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Abstract 
 
Aims/hypothesis  To investigate if meteorological and other factors influenced seasonal variation in month of 

diagnosis in children with Type 1 diabetes registered in EURODIAB centres during 1989-2008. 

Methods  Twenty-three population-based registers recorded date of diagnosis for new cases of type 1 diabetes 

among children under 15 years.  Tests for seasonal variation in monthly counts aggregated over the 20 year period 

were conducted.  Time series regression was used to investigate if sunshine hour and average temperature data 

were predictive of the 240 monthly diagnosis counts after taking account of seasonality and long term trends. 

Results  Significant sinusoidal pattern was evident in all but two small centres with peaks in December to February 

and relative amplitudes ranging from 11% to 39% (median 18%).  However, most centres showed significant 

departures from a sinusoidal pattern.  Pooling results over centres, there was significant seasonal variation in each 

age-group at diagnosis, with least seasonal variation in those under 5 years.  Boys showed greater seasonal 

variation than girls, particularly those aged 10-14 years.  There were no differences in seasonal pattern between 

four five-year sub-periods.  Departures from the sinusoidal trend in monthly diagnoses in the period were 

significantly associated with deviations from the norm in average temperature (0.8% reduction in diagnoses per 

1϶C excess) but not with sunshine hours. 

Conclusions/interpretation  Seasonality was consistently apparent throughout the period in all age-groups and both 

sexes, but girls and the under 5s showed less marked variation.  Neither sunshine hour nor average temperature data 

contributed in any substantial way to explaining departures from the sinusoidal pattern.  

 
 
Keywords   Epidemiology, seasonality, temporal change, type 1 diabetes mellitus, sunshine, temperature 
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Introduction 
 

Seasonal variation in the date of diagnosis of childhood type 1 diabetes has been described from many registers 

both in Europe [1] and worldwide [2] with most reports suggesting a winter peak.  Although a sinusoidal (sine 

wave) pattern specifying a single peak and a single trough six months apart has often been assumed, it has been 

found not to supply an adequate description of the data with significant lack of fit being apparent in many 

instances.  To address this lack of fit some have included higher-order harmonic terms to the sinusoidal pattern, but 

with little biological rationale for doing so.  Possible reasons for lack of fit include the rising and possibly changing 

trends in incidence [3,4] and deficits in numbers of diagnoses during weekends or public holidays [5], but in this 

analysis we consider also the role of two possible meteorological factors, sunshine hours and temperature, which 

have previously been associated with incidence [6]. 

Seasonal fluctuation in sunshine hours is particularly relevant to vitamin D levels since most of the body’s vitamin 

D is synthesized through the action of sunlight on the skin. The evidence from animal experiments and 

observational studies in humans of a role for vitamin D in the etiology if type 1 diabetes has been extensively 

reviewed, and a number of stages in the pathogenic process leading to the destruction of the insulin-producing cells 

have been identified which could potentially be influenced by vitamin D [79].  Animal studies suggest that 

vitamin D may reduce the rate of progression to diabetes even after the autoimmune process has begun.   

Ambient temperature has been linked with seasonality in some infections and is, for example, thought to be 

responsible for winter peaks in gastroenteritis through enhanced survival at low temperature of rotavirus and 

norovirus [10].  Hand, foot and mouth disease, which shows summer peaks in incidence in Asian countries and has 

been linked with short term effects of temperature [11], can be caused by enteroviruses which are implicated in 

type 1 diabetes with markedly increased enterovirus frequency having been reported in several studies within a 

month of diabetes diagnosis [12].  In addition studies show that blood glucose is increased in colder months [13] 

and may thus precipitate disease onset due to an increased insulin requirement.  Non-specific viral infections may 

also curtail the `prediabetic' period by substantially increasing insulin requirements [14]. 
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The purpose of this analysis is to characterize the patterns of seasonal variations in the 23 EURODIAB registers of 

childhood diabetes in 19 European countries during the 20 year period 1989 to 2008 and to assess if monthly 

departures from the sinusoidal pattern could be explained by deviations from the norm in monthly sunshine hours 

and average temperature.  A simple correlation analysis of raw time series results over the 20 years between 

monthly meteorological variables and numbers of diagnoses is not likely to be useful since all three series show 

marked seasonal variation which will induce spurious associations.  Instead we chose to assess if deviations from 

the monthly norms in the meteorological data were able to explain departures from the sinusoidal pattern in the 

diagnoses since we considered that associations over relatively short timescales, possibly incorporating a slight lag, 

would be more indicative of a causal relationship.  
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Methods 

Case inclusion criteria were as previously described for the EURODIAB registers [15], new diagnoses of type 1 

(insulin-dependent) diabetes mellitus among children aged under 15 years resident in the geographically defined 

region. Date of diagnosis was taken as the date of the first insulin injection.   Incidence rates and trends with 

calendar year in the 23 centres during the 20 year period have previously been documented  and completeness of 

ascertainment, assessed through capture-recapture methodology, was in excess of 90% in most centres [4].   

Sunshine hour and average temperature data for the most appropriate observation station were obtained from 

national meteorological offices.  The meteorological data used are summarized in Supplemental Table S1. 

Both a general test for seasonal variation (11 degrees of freedom (df)) and Edward’s test for sinusoidal (sine/cosine 

wave) variation (2df) were employed and a test for lack of fit of the sinusoidal variation (9df) was also obtained 

[16].  Monthly counts were adjusted for the number of days in the month.  Associations between the amplitude of 

the seasonal component and the centre characteristics (latitude, incidence level and meteorological results) were 

examined using Spearman’s rank correlation coefficient.  Comparisons of the seasonal pattern in subgroups defined 

by gender, age-group and five-year sub-period were obtained by fitting interactions with the seasonal (sine and 

cosine) terms in Poisson regression analyses.   

To investigate lack of fit of the sinusoidal pattern, a time series regression approach was employed [17] with 

Poisson regression used to assess if monthly deviations from the norm in meteorological variables (sunshine hours 

or average temperature) were predictive of monthly numbers of diagnoses.  This methodology has been used 

frequently for investigating environmental risk factors on disease, for example asthma admissions in relation to 

atmospheric pollutants [18] and myocardial infarction in relation to temperature [19].  Separate analyses were 

conducted for each of the 23 centres.  The 240 monthly counts arising from the 20 year period were used as the 

dependent variable in the Poisson regression model which contained terms to represent sinusoidal seasonality, long 

term trends, number of weekend days in the month as well as sunshine hour or average temperature effects 

expressed as deviations from the monthly norm.  These deviations had previously been derived as residuals from a 

linear regression which included terms representing the 12 months of the year and with linear and quadratic terms 
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in time fitted, if significant, to remove long term trends. The analyses were repeated with case counts lagged for up 

to 3 months after the meteorological data.   To account for extra-Poisson variation a scale parameter obtained by 

dividing the Pearson chi-squared statistic for lack of fit by its residual degrees of freedom was used in the analysis.  

Poisson regression models were fitted using the poisson and glm commands in Stata Release 11 (College Station, 

Texas).  The risk ratio estimates obtained for each centre were then combined by an inverse variance weighting 

approach in a random effects meta-analysis using the RevMan 5 program (Copenhagen, Denmark).  In addition to 

testing the combined overall effect for significance, this program also provides a test for heterogeneity of effects 

between centres as well as an I2 statistic representing the percentage of total variation across centres that is due to 

heterogeneity rather than chance.  Tests of significance were performed at the 5% significance level.
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Results 

Table 1 shows that significant general seasonal variation was apparent in all but two of the smallest centres, with an 

excess of cases apparent in the winter quarter (December-February).  Significant sinusoidal pattern was also 

evident in all but two of the smallest centres with peaks in November (2 centres) December (14 centres), January (5 

centres) or February (2 centres).  Relative amplitude varied from 11% to 39% (median 18%).   However, there 

was also clear evidence of a significant lack of fit in the sinusoidal pattern in the majority of centres.  

Significant differences in the numbers of cases diagnosed by day of the week were seen in all centres with the 

percentage of cases diagnosed at the weekend varying from 10% to 20% (median 13%) in the 23 centres compared 

with the 29% (2 out of 7) expected if diagnoses were to occur uniformly throughout the week.  Compensatory 

excesses early in the week were apparent in most centres.   

Pooling results across centres (Figure 1), boys showed marginally greater seasonal variation than girls (amplitudes 

of 18% and 14%, respectively). There was also significant seasonal variation in each age-group at diagnosis, 

with larger amplitudes observed in the older age groups (9%, 17% and 19% in the 0-4, 5-9 and 10-14 year age-

groups, respectively).   Further model fitting revealed a significant interaction between age, sex and the sinusoidal 

terms (2=12.3, df=4: P=0.02) indicating that the difference in amplitude between the genders was not uniform in 

each age-group; although the amplitudes in boys in the three age-groups (10%, 18% and 23%) were all greater 

than for girls (8%, 17% and 15%) the oldest age-group showed a much larger gender difference.  However the 

sinusoidal pattern showed significant lack of fit in both sexes and each age-group. There were no significant 

differences in seasonal pattern between four sub-periods of the 20 year period (amplitudes of 20%, 15%, 15% 

and 15% in 1989-1993, 1994-1998, 1999-2003 and 2004-2008, respectively).  All peaks were in winter months.  

There was no relationship across centres between relative amplitude of the seasonal variation in diagnoses shown in 

Table 1 and the centre’s latitude (Spearman rank correlation coefficient rs=-0.26, P=0.23), incidence level in 2004-

08 (rs=-0.25, P=0.26) or meteorological data (sunshine hours and average temperature) expressed either as means 
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throughout the 20 year period (rs=0.20, P=0.35 and rs=0.27, P=0.40, respectively) or as ranges across the 12 months 

of the year (rs=0.27, P=0.22 and rs=0.29, P=0.19, respectively). 

The extent to which departures in diagnoses from a sinusoidal pattern could be explained by deviations from the 

norm in monthly sunshine hours and mean temperature was examined in each of the 23 centres and the results were 

pooled in a random effects meta-analysis (Electronic Supplementary Material Figures 1 and 2).  Risk ratios were 

scaled to represent the increase in the diagnosis rate for a 30 hour per month (or approximately 1 hour per day) 

excess in sunshine hours relative to the norm and a 1϶C excess in average monthly temperature relative to the norm.  

Numbers of cases were lagged by up to three months after the meteorological data.  The unlagged analyses 

provided some evidence that months with either sunshine hours or temperature above the monthly norm had lower 

diagnosis rates than expected when judged against the underlying seasonal pattern (Table 2).  However, the risk 

ratios were both 0.992 indicating that the effects were small in magnitude (0.8% reduction in diagnoses for 30 

hours per month extra sunshine or for a 1϶C excess in temperature) and only the temperature result achieved 

significance.  None of the lagged analyses suggested that sunshine hours or average temperature had an influence 

on rates of diagnosis in subsequent months.   
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Discussion 

The EURODIAB collaboration, because of its population-based registers with broad geographic coverage and high 

levels of ascertainment, provides a unique dataset of approximately 50,000 cases spanning 20 years for the study of 

seasonal variation in the diagnosis of type 1 diabetes in Europe.  Seasonality in monthly case counts of childhood 

type 1 diabetes is apparent in most centres, in all age-groups and both sexes, but is less marked in girls and under 5 

year olds.  Given the greater infection load in young children, their reduced seasonality may appear paradoxical, 

but the disjointed nature of school terms relative to the more uniform pattern of pre-school care may help to explain 

this finding although an increased genetic susceptibility in young cases could offer another explanation [20]. The 

seasonal pattern has changed little during the 20 year period indicating that the pattern of presentation throughout 

the year is not changing as incidence rates have increased.  There was little evidence that deviations from the norm 

in monthly sunshine hours or average temperature played any important role in explaining departures from the 

underlying seasonal pattern in diagnoses.   

Studies in young adults have suggested that low vitamin D levels are associated with a higher risk of a subsequent 

diagnosis of type 1 diabetes [21,22], but the evidence in children mostly relies on proxy measures such as vitamin 

supplementation [23] or cod liver oil consumption [24].  Some studies have reported lower vitamin D levels in 

children with newly diagnosed [25,26] or pre-existing [2729] type 1 diabetes than in controls without diabetes but 

a recent large study comparing cases with non-diabetic siblings did not confirm this finding [30].  Ecological 

analyses of ultraviolet radiation data have reported associations with type 1 diabetes incidence [31,32] although 

these have been weak and inconsistent.  Our study investigated the rather different question of whether or not there 

were observable short term effects of sunshine hours or of temperature (both assessed as deviations from the norm) 

on the number of cases diagnosed per month.  

The large geographical coverage of some EURODIAB centres such as Norway means that obtaining relevant 

meteorological data is difficult, particularly for sunshine hours since fewer meteorological stations collect this 

information, and in general data for a single station nearest the centre’s largest concentration of population was 

selected for this analysis.  Sunshine hours can be a rather poor proxy for sun exposure, and in some countries 
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consumption of oily fish may also have a significant impact on vitamin D levels.  The standardisation of sunshine 

hour measurements across centres could be an additional concern, but this should have less impact on our analysis 

which focuses mainly on within centre comparisons.   

Vitamin D turnover in the body has a half-life of approximately 2 months [33], and a large observational study in 

the United States reports an August peak and February trough in the proportion of samples with 25-hydroxyvitamin 

D [25(OH) D] results exceeding 25 ng/mL [34].  This provided the rationale for incorporating a lag in the 

relationship between sunshine hours and diagnoses, but this lag did nothing to strengthen the relationship between 

sunshine hours and numbers of diagnoses in our dataset.   

The unlagged temperature analysis showed a similar but marginally more significant relationship with diagnoses 

than did sunshine hours.  The deviations from monthly norms for these two meteorological variables are correlated, 

but our findings are not suggestive of an effect of sunshine hours distinct from temperature.  Our significant 

temperature finding could result from an acceleration [35] or overload [36] effect on an already-ongoing beta cell 

destruction being unmasked in periods of increased blood glucose or insulin resistance induced by low temperature. 

Another possible mechanism is that our temperature finding possibly reflects the role of some other relevant 

environmental factor linked with temperature, such as increased physical activity or healthier eating, which may 

decelerate a child’s rate of progression to diagnosis.   

In summary, our analysis confirms previously-reported features of seasonality in the month of type 1 diabetes 

diagnosis, but we observed significant deviations from a sinusoidal pattern in many centres.  We did not detect any 

important role for deviation in sunshine hours or in average temperature from the monthly norm in explaining the 

departures from sinusoidal pattern in the numbers of cases diagnosed each month.  
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Table 1   Tests for seasonality in month of diagnosis of Type 1 diabetes in 23 EURODIAB centres using  
   aggregated data over the 20 year period 1989–2008 
  

Centre Region                Period     Number  
                            of cases 

   General (11df) test              Sinusoidal (2df) test          Lack of fit 
  of seasonal variation            of seasonal variation          (9df) test 

   
 

__________________    _______________________  _________ 
2        P        Dec-Feba      2       P          Amplb  Peakc        P 
 

Austria Whole nation 1989-2008 3372 50.7 <0.001 27.4% 29.6 <0.001 13% Dec 0.01 

Belgium Antwerp 1989-2008 448 32.3 0.001 31.5% 4.5 0.11 14% Nov 0.001 

Croatia  Zagreb 1989-2008 339 12.6  0.32 24.8% 4.0 0.14 15% Nov 0.47 

Czech Republic Whole nation 1989-2008 4883 61.7 <0.001 26.1% 36.3 <0.001 12% Dec 0.003 

Denmark  4 counties 
Whole nation 

1989-1998 
1999-2008 

385 
2402 

55.2 <0.001 27.4% 15.6 <0.001 11% Dec <0.001 

Germany Baden Württemberg 1989-2007 4804 70.7 <0.001 26.2% 44.3 <0.001 14% Dec 0.002 

Germany Düsseldorf region (7 districts) 
North Rhine-Westphalia 

1989-1998 
1999-2008 

595 
6331 

103.0 <0.001 27.5% 73.5 <0.001 15% Dec 0.001 

Germany  Saxony 1998-2008 921 32.3 0.001 27.9% 14.5 0.001 18% Dec 0.04 

Hungary 18 counties 1989-2008 3239 92.4 <0.001 29.7% 75.2 <0.001 22% Dec 0.05 

Lithuania Whole nation 1989-2008 1396 73.6 <0.001 27.2% 52.7 <0.001 28% Dec 0.01 

Luxembourg Whole nation 1989-2008 229 24.2   0.01 32.3% 8.8 0.013 28% Jan 0.08 

Macedonia  Whole nation 1989-2008 447 36.7 <0.001 30.6% 33.2 <0.001 39% Dec 0.94 

Montenegro Whole nation 1996-2008 252 24.4   0.01 28.6% 14.6 0.001 34% Jan 0.37 

Norway 8 counties 
Whole nation 

1989-2003 
2004-2008 

1380 
1504 

57.0 <0.001 27.7% 34.7 <0.001 16% Dec  0.008 

Poland Katowice 1989-2008 1719 80.3 <0.001 27.7% 63.2 <0.001 27% Dec 0.05 

Romania Bucharest 1989-2008 534 15.7   0.15 27.3% 7.9   0.02 17% Jan 0.55 

Slovenia Whole nation 1989-2008 715 31.7 0.001 27.6% 15.0 0.001 21% Dec 0.06 

Spain Catalonia 1989-2008 2527 65.1 <0.001 28.2% 46.5 <0.001 19% Feb 0.03 

Sweden Stockholm county 1989-2008 1978 34.7 <0.001 26.7% 12.9 0.002 11% Feb 0.01 

Switzerland Whole nation 1991-2008 2220 29.5 0.002 27.2% 12.9 0.002 11% Jan 0.06 

United Kingdom Northern Ireland 1989-2008 2043 59.9   <0.001 29.4% 50.9   <0.001 22% Dec 0.44 

United Kingdom Oxford 1989-2008 2288 68.7 <0.001 30.2% 31.9 <0.001 17% Jan <0.001 

United Kingdom Yorkshire 1989-2008 3018 94.6   <0.001 30.2% 78.9   <0.001 23% Dec 0.07 

 
2 = Chi-square statistic 
df =degrees of freedom  
a Dec-Jan = Percentage of cases in winter months 
b Ampl = Amplitude of fitted sinusoidal pattern 
c Peak = Peak month of fitted sinusoidal pattern 
 



 16 

 

Table 2    Risk of type 1 diabetes diagnosis in relation to deviations in sunshine hours and average temperature from 
long-term monthly norms.  Results were obtained by pooling estimates from separate Poisson regression 
models for each of the 23 centres.  Poisson regression used the 240 monthly counts of diagnoses in the 20 
year period as dependent variable and included terms for long-term sinusoidal seasonal pattern, linear 
trend and number of weekend days in the month as independent variables in addition to the deviations 
from the norm in meteorological variables. 

 

            

      

   
Random effects meta analysis results 

   
      

 
Lag (months) 

 
Relative risk (95%CI) P  I2 

    
 

 Sunshine hours 0 
 

0.992 (0.984, 1.001) 0.09 0% 
   (per 30 hr above  1 

 
0.999 (0.989, 1.008) 0.75   7% 

   monthly average) 2 
 

1.006 (0.995, 1.017) 0.31 28% 

 
3 

 
1.001 (0.991, 1.012) 0.85 24% 

    
 

 Temperature  0 
 

0.992 (0.985, 1.000) 0.04 30% 
   (per ϶C above  1 

 
0.999 (0.991, 1.006) 0.69 31% 

   monthly average) 2 
 

1.005 (0.997, 1.013) 0.20 33% 

 
3 

 
1.006 (0.997, 1.015) 0.17 43%a 

    
  

 

  

 
a Heterogeneity test was significant (P<0.05) 
 

 

      



 
 
Figure 1     
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Tests for heterogeneity in seasonal effect 
between sexes 

  General test:      2=37.5, df=11; P<0.001 

  Sinusoidal test:  2=16.1, df=2; P<0.001 

Tests for heterogeneity in seasonal effect 
between age-groups 

  General test:      2=96.3, df=22; P<0.001 

  Sinusoidal test:  2=68.3, df=4; P<0.001 

Tests for heterogeneity in seasonal effect 
between periods 

  General test:      2=44.4, df=33; P=0.09 

  Sinusoidal test: 2=7.05, df=6; P=0.32 
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Figure Legends 
 
 
Figure 1    Seasonal variation by gender, age-group and calendar period in pooled results from all 23 

EURODIAB centres.  Monthly counts were aggregated over the 20 year period and 
adjusted for the number of days in the month. 
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Electronic Supplementary Material 
 
ESM Table 1   Summary of meteorological data for the period 1989-2008 by centre 
 
______________________________________________________________ 

 Centre  – Station location          Sunshine (hr)     Temperature (϶C) 

     Averagea        Rangeb  Averagea         Rangeb 
__________________________       _______     __________    ___________    ________ 

Austria  – Vienna   166       209      10.7      20.0 

Belgium (Antwerp) –  Antwerp 134       180      11.0      14.6 

Croatia (Zagreb) – Zagreb  166      223      12.5      20.3 

Czech Republic – Prague  145     190         8.8      19.0 

Denmark – mainland average  136       192         8.7      14.8 

Germany (B W) – Stuttgart  149       167       9.7      17.8 

Germany (N R-W) – Düsseldorf 132       159    11.0      15.3 

Germany (Saxony) – Dresden  143       171       9.6      18.2 

Hungary (18 counties) – Budapest 170      218      11.8      21.4 

Lithuania – Vilnius     144       243         7.0      21.1 

Luxembourg – Luxembourg  139       193        9.6      16.9 

Macedonia – Skopje   189  264  12.9  23.6 

Montenegro – Podgorica  208  227  16.0  21.5 

Norway – Oslo        142       200       6.9      19.1 

Poland (Katowice) – Katowice 139  197    8.6  19.8 

Romania (Bucharest) – Bucharest 182       243      11.8      24.4 

Slovenia – Ljubljana   161      230      11.1      20.6 

Spain (Catalonia) – Barcelona 209       159      16.2      15.8 

Sweden (Stockholm) – Stockholm 154       241         7.8      19.2 

Switzerland – Zürich       134       195         9.6      18.1 

UK (Northern Ireland) – Armagh 103       109         9.1      10.1 

UK (Oxford) – Oxford  136       161      11.0      12.9 

UK (Yorkshire) – Bradford  108       138         9.7      11.8 
______________________________________________________________ 
a Mean – average of the 240 monthly values in the 20 year period 
b Range – difference between the maximum and minimum of the 12 monthly averages  
                (usually July average - January average) 
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ESM Figure 1   Rate of childhood type 1 diabetes diagnosis in 23 European centres in relation to  
monthly sunshine hours relative to the seasonal norm in the same month (unlagged); 
estimates from centres were combined by inverse variance weighted random effects 
meta-analysis. 

 
 

 
 

Centre 

Austria 
Belgium, Antwerp 
Croatia, Zagreb 
Czech Republic 
Denmark 
Germany, Baden Württemberg 
Germany, Düsseldorf NR-W 
Germany, Saxony 
Hungary, 18 counties 
Lithuania 
Luxembourg 
Macedonia 
Montenegro 
Norway 
Poland, Katowice 
Romania, Bucharest 
Slovenia 
Spain, Catalonia 
Sweden, Stockholm county 
Switzerland 
UK, Northern Ireland 
UK, Oxford 
UK, Yorkshire 

Total (95% CI) 

Test for overall effect: Z=1.68, P=0.09. 

Weight 

6.9% 
0.5% 
0.7% 

10.1% 
4.8% 

12.1% 
14.9% 

2.8% 
6.0% 
2.5% 
0.9% 
1.0% 
0.5% 
8.7% 
2.3% 
1.2% 
1.8% 
1.6% 
5.5% 
4.3% 
2.3% 
4.0% 
4.7% 

100.0% 

Risk ratio [95% CI] for a 30 hour per month increase in sunshine 

1.01 [0.98, 1.04] 
0.99 [0.87, 1.13] 
1.02 [0.92, 1.14] 
0.98 [0.95, 1.01] 
0.97 [0.93, 1.01] 
0.99 [0.97, 1.02] 
1.00 [0.97, 1.02] 
1.02 [0.97, 1.08] 
1.00 [0.96, 1.03] 
1.04 [0.98, 1.10] 
0.92 [0.84, 1.01] 
0.99 [0.91, 1.08] 
1.05 [0.93, 1.18] 
0.98 [0.95, 1.01] 
1.00 [0.95, 1.06] 
1.02 [0.93, 1.10] 
0.93 [0.87, 1.00] 
0.99 [0.92, 1.06] 
0.99 [0.95, 1.02] 
1.02 [0.98, 1.07] 
1.00 [0.95, 1.06] 
0.98 [0.94, 1.02] 
0.98 [0.94, 1.02] 

0.992 [0.984, 1.001] 

0.8          0.9          1.0           1.1          1.2  

Decrease in risk Increase in risk     Heterogeneity: I²=0%.  ²=17.4, df=22; P=0.74. 
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ESM Figure 2   Rate of childhood type 1 diabetes diagnosis in 23 European centres in relation to  
average daily temperature  relative to the seasonal norm in the same month (unlagged); 
estimates from centres were combined by inverse variance weighted random effects 
meta-analysis.  

 
 

 
 

Centre 

Austria 
Belgium, Antwerp 
Croatia, Zagreb 
Czech Republic 
Denmark 
Germany, Baden Württemberg 
Germany, Düsseldorf NR-W 
Germany, Saxony 
Hungary, 18 counties 
Lithuania 
Luxembourg 
Macedonia 
Montenegro 
Norway 
Poland, Katowice 
Romania, Bucharest 
Slovenia 
Spain, Catalonia 
Sweden, Stockholm county 
Switzerland 
UK, Northern Ireland 
UK, Oxford 
UK, Yorkshire 

Total (95% CI) 

Test for overall effect: Z=2.04, P=0.04. 

Weight 

7.9% 
1.3% 
1.3% 
8.8% 
5.4% 
8.6% 
8.6% 
3.6% 
7.2% 
5.5% 
0.9% 
1.9% 
0.7% 
6.6% 
2.4% 
2.4% 
2.7% 
3.7% 
5.3% 
4.8% 
2.4% 
3.6% 
4.4% 

100.0% 

Risk ratio [95% CI] for a 1϶ Celsius increase in temperature 

1.00 [0.99, 1.02] 
1.00 [0.94, 1.07] 
1.06 [0.99, 1.13] 
0.99 [0.98, 1.01] 
0.96 [0.93, 0.98] 
0.98 [0.96, 1.00] 
0.99 [0.97, 1.01] 
1.01 [0.97, 1.04] 
1.00 [0.98, 1.02] 
0.99 [0.96, 1.02] 
0.97 [0.90, 1.05] 
0.97 [0.93, 1.03] 
1.08 [0.98, 1.18] 
1.00 [0.97, 1.02] 
0.99 [0.94, 1.03] 
0.99 [0.95, 1.04] 
0.94 [0.90, 0.98] 
1.02 [0.98, 1.05] 
1.00 [0.98, 1.03] 
0.99 [0.96, 1.02] 
0.99 [0.94, 1.03] 
0.99 [0.95, 1.02] 
1.01 [0.98, 1.05] 

0.992 [0.985, 1.000] 

0.8          0.9          1.0           1.1          1.2  

 Decrease in risk Increase in risk Heterogeneity: I²=30%. ²=31.6, df=22; P=0.09. 
 


