notched three-point bending beam, shown in Figure9, and used before in
Reference [2]. The dimensions of the beam arew=125mm andh=100mm, and is made of an
elastic, isotropic material with Young’s modulusE=20 000MPa and a Poisson’s ratioν=0.2. The
length of the notch isa=20mm. The applied external load is equal toP =1000N.

The model consists of a patch of64× 16 cubic Bézier elements. The interface is represented by
Bézier interface elements. The notch, located at0<y<20mm, is traction free. Here, the tractions
td and the tangent stiffness matrixTd vanish, irrespective of the magnitude of the strain field. At
the interface, i.e. when20<y<100mm, an elastic ’dummy’ stiffness constitutive relation is used.
The location of this region is determined by assigning a dummy stiffness with a magnitude that is
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Figure 9. Geometry and boundary conditions of a notched beamin a three-point bending test

based on the spatial position of the corresponding integration point. Hence, the interface stiffness is
represented by the following cohesive relation:

td = Tdvd where Td = diag(D,D) where D =

{
0 ∀ y < 20

D ∀ y ≥ 20
(27)

Calculations have been carried out for different magnitudes of the dummy stiffnessD. The spatial
integration along the interface is done using either Gauss or Newton-Cotes integration. The traction
profiles at the interface are shown in Figures10and11.

The results for the Bézier interface element confirm those obtained for a classical interface
element [2] in the sense that traction oscillations are present when a Gauss integration scheme
is used, and increase for larger values of the dummy stiffness D. As a result of the higher order
interelement continuitiy of spline functions the oscillations do not disappear when a Newton-Cotes
integration scheme is used, see Figure11.

4.3. Poromechanical interface

One of the advantages of using isogeometric interpolation fields is the existence of higher order
derivatives of the shape functions. This allows to capture the Darcy flow in Equation (10) exactly,
instead of enforcing the higher order derivatives in a weak sense only [23].

The extension towards a poromechanical interface element is straightforward. Similar to the linear
momentum equation, the mass balance equation (5) is multiplied by the admissible pressure field
δp: ∫

Ω

δpα∇ · u̇ dΩ +

∫

Ω

δp
1

M
ṗf dΩ +

∫

Ω

δp∇ · qdΩ = 0 (28)

Applying Gauss’ theorem and introducing Darcy’s relation (7), this equation can be rewritten as:

−

∫

Ω

δpα∇ · u̇ dΩ−

∫

Ω

δp
1

M
ṗf dΩ +

∫

Ω

∇δp ·
k

µ
∇pf dΩ +

∫

Γd

δpnΓd
· qdΓ =

∫

Γq

δpn · qdΓ

(29)
Herein, we focus on the discretisation of the mass balance term for the interface, the fourth term in
the left hand side of this equation. The discretisation of the other terms using a Bézier extraction
technique has been discussed in detail in Reference [34].

The discrete pressure field in the discontinuity is equal to:

pf =

ne∑

i=1

Ne
i b

e
i (30)
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Figure 10. Interface tractiontn as a function of the position at the interface for different magnitudes of the
dummy stiffnessD for a Gauss integration scheme.

wherebei are the nodal discrete pressures at the face of the interfaceelement associated with theΩ−

part of the domain. The pressure is weakly discontinuous at the interface. Therefore, the pressure
degrees of freedom associated with the top surfaces are constrained to those on the bottom surface,
such that the pressure in a specific material point on the surface associated withΩ+ is identical
to that in the corresponding material point on theΩ− surface. As a result, the pressurepf can be
discretised using the pressuresbi at the knots that support theΩ− surface only:

pf = Nb (31)

whereN is
N = [Ne

1 , N
e
2 , ..., N

e
ne ] (32)

Similar to the linear momentum equation, we adopt a Bubnov-Galerkin formulation. Hence,
inserting the variation of the discretised pressure into the interface term of the weak forms as
described in Equation (29) yields:

qint
Γd

=

∫

Γd

NTnT
Γd
qdΓ. (33)

This interfacial flux vectorqint
Γd

can subsequently be elaborated in a similar manner to that in
Reference [22]. The time integration is carried out using a backward Eulerfinite difference scheme,
similar to [19] and [34]. The non-linear system of equations is solved using a Newton-Raphson
procedure.
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Figure 11. Interface tractiontn as a function of the position at the interface for different magnitudes of the
dummy stiffnessD for a Newton Cotes integration scheme.

5. NUMERICAL EXAMPLES

To illustrate the wide range of problems that can be solved bythe present approach, we simulate
some crack propagation problems in porous and non-porous media. The first example shows the
robustness and the accuracy of the discretisation method for modeling crack propagation in a
standard solid medium. The second example illustrates its capability to analyse deformation and
flow in a cracked, fully saturated porous medium. The third example focuses on crack propagation
in a porous medium, taking into account the fluid flow inside the crack.

5.1. Double cantilever beam

We consider the double cantilever beam shown in Figure12. The beam has a lengthl = 10 mm and
a thicknessh = 0.5 mm. It is composed of an elastic material with a Young’s modulusE = 100
MPa and a Poisson’s ratioν = 0.3. The beams are bonded by an adhesive with a strengthft = 1.0
MPa and a toughnessGc = 0.1 N/mm. The interface is modelled with a Xu-Needleman cohesive
relation [8]. The length of the initial delamination isa = 1 mm. Mesh convergence studies have been
carried out for meshes with16× 2, 32× 4, 64× 8 and128× 16 linear rectangular finite elements
and for quadratic and cubic Bézier elements.

The load displacement curve is given in Figure13 for cubic Bézier elements, which shows that
the converged solution is achieved for relatively coarse meshes of cubic Bézier elements. The mesh
sensitivity analyses are shown in Figure14, in which the loadP at a displacementu = 2 mm is
compared for various mesh size and for various degrees of interpolation of the Bézier interface
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Figure 12. Geometry of DCB Test
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Figure 13. Load-displacement curve for the double cantilever beam. Cubic Bézier interface elements have
been used with different levels of mesh refinement.
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Figure 14. Mesh sensitivity analyses for the double cantilever beam. The loadP at a displacementu = 2
mm is compared for various levels of mesh refinement and for various degrees of interpolation of standard
and Bézier interface elements. The reference solution hasbeen computed for a dense finite element mesh

with 33924 degrees of freedom.

elements and for standard interface elements. The results are compared with a reference solution
generated by a dense finite element mesh with 33924 degrees offreedom. From Figure14 it is
observed that the results of the Bézier interface elementsconverge faster to the reference solution
and, moreover, result in a smooth traction profile along the interface, see Figure15.
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Figure 15. A comparison of the traction profiles between standard linear interface elements (4464 degrees
of freedom) and cubic Bézier interface elements (1876 degrees of freedom) for a displacementu = 2 mm.
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Figure 16. A square block of a fluid-saturated porous material with an initial crack.

5.2. Traction-free crack

Next, a square block of a fluid-saturated porous material is subjected to pure mode-I loading,
Figure 16. The material has a Young’s modulusE = 25.85GPa, a Poisson’s ratioν = 0.18,
a porosityφ = 0.2, an intrinsic permeabilityk = 2.78× 10−13 mm2 and a fluid viscosityµ =
5× 10−10 MPa s. The bulk modulus of the solid materialKs = 13.46GPa, while for the fluid
Kf = 2.3GPa. The Biot coefficient has been assumed asα = 1. A velocity ¯̇u = 5.× 10−3mm/s
has been applied at the top and the bottom sides of the block, and a time step∆t = 1 s has been
used.

The problem has been discretised using rectangular Bézierelements and Bézier interface elements
with cubic B-spline basis functions. The mesh incorporatesinterfaces elements aty = 125 mm. The
centre 50 millimeters of the discontinuity are traction free, representing a fully open crack, while at
the remaining part a dummy stiffnessD = 103 N/mm has been used to enforce no opening at the
discontinuity line. Mesh convergence studies have been carried out and three levels of discretisation
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(a) Pressure profile (b) Fluid relative velocity profile

Figure 17.t = 50 s: (a) pressure profile; and (b) relative fluid velocities forthe area enclosed by the black
square box of (a).
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Figure 18. Mesh sensitivity analysis for the cubic Bézier elements

have been considered, namely16× 16, 32× 32 and64× 64 cubic Bézier elements, resulting in
1254, 3990 and 14070 degrees of freedom, respectively.

Figure17(a) shows the pressure profile of the block att = 50 s. At the crack tip a high suction
appears, which significantly affects the fluid flow. Indeed, Figure17(b) shows that the fluid flow is
sucked into the crack, and primarily at its tip. The relativefluid velocity in the direction tangential to
the crack has been plotted in Figure18(a). The fluid flows from the tip to the centre of the crack with
a velocity that depends on the crack opening. The leakage from the surrounding porous medium is
shown in Figure18(b). The smooth flow profile is obtained by virtue of the smoothness of the spline
functions.

5.3. Crack growth

The same setting as in Figure16 has been used to analyse crack growth in a porous medium. A
50 millimeter long traction-free slit is inserted along thehorizontal centre line of the specimen. A
velocity ¯̇u = 5.0× 10−3 mm/s has been applied at the top and the bottom of the block until t = 30s.
The displacement at the top and the bottom is then kept constant until t = 500s. A time step∆t = 1 s
has been used throughout.
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In the interface elements that are not used to model the initial traction-free slit, a dummy stiffness
D = 1× 103 N/mm2 has been inserted prior to the onset of cracking. After crackinitiation at
a tensile strengthft = 2.7 MPa, a linear decohesion is applied with a fracture energyGc = 0.05
N/mm. Inside the crack a permeability has been assumed that equals that of the surrounding bulk
prior to crack initation, while it increases progressivelyaccording to a cubic relation thereafter.
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(a) Traction profile att = 30 s
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(b) Traction profile att = 500 s

Figure 19. Traction profiles for different levels of mesh refinement.
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Figure 20. Crack opening profiles for different levels of mesh refinement.

A mesh convergence analysis has been carried out using the same elements and for the same
levels of mesh refinement as in the previous subsection. The results are shown in Figures19 – 24,
and in TableI. Figures19and20show the traction and the opening profiles fort = 30 s andt = 500
s, i.e., when the imposed displacement is kept constant. During this period, the redistribution of the
fluid along the interface increases the stress at the crack tip. When the stress at the tip reaches the
tensile strengthft, the crack will propagate. TableI quantifies the mesh sensitivity for the point
(0, 125) mm and timet = 30 s, where the reference solution has been obtained using a dense mesh
of cubic Bézier elements with 52662 degrees of freedom.

Figure21 and22 show the evolution of the the pressure and the relative fluid velocity profiles
tangential to the interface during the period that the imposed displacement is kept constant. It
is noted that due to fluid redistribution along the interfaceduring this period the pressure at
the interface decreases in absolute value. Since the gradient of the pressure along the crack also
decreases, we observe the same effect on the relative fluid velocity along the crack. Contour plots
of the pressure and the relative fluid velocity in thex-direction are given in Figures23 and 24,
respectively.
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mesh dofs tn [MPa] % error qs[µm/s] % error
p=3 16x16 1254 1.748 0.0051 9.49e-4 9.1967
p=3 32x32 3990 1.752 0.0028 3.37e-4 2.6186
p=3 64x64 14070 1.759 0.0011 1.92e-4 1.0673
Ref. p=3, 128x128 52662 1.757 - 9.30e-5 -

Table I. Mesh sensitivity analyses for crack growth in porous medium at point(0, 125) mm and timet = 30
s.
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Figure 21. Pressure profiles for different levels of mesh refinement.
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Figure 22. Relative fluid velocity profiles along the crack for different levels of mesh refinement.

6. CONCLUDING REMARKS

An isogeometric interface element has been formulated. It exploits Bézier extraction, which makes
it fully compatible with existing finite element software. Indeed, the current isogemetric interface
element can be obtained by simply replacing the shape functions of conventional interface elements.
Evidently, the shape functions are in principle now different for each interface element.

The new interface element shares all the advantages of isogeometric analysis, including the exact
description of the geometry and the easy mesh generation. Atthe same time, it inherits properties
from conventional interface elements such as the traction oscillations which occur when a very
high (dummy) interface stiffness is used to suppress deformations in the interface prior to crack
initiation. An examination of a beam subject to three-pointbending suggests, however, that the
higher smoothness of the spline functions used in isogeometric analysis prevents the decoupling
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(a) (b)

Figure 23. Pressure contours at (a)t = 30 s and (b)t = 500s

(a) (b)

Figure 24. Relative fluid velocity contours in thex-direction at (a)t = 30 s and (b)t = 500s

that is achieved using Newton-Cotes or nodal integration, which has proven a simple remedy for
conventional interface elements [2].

In a previous paper [34] it has been shown that isogeometric finite elements also have advantages
in poroelasticity, the natural preservation of the local mass balance being one of the most prominent.
For this reason, the isogeometric interface element based on Bézier extraction has been extended to
fluid-saturated porous media, and examples have been included to show the easy use and versatility
of this element technology.
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