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ABSTRACT: Over the past 10 years, polyvalent DNA−gold
nanoparticle (DNA−GNP) conjugate has been demonstrated
as an efficient, universal nanocarrier for drug and gene delivery
with high uptake by over 50 different types of primary and
cancer cell lines. A barrier limiting its in vivo effectiveness is
limited resistance to nuclease degradation and nonspecific
interaction with blood serum contents. Herein we show that
terminal PEGylation of the complementary DNA strand
hybridized to a polyvalent DNA−GNP conjugate can
eliminate nonspecific adsorption of serum proteins and greatly
increases its resistance against DNase I-based degradation. The
PEGylated DNA−GNP conjugate still retains a high cell
uptake property, making it an attractive intracellular delivery
nanocarrier for DNA binding reagents. We show that it can be used for successful intracellular delivery of doxorubicin, a widely
used clinical cancer chemotherapeutic drug. Moreover, it can be used for efficient delivery of some cell-membrane-impermeable
reagents such as propidium iodide (a DNA intercalating fluorescent dye currently limited to the use of staining dead cells only)
and a diruthenium complex (a DNA groove binder), for successful staining of live cells.
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■ INTRODUCTION

The polyvalent oligonucleotide−gold nanoparticle (DNA−
GNP) conjugate, first developed by Mirkin et al.,1 has been
demonstrated to be a wonder material for nanotechnology,1

biosensing,2−8 materials science, and medicine over the past
two decades.9−13 It exhibited a number of highly attractive
properties such as low/noncytotoxicity, excellent biocompati-
bility, good stability in high salt biological buffers, improved
resistance against nuclease degradation, and universally high
cell uptake via scavenger receptor-mediated endocytosis
pathways. Such properties made it extremely attractive for
multimodal bioimaging and drug/gene delivery. For example,
the DNA−GNPs have been used for intracellular gene
regulation and siRNA delivery,14−17 displaying impressive
gene silencing efficiencies which are better than some widely
used gene transfection reagents (e.g., lipofectmine).14 More
recently, a RNA-GNP conjugate has shown to be capable of in
vivo RNAi therapy of brain cancer with a mouse model.18,19

The DNA−GNP system has also been exploited for intra-
cellular delivery of small chemotherapeutic drugs.20−24 We have
found recently that a pH-responsive (PR) DNA, which exhibits
a highly reversible, pH-triggered conformational switch
between a four-stranded i-motif and a random coil,25−27 can
be combined with GNP to develop an effective nanocarrier for
doxorubicin (DOX), a widely used clinical cancer chemo-
therapy drug. It allows for effective treatment of cancer at the
cellular level.12 The PR-DNA−GNP displays numerous
features of an “ideal drug nanocarrier” outlined by Langer et
al.28 It can effectively exploit the gradually acidified local pH of
the natural endo/lysosomal maturation/trafficking process to
achieve effective, pH-triggered intracellular drug release.
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Despite significant studies, most of the DNA−GNP systems
reported so far have been based on unmodified DNAs. The
inherent strong negative-charge of the DNA phosphate
backbone can lead to nonspecific interactions with serum
proteins, altering their particle size, charge, and pharmacoki-
netic properties.29,30 This can lead to strong recognition by the
reticuloendothelial system (RES), resulting in rapid removal
from blood circulation. As a result, this can limit its ability to
exploit the enhanced permeation and retention (EPR) effect, a
characteristic pathological property of cancer tumor,28 to
achieve tumor-targeted accumulation and hence compromising
its therapeutic efficacy in vivo. Additionally, although the
stability of DNA against nuclease degradation can be improved
by ∼3 fold after GNP conjugation,31 this may still not be not
good enough to satisfy the challenging in vivo conditions
because of the extensive exposure to various nucleases.
To address the problem of serum protein nonspecific

adsorption, the Mirkin group used a post-treatment of the
formed DNA−GNP with a thiolated poly(ethylene glycol)
(PEG). Despite success, a drawback was a reduced DNA/RNA
loading on the GNP, due to competitive displacement of the
thiolated nucleic acid strands on the GNP surface by the
thiolated PEG passivation molecules. As a result, the number of
functional DNA/RNA strands on each ∼14 nm GNP was
found to be only ∼35,18 a considerable reduction from the
typical ≥100 strands found for nontreated DNA−GNPs.1−12
Herein we report a new PEGylation strategy for the DNA−
GNP via terminal PEGylation of the complementary strand
(MC2). The specific hybridization between the PR-DNA−

GNP and MC2(PEG) then completes the carrier PEGylation
(Figure 1A). An advantage of this strategy over the post-
thiolated PEG treatment is that it yields more functional DNA
strands per GNP (ca. 110 vs 35), making it potentially a more
effective drug or gene nanocarrier. We show that our
PEGylation approach offers complete resistance to nonspecific
adsorption of serum proteins in cell culture media and provides
>10 times higher resistance to DNase I-mediated enzymatic
digestion. Moreover, the PEGylated DNA−GNP nanocarrier
still retains high cell uptake which can be exploited for efficient
delivery of both chemotherapeutic drugs (ca. DOX) and some
cell membrane-impermeable reagents to live cells.

■ RESULTS AND DISCUSSION

Table 1 summarizes the DNA sequences used in this study.
EGm represents uniform, single-length oligo(ethylene glycol,
EG) containing m EG units, while PEGn represents poly-
(ethylene glycol) with mixed length PEGs containing an
average number of n EG repeats. The thiolated pH-responsive
(PR) DNA strand (M1) contains an i-motif domain consisting
of four stretches of cytosine-rich sequences. The i-motif domain
is separated by a 10-consecutive thymine (T10) linker from the
5′-thiol modification to minimize any possible nonspecific
interactions with the GNP after conjugation.12 The MC2
sequence is fully complementary to the M1 i-motif domain
except for two designed mismatches to stop it forming a stable
G-quadruplex. The mismatches are also used to tune the
stability of the resulting double-stranded (ds) DNA structure,
ensuring the ability to form a stable i-motif triggered by the

Figure 1. (A) Schematic procedures of our approach to PEGylated DNA−GNP drug nanocarriers. Thiolated PR-DNA (denoted as M1) was first
loaded onto a citrate-stabilized 14 nm GNP via gold−thiol self-assembly to form GNP−M1, which was then hybridized to complementary MC2
(unmodified, route 1) or PEG-modified MC2s (route 2) to form the GNP−M1/MC2(PEG) carriers. (B) Schematic of MC2(EG12)3 preparation via
the Michael addition between the maleimide-modified three-chain oligo(ethylene glycol) and the MC2-free sulfhydryl group, forming a stable
covalently linked MC2(EG12)3.

Table 1. DNA Abbreviations and Their Sequences Used in This Papera

DNA nameb sequence (5′ → 3′)
M1 (PR-DNA) HS(CH2)6-TTT TTT TTT TCC CTA ACC CTA ACC CTA ACC C
MC2 GTG TTA GGT TTA GGG TTA GGG
MC2(EG6) EG6-GTG TTA GGT TTA GGG TTA GGG
MC2(PEG17) PEG17-GTG TTA GGT TTA GGG TTA GGG
MC2(EG12)3 (EG12)3- GTG TTA GGT TTA GGG TTA GGG

aThe two designed mismatched bases between MC2 and M1 are highlighted in red. bEGm: single-length oligo(ethylene glycol) containing m EG
repeat. PEGn: a mixed length poly(ethylene glycol) with an average number of n EG repeats.
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acidic pH environment of intracellular compartment and to
release the intercalated drugs/reagents as described previ-
ously.12 The GC-rich base pairs in the M1/MC2 duplex also
allow for convenient loading of doxorubicin (DOX), a widely
used clinical cancer chemotherapeutic drug, via its preferred
GC base pair intercalation.24

The MC2 modified with a 5′-terminal six EG unit,
MC2(EG6), is purchased commercially from IBA GmbH
(Germany). The synthesis and characterization of the MC2-
(PEG17), MC2 with a 5′-terminal modification of PEG with an
average of 17 repeat EG units, has been reported in our
previous publication.12 MC2(EG12)3 is synthesized in house by
reaction of a 5′-thiol-modified MC2 with a maleimide-modified,
branched three-chain PEG each containing 12 EG units
[(Methyl-EG12)3-EG4-Maleimide (TMM)] as shown schemati-
cally in Figure 1B. Details of the MC2(EG12)3 characterization
are given in the Supporting Information (SI).
GNP−M1 conjugates with the average M1 strand loading

per GNP of 60, 85, and 110 respectively are prepared by
incubating citrate stabilized GNP (∼14 nm in diameter, see SI,
Figure S1) with 100, 200, and 300 mol equiv of thiolated M1s
followed by salt aging as described previously.12 The resulting
GNP−M1 conjugates are then hybridized to the MC2,
MC2(EG6), MC2(PEG17) or MC2(EG12)3 at a fixed
M1:MC2 molar ratio of 1:1 in a 2-N-morpholino ethanesul-
fonic acid (MES) buffer (50 mM MES, 150 mM NaCl, pH 7.4)
to complete the carrier assembly. Effects of the EG (or PEG)
chain length and number and the GNP surface M1 density on
the carrier’s resistance to nonspecific serum protein adsorption
and DNase I digestion are investigated.
PEGylation Eliminates Nonspecific Adsorption of

Serum Proteins on the DNA−GNP Carrier. The size and
surface properties of a drug carrier are critical to its stability,
pharmacokinetics, and biodistribution in vivo, which in turn
strongly affect its cancer targeting ability and efficacy. For
effective cancer targeting via the EPR effect, a characteristic
pathological condition of many solid tumors, an ideal carrier
size should be greater than the renal clearance threshold (∼8
nm, ensuring long blood half-time)32,33 but smaller than the
average gap of leaky blood vessels of solid tumors (∼100
nm).28,34 The carrier should also minimize the capture by fixed
macrophages in the liver and spleen,35 and have the right
surface properties to avoid being recognized and cleared out of
the body during systemic circulation before reaching the target
tumor.36,37 The carrier should not interact strongly with blood
components to alter its size and surface properties. In this
regard, PEGylation has been shown to be one of the most
effective and widely used strategies.38,39 PEGylation can
provide a flexible, hydrophilic shield to minimize the non-
specific uptake and removal by macrophages. Indeed,
PEGylation has shown to be effective at resisting nonspecific
adsorption of biomolecules on both flat and curved nano-
particle (e.g., magnetic nanoparticle, quantum dot) surfa-
ces.40−43 Therefore, the hydrodynamic diameter (Dh) of the
DNA−GNPs (with ∼110 M1 strands per GNP) in MES buffer
and in Dulbecco’s Modified Eagle Medium (DMEM) cell
culture media with 10% fetal bovine serum (FBS) is measured
by dynamic light scattering (DLS), and the results are shown in
Figure 2.
The un-PEGylated GNP−M1/MC2 displays a Dh of 50 ± 4

nm in MES buffer, while those with various PEG-modifications,
i.e. GNP−M1/MC2(EG6), GNP−M1/MC2(PEG17), and
GNP−M1/MC2-(EG12)3, all show a larger Dh of 55 ± 6, 61

± 8, and 70 ± 5 nm, respectively (Figure 2A). Therefore, the
size of the GNP−DNA carrier gradually increases with the
increasing number of total PEG units grafted to each MC2
strand. This result agrees well with our design that the MC2
strands hybridize to the GNP−M1 to form the GNP−M1/
MC2 carrier, leaving the terminal PEG grafts extending
outward. As a result, the higher the number of the PEG units
grafted on each MC2 strand the bigger the volume it will
occupy and hence the bigger the overall carrier Dh.
In serum-containing media, the Dh of the un-PEGylated

GNP−M1/MC2 is increased significantly (by ∼30 nm) to ∼80
nm, indicating significant adsorption of serum proteins onto the
carrier. This is most likely due to electrostatic adsorption of
some positively charged proteins (or domains) onto such a
strongly negatively charged nanocarrier (Figure 2B). This result
agrees well with those of unmodified DNA−GNPs reported in
earlier literature.29,44 In contrast, the Dh of the PEGylated
GNP−M1/MC2s (except for GNP−M1/MC2(EG6) which
shows a small increase of ∼4 nm) in the cell culture media
shows effectively no changes over those in the MES buffer,
indicating no nonspecific adsorption of serum proteins onto the
PEGylated nanocarriers. This result confirms the success of our
PEGylation strategy for the DNA−GNP system. PEGylation is
a well-established strategy for resisting nonspecific adsorption
of biomolecules on surfaces. It has been widely used to improve
the pharmacokinetic properties and to reduce nonspecific
uptake for therapeutic biomolecules.45,46 In those cases, a few
strands of relatively long PEGs (with molecular weight of ∼5−

Figure 2. (A) Comparison of the hydrodynamic diameter (Dh) of
different GNP−M1/MC2 systems in MES buffer (white bars) and
DMEM cell culture media with 10% FBS (gray bars). (B) Schematic
presentations of the interaction between DNA−GNP and serum
proteins: positively charged serum proteins (or protein domains) may
electrostatically adsorb to the strongly negatively charged DNA−GNP,
leading to a significantly increased Dh. (C) A dense PEG shield on the
PEGylated DNA−GNP can prevent the adsorption of serum proteins,
leading to effectively no change of Dh.
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40 kDa, containing ∼110−900 PEG units each) are conjugated
to each protein to complete the PEGylation. Here we find that
∼110 strands of short PEGs (each containing 17 PEG units)
are sufficient to completely inhibit the nonspecific adsorption of
proteins on such a large (Dh ∼ 50 nm) and strongly negatively
charged DNA−GNP conjugate presumably because many such
short PEGs create a uniform, flexible, neutral, hydrophilic, and
relatively dense shield on the particle outer surface that can
sterically limit the access to the underneath DNAs by serum
proteins to initiate electrostatic adsorption.47−49 As a result, the
sizes of the PEGylated DNA−GNP carriers, particularly those
with a moderate length or branched multichain PEGs, show no
measurable changes after exposure to the serum containing
culture media. This result also agrees well with the earlier
reports that longer PEG chains and higher PEG density can
provide greater shielding efficiency.50−53

PEGylation Improves Carrier Resistance to DNase I
Digestion. In addition to resisting nonspecific adsorption, an
effective drug nanocarrier should have sufficient stability in
vivo. This has been a significant challenge for any DNA-based
drug carriers because of exposure to numerous nucleases under
the in vivo environment that can degrade them rapidly. It has
been reported that a dense DNA packing on the DNA−GNP
can increase the resistance of DNA to nuclease degradation by
∼3 fold, primarily through inhibition of nuclease activity by the
high local salt (counterion) concentration surrounding the
strongly negatively charged DNA−GNP.31 However, the 3-fold
improvement may still not be enough to satisfy the more
challenging in vivo conditions.
To investigate whether our PEGylation strategy can improve

the carrier resistance to nuclease degradation, the dsDNA−
GNPs are treated with a DNA digestive enzyme, DNase I
(Figure 3A). This process is monitored by following a literature
protocol31 but using a different signal readout strategy. Here a
DNA intercalating dye, YO-PRO-1, is used instead of a
covalently attached fluorophore at the end of the comple-

mentary strand.31 Compared to the literature approach, this
strategy has several advantages: First, YO-PRO-1 binds strongly
to dsDNA by intercalation which is very similar to that of
anticancer drug (e.g., DOX) loading. Therefore, the stability of
dsDNA−GNP−YO-PRO-1 against nuclease degradation
should mimic more closely that of the dsDNA−GNP−DOX
system. Second, unlike the covalent labeling strategy where
each DNA strand contains just one fluorophore, multiple YO-
PRO-1 molecules can bind to each dsDNA strand, allowing for
a stronger fluorescence readout signal. Third, unlike DOX
which intercalates preferentially to the GC base pairs,54 YO-
PRO-1 intercalation does not have base pair preference and
takes place throughout the whole dsDNA structure.55 There-
fore, the YO-PRO-1 fluorescence intensity change should
present a better reflection of the whole dsDNA degradation
process than relying on terminal labeling or DOX intercalation.
Finally, free YO-PRO-1 is effectively nonfluorescent. Its
fluorescence intensity is enhanced by >1000 fold after
dsDNA binding. This property allows for unambiguous
differentiation of the DNA-bound and free YO-PRO-1 states
after DNase I digestion.
A series of samples containing the M1/MC2 duplex only,

and GNP−M1/MC2s (with or without PEG modification, with
∼85 M1 strands per GNP) with identical effective final M1/
MC2 strand concentrations (80 nM) and DNA strand loading
per GNP (85) are mixed with YO-PRO-1 (400 nM, M1/
MC2:YO-PRO-1 molar ratio = 1:5) for 10 min before DNase I
(2 U/L) is introduced. The resulting time-dependent
fluorescence intensity change of YO-PRO-1 (λEX/λEM: 491/
509 nm) for each sample is monitored and shown in Figure 3C.
The fluorescence decreases are all normalized by that of the
M1/MC2 duplex only (80 nM) with YO-PRO-1 (400 nM).
The fluorescence intensity changes within the first 30 min for
all samples are approximately linear; hence, the slopes of the
resulting linear fits are used to quantify their relative enzymatic
digestion rates (Figure 3D). As shown in Figure 3C, free M1/

Figure 3. Schematic presentations of the YO-PRO-1 loaded (A) dsDNA and (B) PEGylated dsDNA−GNP systems under treatment of DNase I.
The dsDNA only system is quickly degraded by DNase I, but the PEG-shield on the dsDNA−GNP can provide protection against DNase I
digestion. (C) Normalized time-dependent fluorescence changes for the YO-PRO-1 loaded M1/MC2 and GNP−M1/MC2 (with or without
PEGylation) conjugates after treatment with DNase I. (D) Comparison of initial rate of degradation velocities (%/min) over the first 30 min derived
from C.
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MC2 duplex is rapidly digested by DNase I. The whole
digestion process is complete in ∼50 min with an initial rate of
3.03%/min. In contrast, degradation of the GNP−M1/MC2 is
much slower, with an initial rate of 1.13%/min, ∼1/3 that of
the free duplex DNA alone. This result is in excellent
agreement with an earlier report that the DNA stability against
nuclease degradation can be improved by ∼3 fold upon GNP
conjugation.31 The improved resistance is assigned to a high
local Na+ concentration at the DNA−GNP surface (to balance
its strong negative surface charge) that can inhibit the DNase I
activity.31

All of the PEGylated GNP−M1/MC2 carriers exhibit a
slower degradation rate than the un-PEGylated GNP−M1/
MC2. For single-PEG chain-modified systems, GNP−M1/
MC2(EG6) and GNP−M1/MC2(PEG17), they both show very
similar initial degradation rates of ∼0.70%/min, which is ∼21%
that of the M1/MC2 duplex alone. Significantly, the three-
PEG-chain-modified GNP−M1/MC2(EG12)3 exhibits the
slowest degradation rate, 0.32%/min, which is less than half
that of the single-PEG-chain systems and only ∼1/10 that of
the free M1/MC2 duplex alone. This indicates that
modification of GNP−M1/MC2 with a branched three-chain
PEG greatly enhances its resistance to DNase I-mediated
enzyme degradation.
The enhanced resistance of the PEGylated DNA−GNPs to

DNase I degradation is likely to originate from a combined
effect of steric hindrance and high local Na+ concentration. A
dense PEG “shield” on the dsDNA−GNP outer surface (Figure
3B) can restrict the enzyme access to the underneath DNA
structure, just like their ability to resist nonspecific adsorption
of serum proteins observed above.38,46 These highly flexible,
hydrophilic PEG chains produce a vast number of con-
formations constantly switching from one to another, acting as
a “PEG shield” that can significantly reduce the possibility of
digestive enzymes to reach the underneath objects. Meanwhile,
the dense negative charge of the DNAs underneath the “PEG
shield” still induces a high local Na+ concentration that can
inhibit the activity of any enzymes managed to penetrate the
“PEG shield”. Therefore, all three PEGylated DNA−GNPs
exhibit slower enzymatic degradation rates than the un-
PEGylated GNP−M1/MC2. The GNP−M1/MC2(EG12)3,
which has a surface PEG density three times as high as the
single-chain PEGs, can produce a much denser and hence more
effective steric shield to prevent the access of DNase I to the

DNA structures, leading to the slowest enzymatic degradation
rate.50,56−58

A further insight into the resistance to DNase I degradation
is obtained by examining the effects of the DNA (hence PEG as
each MC2 strand is PEGylated) packing density on the GNP
surface. Figure 4A shows the initial degradation rates of the un-
PEGylated GNP−M1/MC2s with M1 strand loadings of 60,
85, and 110 per GNP, respectively (the M1:MC2 molar ratio is
always maintained at 1:1). It clearly shows that the higher the
DNA strand loading per GNP, the slower the degradation rate.
For example, the initial degradation rate for the conjugate with
110 M1 strands per GNP (1.02%/min) is 46% slower than that
with 60 strands (1.89%/min) and ∼11% slower than that with
85 strands (1.13%/min). This is consistent with the mechanism
that the higher the DNA (negative charge) density, the higher
the local Na+ ion concentration and hence the more effective
inhibition of DNase I activity. A similar trend is also observed
for the three-PEG-chain-modified GNP−M1/MC2(EG12)3
(Figure 4B). The initial rate of degradation is decreased from
0.32 to 0.25%/min as the DNA strand loading is increased from
85 to 110, a reduction of 22%, which is about twice that
observed for the non-PEGylated system (∼11%). This result
indicates that the stability of the PEGylated DNA−GNP
against DNase I digestion can be further enhanced by
increasing the GNP surface DNA loading. The combined
effect of high DNA density (hence high local Na+ concentration
for inhibiting DNase activity) and PEGylation (steric restriction
of DNase access to underneath DNA structure) makes it more
resistant to DNase degradation. This result thus provides useful
guidance toward the design of highly stable DNA−GNP-based
drug nanocarriers.

GNP−M1/MC2(EG12)3 for Intracellular Delivery of DNA
Binding Reagents. The excellent resistance of the GNP−
M1/MC2(EG12)3 against serum protein adsorption and DNase
I degradation makes it highly attractive for drug delivery. We
have previously shown that the GNP−M1/MC2 can be used
for efficient delivery and pH-responsive release of DOX inside
cancer cells, leading to high cytotoxicity.12 Here we report that
the GNP−M1/MC2(EG12)3 can deliver not only DOX (a
widely used clinical anticancer drug for treating bladder, breast,
stomach, lung, ovaries, thyroid, soft tissue sarcoma, multiple
myeloma, some leukemias, and Hodgkin’s lymphoma, Figure
5B) but also propidium iodide (PI), a cell membrane-
impermeable fluorescent dye, to live human cervical cancer
cells (HeLa cells). PI is widely used to stain dead cells but not

Figure 4. (A) Comparison of initial degradation rates for M1/MC2 duplex and un-PEGylated GNP−M1/MC2s at different DNA loadings per GNP.
(B) Time-dependent fluorescence intensity changes of the GNP−M1/MC2(EG12)3 at M1 strand loadings of 85 (black dots) and 110 (red triangles)
per GNP.
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live cells. As shown in Figure 5C, live HeLa cells are clearly
stained by PI after exposure to PI mixed with the DNA−GNP
nanocarrier. The DNA−GNPs have been previously reported
to be internalized by cells mainly via the scavenger receptor-
mediated endocytosis route.30 As a result, they should be
mainly located in intracellular endosomes or lysosomes.
Transmission electron microscopy (TEM) analysis of HeLa
cells after incubation with the GNP−M1/MC2(EG12)3 for 3 h
reveals that this is indeed the case. The GNPs are found to be
exclusively located in endo/lysosomal-like intracellular com-
partments (Figure 5A), suggesting that modification of the
GNP−M1/MC2 with the three-chain-PEG does not alter its
cell uptake pathway. Therefore, its intracellular delivery
mechanism is likely to be as follows: after cell uptake, the
gradual acidification of the local environment following the
natural endosomal maturation process (the local pH in late
endosome or lysosome can be as low as 4.3)59 will trigger the
formation of intramolecular i-motifs, leading to release of the
intercalated PI molecules into the cytoplasm. The released PI
molecules can then diffuse into the nucleus, staining live HeLa
cells with a strong red fluorescence as shown in Figure 5C.
Besides the ability of delivering PI molecules to live cells, the

GNP−M1/MC2(EG12)3 also shows significantly higher
stability in vitro than the un-PEGylated GNP−M1/MC2. For
example, it shows no observable aggregation or change of
physical appearance for at least 24 h even after exposure to
excess free PI or DOX molecules in solution, whereas the un-
PEGylated GNP−M1/MC2 is found to have aggregated and
precipitated out of the solution under such conditions. The
greatly improved stability of the GNP−M1/MC2(EG12)3 is
most likely due to the dense branched EG chains on its outer
surface that can provide a sufficient hydrophilic physical barrier

to prevent DNA−GNP aggregation resulting from the PI/DOX
intercalation-induced DNA charge neutralization (both PI and
DOX molecules are positively charged). In contrast, the un-
PEGylated GNP−M1/MC2 is mainly stabilized by electrostatic
repulsion among such negatively charged nanoparticles. It
aggregates readily and precipitates out of solution once its
negative charges are neutralized.
To demonstrate the general use of the GNP−M1/MC2-

(EG12)3 for intracellular delivery of other types of DNA binding
agents, we have further employed it to deliver a fluorescent
diruthenium(II) complex, [(bpy)2Ru(tpphz)Ru(bpy)2]

4+, de-
noted as BPY (Figure 6A). Unlike DOX and PI molecules

which bind to DNA mainly through intercalation, BPY is a
DNA groove binder.60 BPY has been shown to be impermeable
to live cell membranes and therefore cannot enter cells on its
own.60 This property is further confirmed from our results
shown in Figure 6B: 3 h incubation of free BPY with HeLa cells
produces negligible BPY fluorescence inside the cells,
suggesting no significant cell uptake. In contrast, incubation
of HeLa cells with the BPY mixed with the GNP−M1/
MC2(EG12)3 for 3 h yields strong BPY fluorescence inside
HeLa cells, suggesting that the GNP−M1/MC2(EG12)3 can
effectively carry the BPY molecules and successfully deliver
them into live HeLa cells. Together, these results demonstrate
that the GNP−M1/MC2(EG12)3 reported herein has great
potential for intracellular delivery of a wide range of DNA-
intercalating agents. Its excellent stability and resistance against
nonspecific adsorption and enzymatic degradation, together
with high cell uptake, should make it an effective nanocarrier

Figure 5. (A) A representative TEM image of HeLa cells after
incubation with the GNP−M1/MC2(EG12)3 for 3 h at 37 °C, scale bar
= 1 μm. (B) Confocal phase contrast (left), fluorescence (middle), and
merged optical/fluorescence (right) images of HeLa cells after
incubation with GNP−M1/MC2(EG12)3−DOX for 1.5 h at 37 °C,
scale bar = 25 μm. (C) Confocal phase contrast (left), fluorescence
(middle), and merged optical/fluorescence (right) images of HeLa
cells after incubation with GNP−M1/MC2(EG12)3−PI for 3 h at 37
°C, scale bar = 25 μm.

Figure 6. Delivery of a cell-membrane-impermeable diruthenium
complex to live cancer cells by using the GNP−M1/MC2(EG12)3. (A)
Chemical structure of the diruthenium(II) complex, BPY. (B)
Confocal phase contrast (left), fluorescence (middle), and merged
optical/fluorescence images (right) of HeLa cells after treatment with
the BPY for 3 h at 37 °C. (C) Confocal phase contrast (left),
fluorescence (middle), and merged optical/fluorescence (right) images
of HeLa cells after incubation with GNP−M1/MC2(EG12)3−BPY for
3 h at 37 °C.
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for intracellular delivery of any DNA-binding/intercalating
reagents. Given a large number of drug molecules and metal
complexes are known to be DNA-binders,61 the robust,
versatile PEGylated DNA−GNP nanocarrier reported herein
should have broad applications in bioimaging, drug delivery,
and therapeutics, possibly even at the in vivo level.

■ CONCLUSIONS
In summary, we have developed an effective PEGylation
approach for polyvalent DNA−GNPs by terminal PEGylation
of the complementary DNA strand. Hybridization of the
PEGylated MC2s to the GNP−M1 conjugates produces a
dense PEG “shield” on the carrier surface that can efficiently
mask the strong negative charges, providing high resistance to
nonspecific adsorption of serum proteins and greatly improved
stability against enzymatic degradation. Particularly, the three-
chain PEG-modified DNA−GNP nanocarrier is completely
resistant to nonspecific adsorption of serum proteins and
displaying >10-fold higher stability against DNase I-based
enzymatic digestion over the corresponding dsDNA alone. Its
stability may be further improved by increasing the PEG length,
the number of PEG branches, and/or the GNP surface DNA
density. Importantly, the PEGylated DNA−GNP still retains
high cell uptake property. It can be used as a general, efficient
intracellular delivery nanocarrier for a wide range of DNA-
binding/intercalating reagents, including those which are cell-
membrane impermeable on their own. Such stable and highly
resistant DNA−GNP nanocarriers should have broad applica-
tions in bioimaging, drug delivery, and therapeutics.

■ EXPERIMENTAL SECTION
Materials. Hydrogen tetrachloroaurate (III) hydrate, 99.9%

(metals basis), and 2-(N-morpholino)ethanesulfonic acid monohy-
drate (MES, 98%) were purchased from Alfa Aesar (UK). Tris-sodium
citrate (99%), HCl (36%), HNO3 (70%), NaOH, NaCl (99.99%), and
doxorubicin hydrochloride were purchased from Fisher Scientific UK
limited (Milton Keynes, UK). DMEM (Dulbecco’s Modified Eagle’s
Medium), PBS (phosphate buffered saline), MTT (3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide), FBS (fetal bovine
serum), and penicillin−streptomycin (10 000 units/mL penicillin, 10
mg/mL streptomycin), and anhydrous DMSO (≥99.7%) were all
purchased from Sigma-Aldrich UK limited (Dorset, UK). High purity
deionized water (resistance >18.2 MΩ·cm), purified by an ELGA
Purelab classic UVF system, was used for all experiments and for
making buffers. All buffers were filtered through a Whatman syringe
filter (0.20 μm pore size, Whatman Plc.) before use. HPLC-purified
DNA oligos, MC2, MC2-SH, and MC2(EG6) were purchased
commercially from IBA GmbH (Göttingen, Germany). MC2(PEG17)
was prepared in house, and its preparation and characterization details
have been described in our recent paper.12 (Methyl-EG12)3-EG4-
maleimide (TMM) was purchased from Thermo Scientific (UK). YO-
PRO-1 was purchased from Life Technologies (UK). DNase I (1 U/
μL) was purchased from Fisher Bio Reagents (Milton Keynes, UK).
All chemicals and reagents were used as received unless otherwise
stated.
Preparation of Gold Nanoparticle. HAuCl4 (80 mg) was

dissolved in 200 mL of ultrapure water. The solution was then
transferred to a freshly cleaned 250 mL three-necked flask and heated
to reflux in an oil bath under magnetic stirring. When the solution
began to reflux, an aqueous solution of trisodium citrate (228 mg in 20
mL water) was quickly added and the resulting solution was
continuously refluxed. The color of the solution changed from yellow
to deep red in ∼1 min. After refluxing for another 50 min, a stable
deep red solution was obtained. The heating bath was then removed,
and the solution was allowed to cool to room temperature naturally.
The prepared GNP solution was transferred to a clean glass container

and stored at room temperature. This produced a ∼14 nm GNP stock
(as confirmed by TEM imaging see, Figure S1 in the SI) with a
concentration of ca. 15 nM.

Preparation of MC2(EG12)3. A 100 nmol amount of MC2-SH was
dissolved in 1 mL of freshly filtered (Whatman syringe filter with 0.22
μm pore size) MES buffer (50 mM MES, 0.15 M NaCl, pH 7.4) to
make a 100 μM stock. TMM was dissolved in anhydrous DMSO to
make a TMM stock solution of 40 mM. A 0.5 mL amount of the MC2-
SH stock solution (50 nmol) was then mixed with 50 μL of TMM
stock (the molar ratio of MC2-SH:TMM = 1:40) to ensure high DNA
conversion. The resulting solution was allowed to stand overnight at
room temperature to form MC2(EG12)3 via Michael addition between
the DNA thiol group and the maleimide group in TMP (see Figure
1B).

Both RP-HPLC analysis and purification of MC2(EG12)3 were
performed on a Gynkotek HPLC Instrument at room temperature
using a Phenomenex C18 column (4.6 × 250 mm, 5 μm) with mobile
phase consisting of TEAA buffer (A) and acetonitrile (B). UV
absorbance was monitored by a Gynkotek (UVD 340S) detector at
260 nm. The solvent gradient used for analysis and purification of the
MC2(EG12)3 was 10−70% (B) over 30 min. The resulting HPLC
eluting profiles for MC2-SH and MC2(EG12)3 were shown in SI,
Figures S2 and S3, respectively. The fractions containing the purified
MC2(EG12)3 were combined, lyophilized, and stored at −20 °C until
use. Its identity was confirmed by matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS) (see
SI, Figure S4).

Preparation of PEGylated DNA−GNPs. The DNA−GNPs were
prepared by following our previously established procedures. Briefly, a
batch of three 2.2 mL GNP stock solutions (15 nM) obtained above
were mixed with 33, 66, and 100 μL of DNA M1 aqueous stock
solution (100 μM) overnight (GNP:M1 molar ratios = 1:100; 1:200;
1:300, respectively). The resulting solutions were then salt-aged (0.30
M NaCl) overnight. The samples were then centrifuged at 14800 rpm
for 60 min to remove any unconjugated free DNAs that remained in
the supernatant, yielding the GNP−M1 as an oily pellet that could be
rapidly redispersed in water. The amounts of unbound free DNAs in
the clear supernatants were determined as 13.2, 38, and 62.7 pmol by
monitoring the UV absorption at 260 nm using an extinction
coefficient of εM1 = 2.65 × 105 cm−1 M−1. The amounts of DNA
conjugated onto the GNP were thus determined as 19.8, 28, and 37.3,
nmol, respectively. Given 0.33 pmol of GNP was used for each sample,
the M1 strand loading per GNP was thus determined as 60, 85, and
110, respectively, for the above samples.12 Afterward, the comple-
mentary MC2 strands (MC2, MC2(EG6), MC2(PEG17), or MC2-
(EG12)3) were added to the GNP−M1 (under a fixed M1:MC2 molar
ratio of 1:1) and were allowed to hybridize in an MES buffer for 1 h to
make GNP−M1/MC2, GNP−M1/MC2(EG6), GNP−M1/MC2-
(PEG17), and GNP−M1/MC2(EG12)3 nanocarriers.

Dynamic Light Scattering (DLS) Measurement. The hydro-
dynamic diameter (Dh) of the DNA−GNP (with M1 strand loading of
110 per GNP) was measured in both MES buffer (pH 7.4) and in
complete DMEM media with 10% FBS. Briefly, 30 μL of the dsDNA−
GNP stock solution (0.46 μM GNP) was mixed with 1.2 mL of MES
buffer or complete DMEM and then filtered through a Whatman
syringe filter (0.22 μm pore size). After 3 h, their Dh was measured on
a Brookhaven Instruments Corp. BI-200SM laser light scattering
goniometer with a BI-APD detector, using a He−Ne laser at 633 nm
(scattering angle: 90°).12

DNase I Digestion Experiments. The dsDNA−GNP samples
were mixed with YO-PRO-1 and then diluted to 200 μL with the
enzyme working buffer (10 mM Tris-HCl, 2.5 mM MgCl2, and 0.5
mM CaCl2, pH 7.5) to give a final concentration of 80 nM for the
dsDNA and 400 nM for YO-PRO-1. After 10 min equilibration at 37
°C, the DNase I was added to yield a final DNase I concentration of 2
U/L. The resulting fluorescence intensity change for each sample was
measured on a fluorescence plate reader every 90 s for 3 h (λEX = 491
nm; λEM = 509 nm) and normalized against that of YO-PRO-1 +
dsDNA sample.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.5b05228
ACS Appl. Mater. Interfaces 2015, 7, 18707−18716

18713

http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05228/suppl_file/am5b05228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05228/suppl_file/am5b05228_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.5b05228/suppl_file/am5b05228_si_001.pdf
http://dx.doi.org/10.1021/acsami.5b05228


GNP−M1/MC2(EG12)3 for PI Delivery. All confocal fluorescence
imaging were carried out on a Leica TCS SP5 confocal laser scanning
microscope with a fixed excitation wavelength of (λEX) of 488 nm. The
GNP−M1 conjugate was mixed with MC2(EG12)3 (M1:MC2(EG12)3
molar ratio = 1:1) in an MES buffer (pH 7.4) and hybridized for 3 h to
make a GNP−M1/MC2(EG12)3 carrier. The PI stock solution (1 mg/
mL in water) was then added to form the GNP−M1/MC2(EG12)3−PI
system (M1:PI molar ratio = 1:6). An amount of 105 HeLa cells per
well was seeded in a 24-well plate, incubated overnight, and then
treated with the GNP−M1/MC2(EG12)3−PI (containing 10 μM PI)
for 3 h. The spent medium was removed, and the cells were washed
with PBS three times before being imaged on a confocal laser scanning
microscope, using 488 nm excitation and fluorescence detection over
600−630 nm.
Delivery of DOX. The DOX stock solution (500 μM) was mixed

with GNP−M1/MC2-(EG12)3 to form the GNP−M1/MC2(EG12)3−
DOX system (M1:DOX molar ratio = 1:3). An amount of 105 HeLa
cells per well was seeded in a 24-well plate, incubated overnight, and
then treated with the GNP−M1/MC2-(EG12)3−DOX (containing 5
μM DOX) for 1.5 h. The spent medium was then removed, and the
cells were washed with PBS three times. They were then imaged on a
confocal laser scanning microscope using 488 nm excitation and
fluorescence detection over 580−600 nm.
Delivery of Diruthenium(II) Complex, BPY. BPY was dissolved

in water and mixed with GNP−M1/MC2-(EG12)3 to prepare GNP−
M1/MC2-(EG12)3−BPY (the molar ratio of M1 to BPY is 1:9). The
HeLa cells treated with GNP−M1/MC2-(EG12)3−BPY (containing
30 μM BPY) for 3 h. The spent medium was then removed, and the
cells were washed with PBS three times as above. The cells were then
imaged by confocal laser scanning microscopy using 488 nm excitation
and fluorescence detection over 630−670 nm.
Transmission Electron Microscopy. An amount of 5 × 105

HeLa cells per well was seeded in six-well plates and incubated
overnight at 37 °C. The cells were treated with the GNP−M1/
MC2(EG)3 nanocarrier in media for 3 h at 37 °C. After washing with
PBS, the cells were detached and centrifuged. The cell pellets were
fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer for 2.5 h,
dehydrated using an ascending alcohol series (20, 40, 60, 80, and 100%
twice) for 20 min for each change, and embedded in Araldite resin at
65 °C overnight. A 70 nm section was placed on a TEM grid and
stained with saturated uranyl acetate and 0.2% Reynolds lead citrate
before TEM imaging.12
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