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Abstract In recent decades, society has been greatly affected by natural disasters (e.g. floods, droughts, 20 

earthquakes), losses and effects caused by these disasters have been increasing. Conventionally, risk 21 

assessment focuses on individual hazards, but the importance of addressing multiple hazards is now 22 

recognised. Two approaches exist to assess risk from multiple-hazards; the risk index (addressing hazards, 23 

and the exposure and vulnerability of people or property at risk) and the mathematical statistics method 24 

(which integrates observations of past losses attributed to each hazard type). These approaches have not 25 

previously been compared. Our application of both to China clearly illustrates their inconsistency. For 26 

example, from 31 Chinese provinces assessed for multi-hazard risk, Gansu and Sichuan provinces are at 27 

low risk of life loss with the risk index approach, but high risk using the mathematical statistics approach. 28 

Similarly, Tibet is identified as being at almost the highest risk of economic loss using the risk index, but 29 

lowest risk under the mathematical statistics approach. Such inconsistency should be recognised if risk is to 30 

be managed effectively, whilst the practice of multi-hazard risk assessment needs to incorporate the relative 31 

advantages of both approaches.  32 

Keywords Multi -hazard risk assessment · Risk index · Mathematical statistics · Economic loss · Human 33 

life loss 34 
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The danger of mapping risk from multiple natural hazards 36 

 37 

1. Introduction 38 

The impacts of one hazardous event are often exacerbated by interaction with another (Marzocchi et al. 39 

2009). The mechanism by which these interactions occur varies, and may be a product of one event 40 

triggering another, or ‘crowding’, where events occur independently without evident common cause, but in 41 

close proximity, spatially, temporally, or both (Tarvainen et al. 2006; Carpignano et al. 2009; Marzocchi et 42 

al. 2012). The 2011 Tohoku earthquake which led to a tsunami and subsequently the Fukushima Daiichi 43 

nuclear disaster (Norio et al. 2011) is an event cascade and an example of triggering, whilst flooding in 44 

China’s Yangtze River Delta arising from a typhoon occurring at the same time as annual monsoonal 45 

rainfall is an example of event crowding (Liu et al. 2013). Close proximity between events may lower 46 

resilience to disaster and make recovery more difficult, and illustrates how risk from multiple natural 47 

hazards is often greater than that suggested by risk assessment that considers hazards as independent 48 

events.  49 

Multi -Hazard Risk Assessment (MHRA) has been developed to combat the limitations of single hazard 50 

appraisal (Armonia Project 2006; Marzocchi et al. 2009; Di Mauro et al. 2006), with MHRA approaches 51 

building on the methods developed for single-hazard risk assessment, but additionally considering hazard 52 

interaction. The aim is to develop a more complete understanding of risk by assessing, and usually mapping, 53 

either the relative danger or expected losses (social, economic, environmental) due to the occurrence of 54 

multiple natural hazards in an area(Armonia Project 2006; Dilley et al. 2005). Two MHRA approaches 55 

exist, one developing a risk index, and the other using a mathematical statistics approach. There are no 56 

MHRA studies that compare analysis of risk using these two approaches for the same area. Therefore, this 57 

paper compares the risk index and mathematical statistics methods (definition and methodology), and then 58 

applies them to China’s provinces to analyze differences, including data needs and results. After discussing 59 

possible reasons for differences in results, the relative merits of these two methods are summarized. 60 

2. Methodology 61 

2.1 The risk index approach 62 

The risk index approach addresses the factors that lead to a disaster (disaster formation). Risk is defined as 63 

the probability of loss caused by the interactions between the vulnerability, exposure and the hazard. Risk 64 

is most commonly expressed as in equation (1) (ISDR 2004): 65 

 66 

R isk = H azard×V ulnerability×Exposure                     (1) 67 

                       68 



 3 

Where hazard is the presence of potentially damaging physical events in an area, exposure is the number, 69 

types and monetary value of elements that are exposed to that hazard, and vulnerability refers to intrinsic 70 

characteristics of those elements that make them more or less susceptible to adverse impact. Selection of 71 

component indicators for hazard, vulnerability and exposure, and calculation of associated weights are key 72 

steps. The process is an extension of that used for an individual hazard, with risks from individual hazards 73 

aggregated in a unified MHRA index. Aggregation may proceed in two ways. The first is to address hazard, 74 

vulnerability and exposure for individual hazards, and then sum for the multi-hazard risk index (Granger 75 

and Trevor 2000; Munich Reinsurance Company 2003; Khatsu and van Westen 2005; Schmidt-Thomé 76 

2006; Thierry et al. 2008; Kunz and Hurni 2008; SCEMDOAG 2009):  77 

   78 
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 80 

An alternative aggregation approach is used in which each hazard risk index is first assessed individually 81 

for a given area. Weights (see below) are then assigned to each individual hazard risk and summation used 82 

to derive the multi-hazard risk index (Bell and Glade 2004; UNDP 2004; Lavalle et al. 2005; Dilley et al. 83 

2005; Wipulanusat et al. 2009; Shi 2011): 84 

                                         85 
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In both cases, R is Multi-hazard risk, Hi is Hazard; Vi is Vulnerability, Ei is Exposure and i represents each 88 

individual hazard. 89 

However, most methods in both aggregation approaches (equations (2) and (3)) suffer the drawback that 90 

the multi-hazard risk index is calculated by aggregating all single hazard risks with equal weight (Table 1), 91 

which does not adequately reflect the varied impacts of different hazards present in the same area. Whilst 92 

both aggregation methods have advanced MHRA and can be used to better compare the relative degree of 93 

danger between different areas, these applications utilise hazard, vulnerability and exposure to assess the 94 

final multi-hazard risk without a consideration of probabilities and exceedance probabilities (the probability 95 

that a specified level of loss, or a greater loss, will occur), and thus these approaches cannot reflect the real 96 

risk in the study areas. Thus the risk index is useful in a relative sense, but is less helpful in an absolute 97 

sense for determining total losses. 98 

2.2  The mathematical statistics approach 99 

The mathematical statistics approach is based upon the analysis of observed natural disasters. Risk is 100 

defined as a product of the probability of occurrence of a hazardous event and the consequences of such an 101 
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event for exposures (the magnitude of impact resulting from realization of the hazard). Risk is expressed as 102 

(IUGS 1997): 103 

                                        104 

R isk = Probability×C onsequence                           (4) 105 

 106 

This is the basic model for the mathematical statistics method and its associated loss curve is shown in 107 

Fig.1. Loss (L) is the loss (damage) associated with the disaster, and EP(L) is the exceedance probability 108 

for the corresponding loss. Through application of this approach, an exceedance probability-loss curve can 109 

be built, which shows the likelihood of losses of different magnitudes, and which is used to estimate and 110 

evaluate risk of future disasters. Both parametric and nonparametric methods are used to estimate the 111 

required probabilities (FEMA 2004; Grünthal et al. 2006; Van Westen 2008; Schmidt et al. 2011; 112 

Linares-Rivas 2012; Frolova et al. 2012; Liu et al. 2013) (Table 1).  113 

 114 

Fig.1 Exceedance probability-loss curve 115 

 116 

The mathematical theory in the parametric method assumes that disaster losses follow a known distribution 117 

function (curve). Historical loss data sets are often used to estimate the distribution function parameters that 118 

are then used to calculate the probability distribution. This methodology has been widely used in risk 119 

assessment. For instance, Grünthal et al. (2006) calculated exceedance probability–mean wind speed curves 120 

for windstorm risk assessment using Schmidt and Gumbel distributions (Gumbel 1958). Stedinger et al. 121 

(1992) estimated distribution function parameters by the method of moments for Gumbel type, Pearson 122 

type III, Weibull and lognormal curves; instead of, and Grünthal et al. (2006) used these distributions to 123 

build exceedance probability–discharge curves for flood risk assessment.  124 

There is sometimes a lack of historical observations, so it can be difficult to develop a probability 125 

distribution function that reflects the real situation for parameter estimation. In these circumstances, a 126 

nonparametric method is used, which may employ histogram density estimation, kernel density estimation 127 

or information diffusion to derive probability estimates. Histogram density estimation is easy to use, but the 128 

results obtained are crude and are greatly influenced by the interval choice. Kernel density estimation 129 

(Rosenblatt 1956; Parzen 1962) are closely related to histograms, but can be endowed with properties such 130 

as smoothness or continuity by using a suitable kernel. However, the key problem of how to choose an 131 

appropriate smoothing parameter still remains. The information diffusion method was introduced by Huang 132 

(1997) to overcome this problem, and improves the accuracy of natural disaster risk assessment. The 133 

information diffusion method can use sample data to assess natural disaster risk, and Huang (2000) showed 134 

it to be about 28% more efficient than histogram density estimation.  135 
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 136 

Table 1 Multi -hazard risk assessment approaches and applications 137 

 138 

These two risk assessment approaches are distinct, in that the risk index method primarily serves to aid 139 

understanding of the disaster formation mechanism, as it strives for an appreciation of the relative 140 

importance of hazard, vulnerability and exposure (of human and physical systems) and the interaction 141 

between these elements, in the overall determination of risk (Shi 1996; Wisner et al. 2004). Conversely the 142 

statistics method expresses risk as probabilistic loss, and is useful in estimating and evaluating losses from 143 

potential future disaster. It gives more consideration to the probability of occurrence but relative to the risk 144 

index approach, exposure and vulnerability are neglected. 145 

3. Application to China 146 

3.1 Data 147 

These approaches have not previously been compared, whilst researchers rarely explicitly justify their   148 

chosen approach. Their comparison is important to developing more transparent MHRA that would better 149 

inform management of risk from multiple hazards. We therefore compared the two MHRA approaches via 150 

their application to a common area that experiences significant natural hazards. A history of natural 151 

disasters driven by different natural hazards, plus a growing population and economy at risk, makes China 152 

a suitable region to conduct this comparison (Wang et al. 2008). For both approaches, nine natural hazards 153 

including flood, drought, heat wave, cold wave, earthquake, landslide, storm (typhoon and local storm), 154 

wildfire and avalanche were addressed to calculate the risk to human life and economic production.  155 

Historical data on natural disasters in China was drawn from the EM-DAT International Disaster Database 156 

for 1981-2012, and used in application of both approaches. The approaches differ in their requirements for 157 

socio-economic data, in terms of both data type and time series, which reflects differences in the 158 

complexity of the approaches. The risk index requires socio-economic data for multiple variables, but only 159 

one year of data is required (Table 2). The mathematical statistics approach is less demanding in terms of 160 

the variety of socio-economic data required, but a longer time series is needed (Table 2).  161 

 162 

Table 2 Data for multi-hazard risk assessment in China 163 

 164 

3.2 Application and results 165 

The risk index approach was applied such that the multi-hazard index was the sum of each hazard value 166 

multiplied by its weight, calculated according to the average historical death toll associated with this hazard 167 
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(Munich Reinsurance Company 2003). The normalised multi-hazard index to human life is shown in Fig.2a. 168 

Provinces with a high multi-hazard index value mainly located in south-eastern China. Population age 169 

structure, gender ratio, and quality of supporting infrastructure (transport routes, telecommunication 170 

facilities, and medical facilities) were used as indicators to calculate the vulnerability index (Cutter et al. 171 

2003; Villagran de Leon 2006; SCEMDOAG 2009) to human life using the entropy-weight method1 (Zou 172 

et al. 2006; Miao and Ding 2015). As shown in Fig.2b, Provinces with a high vulnerability index value 173 

mainly located in western China. The exposure index to human life loss was represented by population 174 

density. As shown in Fig.2c, Shanghai has the highest exposure index. The multi-hazard risk index to 175 

human life was then calculated by aggregating the multi-hazard index, the vulnerability index and the 176 

exposure index with equal weight (Fig. 2d). This methodology was used in assessing economic loss, with 177 

GDP per km2 as the exposure index. The hazard index, vulnerability index, exposure index and 178 

multi-hazard risk index to economic loss are shown in Fig.3. 179 

 180 

Fig. 2 Multi -hazard risk assessment to human life in China (2013) using the risk index approach (0 181 

represents the lowest value, and 1 represents the highest value) 182 

 183 

Fig. 3 Multi -hazard risk assessment to loss of economic production (GDP) in China (2013) using the risk 184 

index approach (0 represents the lowest value, and 1 represents the highest value) 185 

 186 

The information diffusion method (Huang 1997) was adopted in the mathematical statistics approach. The 187 

exceedance probability (EP) distribution of multi-hazard loss was calculated based on observed disaster 188 

loss data (1981-2012), and an EP loss curve developed. Multi-hazard risk to life and GDP was mapped for 189 

10-, 20- and 50-year hazard return periods (Fig. 4 and Fig. 5). Estimated losses are expressed as deaths per 190 

million people and ratio of economic loss to production, so population size and GDP in 2013 were used to 191 

probabilistically estimate deaths and economic loss in 2013 attributed to multi-hazard with a 20-year return 192 

period (Fig.6). 193 

 194 

Fig. 4 Multi -hazard risk to human life for selected event return periods 195 

 196 

                                                             
1 Entropy measures the amount of useful information in the indicator provided. When the difference in one 
indicator between different assessment units is small, the entropy is great, it illustrates that this indicator 
provides less useful information, and the weight of this indicator should be set correspondingly small. On 
the other hand, if the difference is large and the entropy is small, the weight would be big. 
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Fig. 5 Multi -hazard risk to economic production for selected event return periods 197 

 198 

Fig. 6 Death and economic loss in 2013 to multi-hazard with a 20-year return period 199 

 200 

4. Comparative performance 201 

Comparing these with the risk maps generated using the risk index approach and mathematical statistics 202 

approach shows that the results are inconsistent (Fig.2d and Fig.6a, Fig.3d and Fig.6b). For instance, Gansu 203 

and Sichuan provinces are at low risk of life loss with the risk index approach (Fig.2d), but high risk using 204 

the mathematical statistics approach (Fig.6a). Similarly, Tibet is identified as being at almost the highest 205 

risk of economic loss using the risk index (Fig.3d), but lowest risk under the mathematical statistics 206 

approach (Fig.6b). 207 

The risk index expresses risk using a synthetic unitless indicator, whilst the mathematical statistics 208 

approach expresses risk as integrated losses (lives, GDP); hence, results cannot be compared directly. 209 

However, Spearman rank correlation (Spearman 1904) coefficients of 0.17 and 0.33 for multi-hazard risk to 210 

human life and loss of economic production clearly reveal the lack of consistency between the two 211 

approaches, which supposedly both assess the same multi-hazard risk. This is further illustrated by Table 3, 212 

the risk ranking for the two approaches. 213 

 214 

Table 3 Province ranking by the risk index and mathematical statistics approaches to human life and 215 

economic production 216 

 217 

There are several possible explanations for this observation. Firstly, the risk index and mathematical 218 

statistics approaches adopt different assessing elements. The risk index approach assesses risk from 219 

component indicators for hazard, vulnerability and exposure, but mathematical statistics approach adopt 220 

probability and corresponding loss to measure the risk. Second, MHRA using the risk index approach 221 

draws on vulnerability and exposure data for a single year only (2013 in our analysis), whereas the 222 

mathematical statistics method makes a probabilistic assessment that must draw on a long run time-series 223 

of observed losses (32 years in our case). Thirdly, and related to this, is that the mathematical statistics 224 

approach does not explicitly address changes in vulnerability (of population and property) but these values 225 

change from year to year as a country develops. A region experiencing rapid population growth may see a 226 

major change in the population that is vulnerable to natural hazards, but the risk index reflects this 227 

vulnerability for one year only (most likely that for which the latest data is available), and hence is unlikely 228 
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to be representative of vulnerability over the long-run. The mathematical statistics approach does not 229 

address vulnerability directly, but does so indirectly, via observed losses, which in contrast are for the long 230 

run. Fourthly, the risk index is also similarly sensitive to changes in population (or property) exposure (e.g. 231 

the population density of Shanghai, at 3,809 people per km2 is 1,494 times higher than that of Tibet). 232 

Finally, the mathematical statistics approach underestimates the influence of extreme events whose return 233 

periods are substantially longer than the time period of the observed loss data. This is evident in the case of 234 

Sichuan which is calculated as high risk (to human life) in the 20-year return period, because this region 235 

experienced an earthquake in 2008 whose magnitude (and death toll, a reported 87,587 deaths) (USGS 236 

2012) had a return period that was much longer than that of the observed loss record. If more extreme 237 

natural hazard events are included, the observed loss data would increase exceedance probabilities and the 238 

resulting multi-hazard risk estimation.  239 

Despite the difference in results, it cannot be concluded that one approach is wrong or that neither is correct. 240 

These two approaches both provide a measure of risk, but they each have a different emphasis. Both 241 

approaches have certain advantages and drawbacks which reflect that one emphasizes the disaster 242 

formation mechanism (and is best used to assess relative risk), and the other emphasizes the expected losses 243 

(thus reflecting real world observations, but neglecting exposure and vulnerability) (Table 4). Our analysis 244 

for China has demonstrated that these two approaches can differ in the estimation of risk, so much so that a 245 

complete reversal of the risk picture gained is possible if switching from one approach to the other. This 246 

has significant implications for management of that risk.  247 

 248 

Table 4 Relative merits of multi-hazard risk assessment approaches 249 

 250 

5. Conclusion and discussion 251 

We conclude that in assessing risk from multiple natural hazards, there is a need to recognise that the 252 

results of a MHRA are heavily dependent upon the approach adopted, and that there is clearly danger to 253 

effective risk management, in unwittingly choosing one approach over another, with for example, choice of 254 

approach driven by practical considerations, such as data availability.  255 

Comparative analysis of multi-hazard risk merits further work, for different territories and geographic 256 

scales, to verify our findings. However, the degree of inconsistency between the approaches revealed by 257 

our analysis implies that risk assessors must recognise the relative merits of their adopted approach, and 258 

clearly explain to those with natural hazard risk management responsibilities (including politicians, policy 259 

makers and planners) which approach has been used and why. As shown in Fig.7, the approach adopted 260 

will likely depend upon the objective of the MHRA. Loss assessors (e.g. the insurance industry) may 261 
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favour the mathematical statistics approach, but those seeking to pro-actively manage multi-hazard risk 262 

require a deeper understanding of the factors that underpin that risk and so will favour the risk index 263 

approach. The evident disparity between these two approaches means that effective management of 264 

multi-hazard risk, which better protects life and property, may be constrained.  265 

 266 

Fig. 7 Multi -hazard risk assessment (economic loss) for relevant stakeholders (a) policy makers and 267 

planners, and (b) insurance industries 268 

 269 

A hybrid MHRA approach that integrates the best of the index and statistical approaches is clearly worth 270 

pursuing. This could be achieved by analysing risk considering the disaster formation mechanism 271 

considering hazard, vulnerability and exposure, and calculating possible loss and corresponding probability 272 

of loss under different natural hazard scenarios. A key element here would be consideration of the 273 

interaction between hazards, the interaction of hazards and vulnerability, and the frequency of hazard 274 

occurrence.  275 

 276 
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