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ABSTRACT

Pareto Estimation (PE) is a novel method for increasing the
density of Pareto optimal solutions across the entire Pareto
Front or in a specific region of interest. PE identifies the
inverse mapping of Pareto optimal solutions, namely, from
objective space to decision space. This identification can
be performed using a number of modeling techniques, how-
ever, for the sake of simplicity in this work we use a radial
basis neural network. In any modeling method, the qual-
ity of the resulting model depends heavily on the training
samples used. The original version of PE uses the result-
ing set of Pareto optimal solutions from any multi-objective
optimization algorithm and then utilizes this set to identify
the aforementioned mapping. However, we argue that this
selection may not always be the best possible and propose
an alternative scheme to improve the resulting set of Pareto
optimal solutions in order to produce higher quality samples
for the identification scheme in PE. The proposed approach
is integrated with MAEA-gD, and the resulting solutions are
used with PE. The results show that the proposed method
shows promise, in that there is measurable improvement in
the quality of the estimated PE in terms of the coverage and
density.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
Real world problems often have multiple competing objec-

tives that are to be optimized simultaneously, see [5, 3, 13,
27] to mention but a few. However, when multiple compet-
ing objectives are considered there no longer exists a single
optimal solution. Rather, there exists a set of optimal solu-
tions. This set is the minimal (maximal) set of the feasible
objective vectors when all objectives are to be minimized
(maximized). This introduces a subtle yet important dif-
ficulty, as in practice, only one solution can be selected at
a given time. Therefore, a reduction of this optimal set
is required. The process of reduction is context sensitive
and most often requires the aid of a decision-maker (DM).
Broadly speaking, there are 3 ways that the DM can be
involved in the optimization process, i) a-priori preference
articulation [23, p. 114], ii) interactive preference articula-
tion (see for example [4, 24, 21]), and, iii) a-posteriori pref-
erence articulation [23, p. 77]. In a-priori preference ar-
ticulation the DMs preferences are distilled into a utility
function which can then be incorporated within the opti-
mization process to reduce the multi-objective problem to
a single objective problem [23, p. 115]. Interactive prefer-
ence articulation methods involve the DM throughout the
optimization process, and, a-posteriori preference articula-
tion methods rely on the production of a representative op-
timal set from which the DM can select a single solution.
For problems where there is a clear way to construct a util-
ity function, a-priori methods are preferable as their com-
putational requirements are lower than both alternatives.
This is because only one problem is considered at a time,
while in a-posteriori and interactive preference articulation
methods a set of optimal points must be maintained [23,
p. 115]. However, the creation of a utility function that
accurately represents the DMs preferences is a challenging
task. Interactive preference articulation methods can offer
an alternative, which can be computationally more efficient
than a-posteriori methods, since the optimization algorithm
will have a progressively more restricted search space to ex-
plore. These methods however require a substantial time
investment from the DM. Lastly, when there is no clear way
for a utility function to be defined and the DM cannot be
continuously involved with the optimization process, then
a-posteriori preference articulation methods are preferable.
For a more detailed exposition on methods and specific al-
gorithms employed in decision-making the reader is referred
to [25] and [23].



A-posteriori preference articulation can be summarized as
follows:
Problem Formulation The analyst, using specifications

described by the DM formulates an optimization model,
which could be a mathematical programming formula-
tion or a data-driven model, etc.

Solution Process Subsequently, based on the properties
of the problem, the analyst identifies a suitable algo-
rithm (e.g. gradient-based or evolutionary algorithms)
to solve the optimization model.

Decision Making Based on the information provided from
the algorithm, the DM can, i) make their decision if
the solutions provided by the algorithm are desirable,
ii) reformulate the model and repeat the process, or,
iii) choose another algorithm and repeat the process.

One caveat with a-posteriori preference articulation meth-
ods is that computational resources impose a practical limit
on the size of the representative optimal set that can be pro-
duced by the algorithm. This reveals an underlying meta-
trade-off, namely, the size of the representative optimal set
and the satisfiability of the DM, to wit, the larger the size
of the representative set the more likely it is that a solution
that will match the DMs preferences will be identified, albeit
simultaneously the more expensive the optimization process
becomes.

Pareto Estimation (PE) was introduced to alleviate some
of these problems in the a-posteriori decision-making para-
digm [6, 7]. In general, PE utilizes a set of candidate Pareto
optimal solutions generated by an algorithm to identify the
relationship between objective space and decision space. This
can then be employed to generate more Pareto optimal solu-
tions on the entire Pareto front or in specific regions, see for
example in [6]. PE was shown to produce promising results
on standard test problems with 2 and 3 objectives [6, 7];
particularly, a real world portfolio optimization example is
also presented in [6] where the authors illustrate the ability
of PE to increase the density of Pareto solutions within the
regions of interest of a DM. Further development of PE in-
cludes [20, 19], where the authors extend PE to increase the
density of multi-modal solutions of an MOP by using cluster-
ing analysis and employing PE for every cluster separately.
Although in previous studies PE was used at the end of the
optimization procedure, this is not a requirement, and, as
we show in this work can in fact be beneficial to be incorpo-
rated in the algorithm. A recent work using similar ideas as
PE employs Gaussian models to actively manage solutions
during the optimization with promising results, opening a
new dimension of application for Pareto estimation [1].

As is the case with all methods that are based on data-
driven models, the performance of PE is contingent upon
the quality of the Pareto set approximation produced by the
optimization algorithm, for instance see [22]. In this work,
we present an initial numerical study on the effect that the
quality of samples has on the resulting PE model and its
performance. In principle, for any interpolation method,
Shannon’s theorem (see [17] for a review) places a lower
bound on the number of samples required for the complete
determination of the function. However, the placement of
these samples in the domain of the function is also very
important, this placement is the object of study of optimal
sampling [22].

The remainder of this work is organized as follows. In Sec-
tion 2, we introduce a general formulation of multi-objective

problems and the original Pareto estimation method. Sec-
tion 3 presents a motivating example to better illustrate
the basis for this work, i.e. generating better candidates
of Pareto optimal solutions for PE by redistributing the so-
lutions in the population. In Section 4 we demonstrate our
methodology using MAEA-gD introduced in [10, 9]. Lastly,
in Section 6, we conclude, summarize and reflect on future
research directions based on this work.

2. BACKGROUND

2.1 Multi-Objective Optimization
Without loss of generality, a (continuous) multi-objective

optimization problem can be defined as follows,

min
x

F(x) = ( f1(x), f2(x), . . . , fk(x) )

subject to x ∈ S ⊆ R
n,

(1)

where F is a vector of scalar objective functions fi with i ∈
{1, 2, . . . , k}, k is the number of objectives, n is the number
of decision variables, x is an n-dimensional vector of decision
variables, S is the feasible region of x and S is an subset of
the n-dimensional real space. For any x ∈ S, there exists a
vector z = F(x), which is an objective vector corresponding
to the decision vector x. The set of all possible objective
vectors resulting from decision vectors in the feasible region
are denoted as Z, namely Z = {z ∈ R

k | z = F(x), ∀x ∈
S}. A decision vector x∗ ∈ S is said to Pareto-dominate
a decision vector x, if and only if fi(x

∗) ≤ fi(x) for all
i ∈ {1, . . . , k} and fi(x

∗) < fi(x) for at least one i. A
decision vector x∗ ∈ S is said to be Pareto optimal if it is
not dominated by any other decision vectors in S. For an
objective vector z̃ = (f̃1, . . . , f̃k) ∈ Z, if there is no other

objective vector z = (f1, . . . , fk) �= z, such that fi ≤ f̃i for

all i ∈ {1, . . . , k} and fi < f̃i for at least one i, we also say
this objective vector z̃ is non-dominated. The set of all non-
dominated objective vectors in Z, denoted as P , is called the
Pareto Front (PF). The decision vectors corresponding to P
is denoted as D. Optimization algorithms in the a-posteriori
decision-making paradigm strive to obtain an approximation
of the PF. In the remainder of this work we also denote the
PF approximation as P .

2.2 Pareto Estimation
In general, PE attempts to identify a relationship from

the objective space to the decision space (inverse mapping)
and then utilize this relationship to produce more Pareto
solutions on the entire PF or in a specific region of the PF. To
identify this relationship, the set of Pareto optimal objective
vectors, P , is first transformed into a projected set, P̃. One
element in P is mapped exactly to one element in P̃ , namely
this transformation can be described as a function

Π−1 : P �→ P̃ .

In the identification of the inverse mapping points in the
projected space, P̃, are used in lieu of P , and, the motiva-
tion for this is to simplify the use of the resulting inverse
mapping [7]. Elements in P̃ are easily obtained and ma-
nipulated and therefore new samples are obtained in this
space rather than the actual PF, whose topology is mostly
unknown. One potential projection is to first normalize the
objective vectors in P by



z̃i =
zi − z⋆i
znd
i − z⋆i

, (2)

where z⋆ is the ideal objective vector and znd is the nadir
objective vector [23, pp. 15-16], which can be estimated from
P , and then project z̃i onto the (k− 1)-simplex, to produce

the P̃ . The (k − 1)-simplex is defined by {e1, . . . , ek−1},
where ei is a vector with a one in the ith position and zeros
in the rest. Following the projection, the relationship from
P̃ to the decision vectors D is identified, namely,

F̃P : P̃ �→ D. (3)

It is clear that a composite of Π−1 and F̃P provides the
relationship from the objectives to the decision variables,

F̃P(Π
−1(P)) = D.

This procedure is illustrated in Fig. (1). Since it is very

Figure 1: Pareto Estimation Method [7]

difficult, if not impossible, to mathematically derive the re-
lationship F̃P , some meta-modeling method is used to iden-
tify this relationship approximately. Considering computa-
tional efficiency, the Radial Basis Function Neural Network
(RBFNN) can be employed and the performance is promis-
ing [7]. A promising alternative to RBFNNs appear to be
Gaussian processes, see for example [1].

With a set of evenly spaced samples, E as an input, F̃P is
able to generate a set of decision variables DE = F̃P(E) and
this set of decision variables can then be used to generate
the corresponding Pareto optimal objective vectors. If E is
sampled in the entire projected objective space P̃ , PE will
generate more solutions on the entire PF. Alternatively, if
E is sampled in a specific region, then PE will be able to
provide more solutions in a specific region of the PF.

For a given projection Π−1 and a meta-modeling method
(e.g. RBFNN) for identifying the mapping F̃P , the quality of

the identified relationship F̃P from PE is mainly affected by
the training data, i.e. the approximation of Pareto optimal
solutions generated from the algorithm that is employed to
solve a given MOP. Therefore the question we seek to answer
is the following: How to manipulate the placement of the
population during the optimization, so as to produce better
data samples for PE, and therefore improve the quality of
the resulting PE model and its performance, whilst ensuring
that the convergence rate of the algorithm is not reduced.
In the following section, we reflect on these questions and
explore methods to address this problem.

3. MOTIVATING EXAMPLE
Consider the process of identifying F̃P as the process of

interpolating a function, whose domain is D, using the can-
didate Pareto optimal solutions as samples. It was argued
in the introduction that for a fixed number of samples their
position can be an important in the quality of the resulting
interpolations of the same function. To better understand
the importance of sampling, let us consider the following
example in Fig. (2). In the example shown in Fig. (2), we

Figure 2: Piecewise linear interpolation (red dashed
lines) of a function, f(x), using two different sample
sets (red dots).

assume that a piecewise linear interpolation function is used
to obtain an approximation of the function f (black solid
line). We compare the interpolations from two sample sets,
Sample Set I and Sample Set II. Both sets contain 11 samples
but the positions of the samples are different. It is clear that
Sample Set II better approximates the function f(x) when
compared with Sample Set I. Samples from Sample Set I
are evenly spaced, but due to the location of the samples, in
particular the first four points from the left-hand side, the
variation of the function is not sufficiently captured. Sample
Set II is obtained by a left shift of the position of all samples
within (a, b) in Sample Set I and a few other sample reloca-
tions. By doing this, Sample Set II produces a model that
is more representative of the underlying function f(x).

The above example illustrates that the topology of a func-
tion can be better interpolated if the high variation (and
high amplitude) regions of the function are well sampled.
The variation of a function can be measured by its frequency
and amplitude. By amplitude of a function, we mean the dis-
tance from the ‘top of a crest’ or the ‘bottom of a trough’ to
a baseline (or base hyperplane in a space of more than two
dimensions); in the above example, we can consider a line
that horizontally passes thorough the ‘center’ of the function
as the base line which can be estimated by the mean of the



samples. We consider the regions with high frequency and
amplitude as the high variation regions. Therefore, if we can
identify the high variation regions of a function and allocate
more samples there, we can produce better interpolation of
a function.

Using the same line of reasoning we expect that if we dis-
tribute samples so as to capture most of the variations in
decision space, we should be able to obtain a better approx-
imation of the mapping F̃P , defined in (3) and therefore
produce a better estimate of the PF using PE. Specifically,
we break down our method into three parts.

1. Manipulate the current population to identify a model
that maps from the objective space to the decision
space. This process is identical to the PE method, and
can be considered as building a local approximate of
the mapping F̃P using currently available information.
This model is regarded as a local approximate because
the current population may not be close enough to the
actual PF and therefore can only provide partial infor-
mation of the actual mapping. Quality of the local ap-
proximate improves, as the algorithm approaches the
PF.

2. Utilize the local approximate of F̃P to identify the ar-
eas in the decision space that are more ‘important’ for
obtaining better topology of the Pareto optimal solu-
tion set in the decision space. Since F̃P maps P̃ to D,
the domain of the function is the projected space P̃ .
This implies that we have to identify the areas of F̃P

that present more geometrical changes in the decision
space and then find the corresponding regions in the
projected objective space P̃ . This can be achieved by
as follows: first we evenly sample the projected space,
then use these samples and the local estimate of F̃P to
generate new decision vectors, and finally identify the
regions according to certain measure of the geometri-
cal changes (frequency and amplitude) of F̃P . In this
work, we simply use the density of decision vectors as
the measure. Alternative methods will be explored in
future research.

3. Reallocate the position of the samples in the projected
objective space, with more samples presenting in the
areas identified above and generate the corresponding
weighting vectors to the new samples using generalized
decomposition (see Section 4.1).

To have consistently more samples in the identified areas in
successive generations, the change of samples’ locations in P̃
need to be transformed to affect the search of the algorithm.
For decomposition-based algorithm, for instance, we could
transform these changes to alter the direction of correspond-
ing weighting vectors; see next section for an algorithm that
incorporate the above idea into a decomposition based algo-
rithm.

4. MAEA-GD/RD
Decomposition-based multi-objective optimization meth-

ods have steadily increased in popularity in the last decade,
see for example [15, 12, 26]. These methods transform (1)
into a set of single-objective subproblems with the help of
a scalarizing function and a set of weighting vectors. These
subproblems are subsequently solved simultaneously to pro-
duce an approximation of the Pareto optimal set.

4.1 Generalized Decomposition
Given a measure for the quality of distribution of points

on the Pareto front and a scalarizing function, generalized
decomposition (gD) can be used to create a set of weighting
vectors that will result in sub-problems that produce a set
of solutions that are optimally distributed according to the
given measure [10]. The optimality of the resulting distri-
bution is contingent on the convergence of the sub-problems
and knowledge of the Pareto front geometry a-priori to the
solution of the problem. Nevertheless, it has been shown
that when the PF geometry is unknown a-priori, which is
most often the case, assuming an affine PF geometry still
produces results that are several orders of magnitude bet-
ter, in the selected measure, than commonly used alternative
methods [9].

Generalized decomposition obtains weighting vectors by
solving the following program:

min
w

G(w,F(x)),

subject to

k∑

i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k}.

(4)

The assumption in (4) is that G(w,F(x)) is a convex func-
tion with respect to the weighting vectors. This is the case
for all ℓp-norm based scalarizing functions which are most
commonly employed in decomposition-based optimization
algorithms (see for example [16, 14, 18, 26]), a family that
also includes the widely used Chebyshev decomposition as a
limiting case [9].

4.2 MAEA-gD
MAEA-gD is a many objective optimization evolutionary

algorithm based on generalized decomposition introduced
in [10]. MAEA-gD is similar to MOEA/D [26], however,
there are two significant differences, i) the neighborhood is
based on distance in objective space and not weighting vec-
tor space, and, ii) generalized decomposition is used to gen-
erate the weighting vectors, see [10]. The main concepts in
the algorithm are summarized as follows.
Step 1 Initialization

1. Generate N evenly distributed points on the (k−
1)-simplex, where N is the size of population. We
refer to this set as reference PF.

2. Utilize generalized decomposition, (4) to generate
the set of weighting vectors, {w1, . . . ,wN}, using
the reference PF.

3. For each point in the reference PF, find the T
closest weighting vectors. SetA(i) = {i1, . . . , iT },
where wi1 , . . ., wiT are T closest neighbors of wi.

4. Generate an initial population of size N , either
randomly or by a problem-specific method.

Step 2 Update
For i = 1, . . . , N , do
1. Randomly select two indices from the neighbor-

hood A(i) and generate a new population xnew

i

using genetic operators.
2. Evaluate znewi = F(xnew

i ).
3. Update population in the neighborhood A(i).



Step 3 Stopping Criteria
Terminate the algorithm if the stopping criteria are
satisfied. Otherwise go to Step 2. Here we use number
of iterations as the stopping criterion.

Step 4 Output the non-dominated solutions.

4.3 MAEA-gD with Sample Redistribution
By sample redistribution, we mean the reallocation of

samples in the current population in objective space, so that
more samples are present in regions where higher quality
topological information is more likely to be obtained and
used to improve the identification of F̃P . To achieve this, in
the context of a decomposition based algorithm, we choose
to alter the direction of the weighting vectors, which will
guide the algorithm to generate samples in the desirable re-
gions. This change however means that this re-sampling
procedure cannot be performed on every iteration as this
has the potential risk of stalling the algorithm convergence
rate [8]. To minimize the impact to algorithm convergence,
the sample redistribution is performed every K = 10 itera-
tions. Furthermore, this delay also allows the algorithm to
adapt the current solutions towards the new target solutions.

For every K iterations of MAEA-gD, the non-dominated
decision and objective vector sets, D and P , respectively,
are used by the following redistribution algorithm.
Step 1: First, using (2), we normalize P . Subsequently, the

normalized P is projected onto the (k − 1)-simplex.

This results in P̃ = Π−1(P), as described in Sec. 2.2.
In contrast with [7], in this work Π−1 is a radial pro-
jection. Namely, all elements in z̃ = z/‖z‖1, where
‖ · ‖1 is the ℓ1-norm. With this projection the edge
effects observed in [7] are removed and all points on
the PF can be reached.

Step 2: P̃ and D are used as the input and output, respec-
tively, in the training of a RBFNN.

Step 3: Generate N evenly spaced vectors E = {ēi}, ∀i =
1, . . . , N , within the (k − 1)-simplex, as described in
[7]. Here N is the population size.

Step 4: Use E as the input to the RBFNN trained in Step 2
to obtain estimates of decision vectors, DE = {x̄i},∀i =
1, . . . , N .

Step 5: Compute the average distance from one vector to
all others in DE , namely ∀i = 1, . . . , N , compute di =∑N

t=1,t �=i
‖x̄i − x̄t‖2/N , where ‖ · ‖2 is the ℓ2-norm.

Denote the index set B = {bj}, ∀j = 1, . . . , T , where
db1 , . . . , dbT are the T smallest average distances.

Step 6: Utilize the generalized decomposition method [10]
to transform E to weighting vectors W̄ = {w̄i}, ∀i =

1, . . . , N . Set M =
∑T

j=1
dbj and assume the current

set of weighting vectors for MAEA-gD is W. In the
following, we update the weighting vectors.

For j = 1, . . . , T , do
6.1 Compute sj = (M − dbj )/

∑T

t=1
(M − dbt). Here,

sj , is a measure of the relative variation, i.e. the
higher the value of sj , the more variation in the
neighborhood of x̄bj .

6.2 Calculate nj = ⌊N · sj⌋, where ⌊a⌋ means the
largest integer not greater than a. Note that∑T

t=1
nt ≤ N .

6.3 Assume z̃p,∀p = 1, . . . , nj , are the nj closest vec-
tors, in P̃ , of ēbj , wp ∈ W is the weighting vector

corresponding to z̃p, and w̄bj ∈ W̄ to ēbj Up-

date weighting vectors for MAEA-gD by setting
wp = (1−α)wp+αw̄bj , where α is in (0, 1). Here
we choose α = 0.05. A small α value avoids large
changes in the weighting vectors, and, therefore
large changes in the sub-problems. This is aimed
to counter the effect that varying weighting vec-
tors have on algorithm convergence [8].

We refer to the algorithm MAEA-gD with sample redistri-
bution as MAEA-gD/RD.

5. NUMERICAL EXPERIMENTS
In this section, we perform numerical tests to investigate

the potential merit of the proposed methodology. by com-
paring the quality of the Pareto optimal solutions from PE
based on the estimate of optimal decision vectors and objec-
tive vectors generated by algorithms MAEA-gD and MAEA-
gD/RD respectively. Every algorithm is run 50 times, using
a different seed in the random number generator on every
run. The size of the population for both MAEA-gD and
MAEA-gD/RD is 465 and both algorithms have 400 itera-
tions. For each algorithm on every run, the approximation
of the Pareto optimal set is obtained and subsequently PE
is used to generate an estimated PF. For the estimation we
employ the Pareto Estimation Toolbox from [6] and 3240
estimated Pareto optimal solutions are generated. For the
test problems, we choose WFG6-9 [11] with 3 objectives and
24 variables, and DTLZ1-2 [2] with 3 objectives and 10 vari-
ables. To compare the quality of the estimated solutions
obtained using PE from MAEA-gD and MAEA-gd/RD, we
employ the following three measures.

• Inverted Generational Distance (IGD). IGD measures
the distance from elements of one set to the actual PF
of the test problem. In this test, we employ the the
ratio of two IGD values, DR(P̄E , P̂E), defined as the
ratio of the distance from P̄E to the actual PF over that
from the P̂E to the actual PF, where P̄E is the Pareto
estimate generated by PE based on the solutions from
MAEA-gD, and P̂E from MAEA-gD/RD.

• Mean Distance to Nearest Neighbor. This metric mea-
sures the density of the solutions on a PF. Also, we
employ the ratio SR(P̄E , P̂E) in our test, which is the
ratio of the mean distance to the nearest neighbor in
P̄E divided by that in P̂E.

• Coverage Metric (C-Metric). C-metric (ranging from
0 to 1 inclusive) measures the ratio of non-dominated
points between two sets of Pareto solutions, namely
higher value of C(P̄E , P̂E) indicates that P̄E have more

dominating points; higher value of C(P̂E , P̄E) indicates

the opposite. It is worth mentioning that C(P̄E , P̂E)

does not have to equal 1- C(P̂E , P̄E) and so both values
are presented in the test.

For details and mathematical formulation of the three mea-
sures, please refer to [7, Section V].

In Table 1 we summarize the ratios of the IGD values
DR(P̄E, P̂E) and the mean distance to the nearest neighbor

SR(P̄E , P̂E) for the selected 3-objective problems. Values

for DR(P̄E, P̂E) > 1 indicate that P̄E produces a better IGD

value than P̂E, namely P̄E is closer to the actual PF than
P̂E . From the results of DR(P̄E , P̂E) in Table 1, we can see

that, for all 6 test problems, the values of DR(P̄E , P̂E) are
close to or greater than one. This implies that, the the qual-
ity of the estimated PF, P̂E, from the optimal solutions of



MAEA-gD/RD, is at least as good as P̄E from MAEA-gD,
in terms of coverage and the distance to the actual PF. Re-
garding SR(P̄E , P̂E), the value of SR(P̄E , P̂E) > 1 means
that the average distance of the neighboring solutions is
smaller in P̂E compared to P̄E. Since the new fronts from
DR(P̄E, P̂E) have similar coverage, a smaller average dis-

tance to the nearest neighbor in P̂E indicates more evenly
distributed solutions on the estimated PF. It can be seen
by the results in Table 1, that MAEA-gD/RD has superior
performance in comparison to PE applied on MAEA-gD, in
4 out of 6 problems, with only marginally inferior results on
WFG6 and DTLZ2.

In Table 2, we present the values of C-Metric, C(P̄E, P̂E)

and C(P̂E , P̄E), for the selected test problems. C(P̂E , P̄E) >

C(P̄E , P̂E) indicates that larger proportion of solutions in

P̂E dominates the solutions in P̄E; for C(P̂E , P̄E) < C(P̄E , P̂E),
the converse is true. The results suggest that, except for
WFG6, MAEA-gD/RD improves Pareto estimation when
compared with the estimation that results by using MAEA-
gD. The reason for this improvement, although a welcome
byproduct, is still an open question which we plan on investi-
gating further in future work. A potential explanation could
be that when altering the location of samples, our method
implicitly performs local search on a surrogate model of the
inverse of the objective function. Therefore, the updating
procedure we use may also be improving algorithm conver-
gence as on every K iterations a redistribution takes place.

The plots in Fig. (4) show the normalized local density of
the estimated PF from PE for problems WFG7 and DTLZ2.
The density is estimated based on the average distance from
each Pareto optimal solution to its five nearest neighbors
on the PF and is regularized between [0, 1], where 0 is the
smallest relative distance and hence highest density (dens-
est, marked with warm color), and 1 represents the sparest,
marked with color of cooler tones. Higher density translates
to a larger number of Pareto optimal solutions in a neighbor-
hood. It can be observed that the density of Pareto optimal
solutions on the estimated PF obtained from the MAEA-
gD/RD is slightly more uniform across the estimated PF, as
there are fewer color variations when compared with the re-
sults obtained using MAEA-gD. See for example the bright
yellow areas on the edges for both test problems for MAEA-
gD/RD fade and dissolve into their neighborhood compared
with these ares for MAEA-gD. This indicates that the re-
sulting estimated solutions on the PF obtained by MAEA-
gD/RD are more evenly distributed.

In Fig. (3) the final distribution of solutions on the Pareto
front is illustrated for MAEA-gD and MAEA-gD/RD. At

Table 1: DR(P̄E, P̂E) and SR(P̄E , P̂E) values of the
Pareto estimate sets from MAEA-gD, P̄E and
MAEA-gD/RD, P̂E.

DR(P̄E , P̂E) SR(P̄E , P̂E)

Problem min. mean std. min. mean std.

WFG6 0.6865 1.0288 0.1743 0.6163 0.9489 0.1195
WFG7 0.6744 0.979 0.1744 0.9775 1.025 0.0204
WFG8 0.7902 0.989 0.0829 0.9609 1.0087 0.0225
WFG9 0.6315 1.0149 0.1883 0.6756 1.0416 0.207
DTLZ1 0.9338 1.0005 0.0139 0.0061 1.9934 4.5145
DTLZ2 0.225 1.593 1.1893 0.9726 0.9924 0.0106

Pareto Front of DTLZ2 Obtained by MAEA-gD Pareto Front of DTLZ2 Obtained by MAEA-gD/RD

Figure 3: Pareto Front obtained from MAEA-gD
and MAEA-gD/RD on DTLZ2

this point, it could be argued that the distribution of so-
lutions from MAEA-gD/RD is obviously inferior. However,
we argue that this is not in fact the case as better model for
Pareto estimation has been identified using this distribution
(for this problem) of solutions, which in turn can be used to
create any desirable distribution in certain regions or across
the PF. Furthermore, the distribution of the approximated
Pareto optimal set in MAEA-gD/RD gives us information
about the location of regions of high variation. This infor-
mation can be leveraged by the analyst to produce more
robust solutions, for example by requesting points from PE
that are below a certain sensitivity threshold.

6. CONCLUSIONS
PE is a novel method of improving the density of a given

approximate Pareto optimal solutions on the entire PF or
in a specific region in which the DM is interested. In this
paper, we present a method for improving the quality of the
estimated Pareto optimal solutions from PE by allocating
more samples in areas of high variation thus acquiring bet-
ter topological information of the relationship between the
projected objective vectors, P̃ , and decision vectors.

As the performance of PE is contingent upon the quality
of the Pareto set approximation produced by the optimiza-
tion algorithm, in this work, we present an initial numerical
study on the effect that the quality of samples has on the
resulting PE model, F̃P and its performance. Given that in
real world problems the objective function is usually compu-
tationally more expensive than the optimization algorithm,
improvements in the PE model can result in better utiliza-
tion of the available samples, therefore resulting in a more
efficient use of computational resources.

In this work we explored a potential direction for improv-
ing the utilization of the information obtained from a MOEA

Table 2: C-Metric values of the Pareto estimate sets
from MAEA-gD, P̄E and MAEA-gD/RD, P̂E.

C(P̄E , P̂E) C(P̂E, P̄E)

Problem min. mean std. min. mean std.

WFG6 0.0280 0.6023 0.2384 0.0573 0.4378 0.2413
WFG7 0.0004 0.0314 0.0305 0.0240 0.1317 0.0713
WFG8 0.1688 0.4073 0.0941 0.3077 0.4191 0.0661
WFG9 0.2306 0.5378 0.1726 0.2936 0.6942 0.1835
DTLZ1 0.0000 0.2572 0.4138 0.0000 0.4779 0.4931
DTLZ2 0.0000 0.0160 0.0355 0.0000 0.0884 0.0829



from MAEA-gD/RD for DTLZ2

from MAEA-gD for WFG7

from MAEA-gD for DTLZ2

from MAEA-gD/RD for WFG7

Figure 4: Density maps for WFG7 and DTLZ2. The color changes from bright yellow to dark blue as the the
density decreases. Here 0 stands for the smallest distance and therefore highest density, and 1 for the sparsest.

to better estimate the PF using PE. The preliminary numer-
ical results in Sec. 5, i.e. the statistics of three different mea-
sures and also the density plots, suggest that the proposed
method can be useful for the production of better samples
for PE which can be used to create a higher quality model
of the inverse mapping, i.e. the mapping from the objective
space to the decision space.

Nevertheless, despite the apparent superior performance
of the method presented in this work in comparison with the
original version of Pareto estimation [7], there is a number of
open questions that need to be further investigated. As men-
tioned in the introduction real-world problems are usually
multi-objective, and, often more than 3 objectives (many-
objective problems) are involved. However, the scalability
of PE to many-objectives has not been explored. This can
have significant practical implications. Another issue is that
the statistical results suggest that the solutions from PE and
PE with the presented improved sampling strategy seem to

produce superior solutions to the original approximation of
the Pareto front generated from the algorithm. Although
this result is a positive by-product, it should be further in-
vestigated as better understanding of the root cause for this
behavior can suggest currently unforeseen improvements to
PE. Lastly, we envisage that the obtained results could be
further improved by exploring more better techniques for
identifying high variation regions in decision space. These
improvements can also lead to a method for identifying ro-
bust solutions, if the used robustness measures are based on
the sensitivity of the inverse mapping.
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