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Abstract: While Data Envelopment Analysis (DEA) has many attractions as a 

technique for analysing the efficiency of educational organisations, such as schools 

and universities, care must be taken in its use whenever its assumption of convexity 

of the prevailing technology and associated production possibility set may not hold. 

In particular, if the convexity assumption does not hold, DEA may overstate the 

scope for improvements in technical efficiency through proportional increases in all 

educational outputs and understate the importance of improvements in allocative 

efficiency from changing the educational output mix. The paper therefore examines 

conditions under which the convexity assumption is not guaranteed, particularly 

when the performance evaluation includes measures related to the assessed quality 

of the educational outputs. Under such conditions, there is a need to deploy other 

educational efficiency assessment tools, including an alternative non-parametric 

output-orientated technique and a more explicit valuation function for educational 

outputs, in order to estimate the shape of the efficiency frontier and  both technical 

and allocative efficiency.   
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1. Introduction 

One of the most widely used techniques for analysing the efficiency of non-profit organisations in 

education and elsewhere is that of Data Envelopment Analysis (DEA) (see Emrouznejad et al, 2008; 

Johnes, 2015; De Witte and Lopez-Torres, 2015). In this context, DEA has many advantages through its 

ability to incorporate multiple outputs and multiple inputs into its determination of the efficiency 

scores of educational decision-making units (EDMUs), such as schools and universities. As a non-

parametric frontier estimation technique, DEA also has the advantage of not requiring the prior 

specification of a specific functional form for the educational production function between educational 

inputs and outputs that maps out the frontier of the associated feasible set. However, an important 

assumption on which the conclusions of the standard models of DEA rest is that the technology, and 

associated production possibility set, is convex. In this paper we argue that care must be taken when 

this assumption may not be valid for many potential applications of DEA to assess educational 

efficiency. In Section 2, we examine how non-fulfilment of the convexity condition may lead to 

misleading conclusions on both the technical and the allocative efficiency of EDMUs. In Sections 3 - 5, 

we examine why the use of educational data in particular may lead to non-convexity. In Section 6, we 

examine the implications for efficiency assessments of not requiring the convexity assumption. Section 

7 contains our conclusions.   

 

2. The importance of the convexity assumption  

The role of the convexity assumption in DEA’s efficiency assessment can be seen most clearly in the 

output-orientated form of DEA developed by Banker et al (1984), which may be expressed in terms of 

the linear program: 

         1max . . , 0, 1, ( ,..., ) 0, (1,...,1) 'j j j j ns t X X Q Q e e                                        (1) 
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where jX  and  jQ  are the input and output vectors respectively of  the EDMU j , with 1( ,..., ) 'nX X X

 and 1( ,..., ) 'nQ Q Q  from our sample of  n  individual EDMUs. (1) involves seeking the maximum 

possible proportional expansion j in the existing output vector 1( ,..., )j j jQ Q Q   of  EDMU j ’s    

different outputs from its existing input vector jX  based upon a comparison with a hypothetical EDMU. 

This is assumed to have an input vector that is a convex combination   of the input vectors of the 

actual EDMUs in the sample and an output vector that is the same convex combination   of the output 

vectors of the actual EDMUs in the sample. However, unless the feasible production possibility set is 

itself convex, there is no guarantee that this input-output combination of such a hypothetical EDMU, on 

which DEA’s estimate of j and its associated efficiency assessments are based, will actually be feasible. 

Moreover, as Halme et al (2014) note, managers may find such a hypothetical comparison unconvincing.  

         

      Output Q j1 

 

 

 

 

 

 

 

 

                                       Figure 1 A non-convex educational output possibility set 

 

Figure 1 illustrates a case in which the actual feasible set is non-convex, with a frontier given by the 

curve ABEFH between two educational outputs, with the level of inputs held constant in this simple 
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strictly inside the feasible frontier ABEFH. The output-orientated form of DEA would compare the point 

J with a convex combination N of the feasible points B and F which are achieved here by other EDMUs 

in the observed sample, and where N lies on the same ray though the origin as point J. 

The associated value of the coefficient of technical efficiency, TD , of point J under DEA is OJ / ON . 

However, when the feasible set is non-convex, as in Figure 1, the point N may itself not be a feasible 

output vector. Instead, the true measure of technical efficiency, defined in terms of the proportional 

shortfall of its current output vector J compared to the maximum feasible proportional expansion in 

this output vector J at point E, would be here TT OJ / OE  , which is strictly greater than DEA’s 

coefficient of technical efficiency, TD , OJ / ON . Even if it optimised a non-linear objective function 

with an indifference curve tangential at E in Figure 1, an EDMU that was actually on the efficient 

frontier at point E would erroneously be given by DEA a technical efficiency score of less than one, with 

an implied target for improvement at N that was not actually feasible, despite N having a potentially 

higher value than E under a linear objective function, such as a fixed-price revenue function. 

While published DEA studies in education and elsewhere have concentrated predominantly on the 

assessment of technical efficiency, an important further direction in which DEA may yield biased 

efficiency assessments in the presence of non-convexity is in its assessment of allocative efficiency. 

Rather than focussing upon simply proportional improvements in the existing output vector, the 

concept of allocative efficiency seeks to assess which further improvements are feasible by changing 

the existing proportions in which the educational outputs are produced. One reason that output 

allocative efficiency has received much less attention in the educational literature than technical 

efficiency is that there are typically no simple market prices for the different educational outputs 

which an EDMU might produce. However, progress can be made in the assessment of the important 

issue of allocative efficiency if a valuation function of the form ( )jV Q  can be deployed to evaluate the 
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relative value placed upon the different educational outputs. One useful property of such a valuation 

function in the context of allocative efficiency assessment is that of homotheticity (see Henderson and 

Quandt, 1980, p. 40), which implies that its iso-valuation curves are those generated by a valuation 

function which is homogeneous of degree one in the elements of the educational output vector jQ . 

This in turn means that a relevant true measure of the allocative efficiency of the output vector J in 

Figure 1 is given by ( )AT OE / OM  , where M is the point on the ray through the origin on which J 

lies where it intersects the EDMU’s actual iso-valuation curve, * *
i iV V  , that is assumed to be tangential 

to the feasible set at point B in Figure 1.  The inverse of AT , i.e. OM / OE , then provides a measure of 

the further improvements which can be made according to the homogeneous valuation function by 

changing the educational output mix, beyond those which can be achieved by improving its technical 

efficiency along the ray OE  holding its existing output mix constant.  

That DEA may overstate the existing allocative efficiency of the educational outputs of an EDMU in the 

presence of non-convexity is also illustrated in Figure 1, with DEA’s measure of allocative efficiency 

given here by the ratio ( )AD ON / OM  . We then have: 

                           1 1( ) < ( )AT AD AT AT AD ADOE / OM ON / OM with                                              (2) 

with DEA’s assessment, AD , understating the true scope, AT , for improvements in the value of 

educational outputs from changing the educational output mix from that along the ray OE  to that at 

point B in Figure 1. That questions of output allocative efficiency and improving the educational output 

mix become more important in the presence of non-convexities than DEA recognises is consistent with 

the heightened need for educational institutions to make efficient choices regarding the mix of their 

educational outputs when there are sources of non-convexity in the production of such outputs.  
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3. Sources of non-convexity 

In his seminar paper that led on to the development of DEA, Farrell (1957) acknowledged that “the 

whole method is based on the assumption of convexity”.  Yet, as Farrell (1959) himself stressed, “in the 

real world the relevant functions are often not convex” due to features such as indivisibilities and 

economies of scale. Scarf (1981) also stressed the need to acknowledge the existence of increasing 

returns to scale “which are implied by indivisibilites and other forms of nonconvexities in production”. 

Moreover, Eaton and Lipsey (1997) have argued that “the mere existence of capital goods implied a 

fundamental nonconvexity in cost as a function of the stock of services embodied in an indivisible 

capital good, and therefore in the underlying production possibility set” and that “the non-convexities 

that arise from the once-and-for-all non-rivalrous nature of knowledge are pervasive and important”. 

The non-rival nature of knowledge may indeed interact with the existence of capital goods in the case 

of higher education, if larger libraries and larger lecture theatres are able to benefit from economies of 

scale due to indivisibilities in a given range of library services and lecturer inputs. As well as knowledge 

once created and understood potentially exhibiting non-convexities in its wider use, the processes of 

creating knowledge through research, and of understanding it sufficiently to teach it well, may also 

involve non-convexities in the input-output space due to gains from specialisation in the development 

of the required human capital inputs. Productive research typically requires a high level of 

specialisation in reaching the frontiers of current knowledge and in developing the skills to make new 

contributions. Competition between research teams itself tends to push out the frontiers of knowledge 

and make more difficult the production of new contributions without greater inputs and more 

specialisation in increasingly technical directions. High quality teaching requires keeping up with 

specialist subjects, and their relation to other relevant issues, that are themselves changing over time.  

The existence of such gains from specialisation implies non-convexity of the relationship between 

inputs and the efficient feasible output in any given quality direction. However, this in turn may have 
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wider implications for non-convexity of the output possibility set defined by ( ) { ( ) }P x y : x, y T 

where T  denotes the technology (i.e. the set of all technologically feasible input, output vectors) 

under which the EDMU operates. In our current context, the output vector ( )y m,q  includes the 

vector m of relevant quantities, such as student numbers at different stages of the educational process 

in a given institution, and the vector q  of the EDMU’s recorded quality achievements. For the sake of 

simplicity we will assume initially a single real resource input, whose total usage is held constant at 

some level 0x  in defining our output possibility set but whose allocation across different educational 

activities within the EDMU can be varied to change the educational output mix. We can then 

investigate the feasible output possibility set associated with a given total input 0x  given by: 

                                     0 0 0( ) {( ) ( ) ( ) 0}P x q,m : f q,m,x x r q,m                                                                (3) 

where 0( ) 0f q,m,x   defines an implicit multiple-output educational production function that maps 

out the production possibility frontier (PPF) for any given value of 0x , and which we assume can be 

decomposed into 0x  minus a function ( )r q,m  that defines how the total resource input requirement 

varies with the quality vector q  and the quantity vector m . Since the performance of educational 

institutions, such as schools and universities, is increasingly judged on the basis of the quality of their 

educational output, of particular interest is the shape of the quality frontier, holding m and 0x

constant. Even under the traditional assumption of microeconomics (see e.g. Henderson and Quandt, 

1980) of differentiability of the production function, in which the slope of the PPF at any given point on 

the quality frontier corresponds to its marginal rate of product transformation ( )kh k hdq / dq    

between any two relevant quality scores holding constant 0m,x and any other elements of q , a 

necessary condition (see Arrow and Enthoven, 1961) for convexity of 0( )P x  is that kh  is non-

decreasing as hq  is increased along the PPF, and hence that: 
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            2 2( ) ( 2 ( ) ( )) 0kh kh h hh kh h k kk h k k k k kh k hd / dq r r r / r r r / r / r where r r / q ,r r / q etc               (4) 

and where we assume that 0kr   and 0hr  . Condition (4) in turn requires that: 

                                                          ( ) 0.5[( ( ) ( ))]kh kk h k hh k jr r r / r r r / r                                                                    (5) 

When we include the quality of educational output within our efficiency analysis, we might indeed 

expect there to be increasing quality gains from specialisation and a greater focus of resources in 

particular directions, which would imply here that 0kkr   and 0hhr  . The necessary condition (5) for 

convexity of the feasible set 0P x( )  then requires that any such gains from specialisation are offset by 

sufficiently large gains from the economies of scope associated with the cost complementarities (see 

Baumol et al, 1982, pp. 74-5) that negative khr terms in (5) reflect. Thus, it may be the case in universities 

that high quality research does indeed help to inspire high quality teaching, and that additional time 

spent teaching and preparing for teaching does generate some ideas for improved research activity, so 

that such production complementarities may well exist. However, the convexity condition (5) requires 

not simply that they exist but rather that they are sufficiently strong to offset the opportunity costs of 

the lost gains from specialisation due to a greater spreading of resources more thinly between the two 

activities. Whether or not this is the case is essentially an empirical question, rather than one which 

should assumed to be necessarily true, in the way the convexity assumption of DEA requires. Empirical 

evidence for a lack of any positive relationship between research and teaching quality is indeed claimed 

by Ramsden and Moses (1992). Similarly Marsh and Hattie (2002) conclude that “in contrast to the 

academic myth that research productivity and teaching effectiveness are complementary constructs, 

results of the present investigation – coupled with the findings of the Hattie and Marsh (1996) meta-

analysis– provide strong support for the typical finding that the teaching-research relation is close to 

zero”.  De Witte et al (2013) conclude that “once teaching time exceeds 20%, further increases in 
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teaching duties seem to harm the overall academic performance. On the other hand, we observe that 

specialization in teaching and research correlates with better academic performance”.   

A breach of condition (5) also undermines the relevance of time divisibility that is used by Shephard 

(1970, p. 15) and Hackman (2008, p. 39) to justify convexity of the input possibility sets ( )L y , of all the 

input vectors x  that can produce at least as much output as the non-negative vector y , since spreading 

the available time input more evenly between two outputs undermines the gains from specialisation in 

a way that is not made up for by substantial production complementarities, even in the absence of any 

switching costs to move from one activity to another. Moreover, the associated cost function 

( ) { ( )}C y,w min wx : x L y  , where w  is the input price vector for a general 0 -dimensional input 

vector x, is shown by Jacobsen (1970, p. 770) to be convex in the (  - dimensional) output vector y  if 

and only if the available technology 0{( ) x ( )}T x, y | y P x 
      is itself convex. Non-convexity of T  

then implies non-convexity of the cost function in the output vector. In addition, Briec et al (2004) have 

shown that “in general, convex cost functions are never higher than non-convex cost functions” except 

in the case of a single output and constant returns to scale, so that “imposing convex cost targets may 

be excessively demanding when convexity is doubtful”. 

One multiple-output parametric production function that yields a non-convex output possibility set, and 

which can include both output quantity and quality variables, is that of the Cobb-Douglas form: 

                    
01 2

1 1 1
/ ( / )k

k kh k h h k k h
k
q m A x and hence ( dq dq )= q q

 
  




  
  

     



                                    (6) 

where 1 20, 0   , 0h  and 0k  , with kh  decreasing as hq increases and kq  decreases along the 

PPF. The scope for its use to estimate the effectiveness of educational providers using a generalised 

form of Stochastic Frontier Analysis and a CES-valuation function for their outputs to assess allocative 
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efficiency is discussed in Mayston (2015). A parametric production or cost function which provides a test 

of whether convexity does prevail is provided by the constant elasticity of transformation (CET) function: 

                                            1

1
( ) 0h( j ) /

o h jh h
h

r a a y where a


 



                                                                          (7) 

used by Hasenkamp (1976a,b) for the case 0o ha ,    for 1h ,..., , and for which he found that the 

convexity condition of 1   failed to hold in his study of US railroad data. It is notable that a cross-

section study by Izadi et al (2002) of the cost function of 99 UK universities using the above CET function 

also yielded estimates of the h  parameters strictly between zero and one, implying a non-convex iso-

cost output possibility set, as in Baumol et al (1982, p. 461). There is therefore a need to allow for the 

possibility of non-convexity both in parametric and non-parametric applied production analysis. 

 

4. Assessing educational quality  

An important feature of the available data on the quality of educational output for schools and 

universities is that they typically result from assigning grades within the quality assessment process. For 

secondary schools in England, GCSE results achieved at grades A*- C have been a primary measure of 

the quality of  their output, with much emphasis placed on the percentage of pupils who achieve 5 or 

more grades A*- C, including in English and mathematics. For universities in the UK, their research 

quality has been measured in terms of their submitted research outputs that fall within each of the 

grades 4*, 3*, 2*, 1* and unclassified (HEFCE 2010, 2015). UK university teaching quality is assessed by 

the percentage of student responses in the annual National Student Survey (NSS) that have been 

awarded grade 5, 4, 3, 2 or 1 according to the strength of their agreement with complimentary 

statements regarding their university department’s teaching and associated provision (HEFCE, 2014).   
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The nature of the frontier of the feasible set between the quality scores in different directions facing an 

EDMU can be illustrated by the case of university research and teaching quality. We will assume that the 

resources devoted to one direction, such as research, could have spillover effects on the underlying 

quality achieved in another direction, such as teaching. In particular, we will denote by 1x  the resource 

expenditure on research per member of staff of any given EDMU and by 2x  its resource expenditure on 

teaching per student.  The underlying quality 1iy  of the i th assessed research output and the underlying 

quality 2iy of the i th assessed teaching episode are assumed to be given by: 

                   1 1 1 1 11 1 12 2 2 2 2 2 21 1 22 2i i i iy y where y x x , y y where y x x                                          (8)            

and where 1i  and 2i are terms that reflect additional latent  variations between each submission in 

individual ability and inspiration in research and teaching which impact on the underlying quality of 

each individual submission around the mean levels, 1y  and 2y  of the underlying quality given by the 

resource expenditures in Equation (8). The assessed quality of each submission, however, is a result of 

a grading process in which the grade awarded to the i th submission in direction k  is given by:  

                                        1 1 2
k kki k g ki gg g if y for k ,                                                       (9) 

with the grade hurdle 
1kg

  
 for the highest grade oo

kg assumed to be and o
kg

  for the lowest grade 

o
kg assumed to be  . If 1i  and 2i  have independently normal frequency distributions with zero 

means and variances 2
1s and 2

2s respectively across the multiple individual submissions to the grading 

process, the mean value of the assessed quality score in direction k  is given by: 

    1( ) ( ) ( , ) ( , ) [ (( ) / ) (( ) / )]
k k

k

k k k k k k k k k k g k k g k
g

q Z y w g y g where y g y s y s                   (10) 
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and where   is the standardised normal cumulative distribution, ( )k kw g is the relative weight 

attached to the quality grade kg in direction k, and ( , )k ky g  is the proportion of submissions in 

direction k  awarded the quality grade kg  for a given value of ky . Equation (10) in turn implies that for 

( ) ( ) ( 1) 0k k k k k kw g w g w g      for all kg  and ( ) 0k kw g   for some kg : 

                      ( ) / ( ) ( ) / 0 ( ) /
k

k

k k k k k k k k k k g k
g

q y Z y w g Y s where Y y s                                (11) 

and                     2(g ) ( ) ( ) ( )
k

k k k k k k k k k k
g

q q / y w G Y / s where G Y Y Y                                       (12) 

where   is the standardised normal density function. 0k kZ / y   in (11) and (10) imply inverse 

functions kD  such that 1( ) ( )k k k k ky D q Z q  . Using (8), the associated cost function is given by:  

                               1 1 2 2 0 1 1 1 2 2 2( ) ( ) ( ) ( ) ( )c q,m m x m x x z m D q z m D q                                              (13) 

where 1m is the number of staff and 2m the number of students of the EDMU, and where           

                1 1 22 2 21 0 2 2 11 1 12 0 0 11 22 12 21( ) ( ) ( ) ( ) ( )z m m m / z ,z m m m / z ,z                                (14) 

with 1 0z  and 2 0z  under the condition that 0kc / y    for 1 2k , in (13). From (4), (11) – (14):     

                                           2
12 2 1 2 1 2 1 1 2(z /z )[ (z )]( ( ) )q q / z q / q                                                          (15) 

The sign of 12 , and hence whether or not the convexity condition (4) is broken, depends in (15) upon 

the behaviour, for both 1k   and 2k  , of kq , and hence of the function ( )kG Y  at each point in the 

grading process for which ( ) 0k kw g   in Equation (12). Figure 2 shows the strongly non-linear 

behaviour of the function ( )kG Y , with a steadily increasing positive value to ( )kG Y  as ky  increases up 

to the point where it is one standard deviation ks  short of the grade hurdle 
kg

 , and the associated 
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values of kY  and ( )kG Y are minus one and +0.241971 respectively. ( )kG Y then steadily declines from a 

positive to a negative value as the gap between 
kg

 and ky  passes through zero, with ( )kG Y reaching a 

minimum of minus 0.241971 when ky exceeds the grade hurdle 
kg

 by one standard deviation ks , and 

the associated value of kY is plus one, before ( )kG Y  steadily increases in Figure 2 to approach zero.  

 

Figure 2 ( )kG Y as a function of kY  

As in Equation (12), the rate of change of the marginal productivity of increases in the mean value , ky , 

of the underlying quality from additional expenditure in Equation (8), in raising the mean assessed 

quality score, kq , varies with ( )kG Y , and hence non-linearly with how close ky  is to the relevant 

quality hurdle. If the expected underlying quality ky  of the EDMU is just below the grade hurdle 
kg

 by 

close to one standard deviation ks  in both of the directions 1 2k , , and there is only one hurdle in 

each case for which ( ) 0k kw g  , we will have 1 0q   and 2 0q   in Equations (12) and (15), and hence 

the convexity condition 12 0   broken. Again this emphasises the importance of allocative efficiency, 

rather than simply technical efficiency, under such non-convexity. If there are insufficient slack 

resources to increase both 1y  and 2y  by more than one standard deviation ks  in each case, the EDMU 
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would boost its assessed quality performance by choosing a more uneven policy of switching resources 

to boost 1y  at the expense of 2y , or vice versa, so that its expected underlying quality exceeds the 

relevant quality hurdle in at least one direction. Which one it should choose depends upon the relative 

payoffs from 1 1( ) 0w g   and 2 2( ) 0w g  , with the extent of the improvement in its allocative 

efficiency dependent upon these relative payoffs and the non-proportional changes which it makes. 

If there is only one grade hurdle in each direction and the EDMU reallocates its resources between 1x  

and 2x  to further increase 1y  and further reduce 2y , while holding total cost constant, 1( )G Y , and 

hence 1q , will at some point become negative in Figure 1 and in Equations (12) and (15); similarly 

2( )G Y , and hence 2q , will decline towards zero in its positive value. As a result, the necessary 

convexity condition 12 0   in Equation (15) may not be breached locally at all such points along the 

iso-cost frontier. This emphasises that while the associated output possibility set is here non-convex, 

as in Figure 1, its frontier is not everywhere concave from above. The existence of some concave 

sections to the frontier, as in Figure 1, will however make the use of DEA to assess the efficiency of 

individual EDMUs inappropriate when assessed quality variables are included in their outputs. 

 

5. Multiple quality hurdles and the influence of league tables 

The existence of possible multiple grade hurdles is illustrated by the case of the recent Research 

Excellence Framework (REF, 2014) exercise in UK universities and by its predecessor, the Research 

Assessment Exercise (RAE, 2008). The summation across these multiple grade hurdles that is involved 

in Equations (11) and (12) may well involve the expected underlying research quality 1y  being above 

some lower quality hurdles, implying negative values to the associated 1( )G Y terms in Figure 2, but 

below one or more higher quality hurdles, implying positive values to the associated 1( )G Y terms in 
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Figure 2. Whether or not the overall weighted sum for 1q  in Equation (12) is positive or negative will 

depend upon how far away 1y  is from each such hurdle, and on the relative values of each respective 

1 1( )w g term. One notable feature of the relative weight placed upon achievements in successive 

assessed research quality grades from 1* through to 4* in the RAE and REF, in the determination of the 

associated QR research funding for each individual assessed EDMU by the Higher Education Funding 

Council for England (HEFCE), is that each successive increase 1 1( )w g  has itself been strictly increasing 

(see HEFCE, 2010, 2015), with 1 1(2*) 1, (3*) 2,w w   and 1(4*) 6w   for the RAE and 

1 1(2*) 0, (3*) 1,w w   and 1(4*) 3w   for the REF. This itself implies a convex weighting function, 

with positive values to 1( )G Y  from the underlying expected research quality 1y  being below a higher 

quality hurdle given more weight in (12) than a negative value to 1( )G Y  from 1y  being at the same 

time above a lower quality hurdle, so that we may have 1 0q  in Equations (12) and (15) over some 

range of values of 1y . 

When assessed teaching quality is included in the efficiency analysis, a notable feature of the relative 

weight that is placed upon successive grades from 1 to 5 in the NSS in published reports and 

performance indicators on the percentage of students who are “satisfied” (see e.g. HEFCE, 2014) is 

that 2 1 2(2) (3) 0 (5)w w w      and 1(4) 1w  . The inclusion of only the NSS grades 4 and 5 as 

indicating that the student is “satisfied” means that when the assessed measure of teaching quality is 

the percentage of students who are “satisfied”, there is no increase in this performance measure if a 

grade 3 rather than a grade 2 or a grade 1, or a grade 5 rather than a grade 4, is achieved. It is 

therefore the degree and sign of the difference between the expected underlying teaching quality 2y

and the quality hurdle associated with the boundary between grades 3 and 4 which determines the 
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strength and sign of the relevant 2( )G Y  in Equation (12). If 2y falls short of this hurdle, we will have 

2 0q  , with again the convexity condition 12 0   broken locally in (15) whenever 1 0q  also holds.  

Again issues of allocative efficiency become of considerable importance since the EDMU needs here to 

decide whether to boost their expected underlying teaching quality in order to increase the probability 

of grade 4 or 5 assessments, or to focus their available resources on boosting their expected 

underlying research quality to increase the probability of securing a higher research rating. Simply 

increasing both expected underlying qualities proportionately, to achieve increases in technical 

efficiency, in contrast may well prove to be a sub-optimal policy given the non-linearities which are 

involved in Equations (10) – (12), and the associated Figure 2. If their existing expected underlying 

teaching quality is between already well below the grade 4 hurdle, moderate improvements in it will 

unfortunately have little impact upon its overall expected assessed teaching quality score under the 

above weighting system. There is then more incentive for the EDMU to sacrifice even more teaching 

quality by concentrating its available resources more on improving its assessed research quality. 

The powerful effect which the weighting system can have on an EDMU’s management and policy 

choices in the presence of non-convexities is reflected also in the widespread use which has been 

made of the school performance indicator of the percentage of pupils who achieve 5 or more A* - C 

grades at the national GCSE examinations. This percentage similarly fails to give any additional positive 

credit for achieving higher grades within the A* - C range, and instead has given an incentive to schools 

to ‘manage the margin’ by focussing their resources upon pupils who are close to the grade C hurdle, 

rather than upon pupils who might excel towards grade A* performance.  Fortunately some progress is 

being made through a recent proposal for a more refined point score system for 8 different grades at 

KS4 (DFE, 2014), though with pupil discreet grade improvements still playing a major part in the 

proposed Progress 8 performance measure from 2016 onwards. 
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An important additional pressure on the management of individual EDMUs can be their position in 

published national league tables of their assessed quality scores. The growth of managerialism within 

educational institutions (see e.g. Deem et al, 2007 and UNESCO, 2004) and of greater competition 

between EDMUs for able students based upon their published rankings (see e.g. DBIS, 2011 and 

Hazelkorn, 2011) significantly reinforces these pressures within individual EDMUs. The management 

objective of the EDMU may be described here as seeking to maximise a valuation function of the form:  

                             1 1 2 2( ( ) ( )) ( ) ( ) 1 2k k kV R q ,R q where R q n q for k ,                                                      (16) 

where ( )k kR q  is their rank from the bottom of the cumulative distribution ( )k kq of kq across a given 

total number n  of EDMUs in the comparison set. When we consider the possibility frontier facing the 

EDMU for changing its ranking in different quality directions, the slope of the relevant PPF  between 

1 1( )R q and 2 2( )R q holding total cost constant is given by: 

                   12 1 2 1 1 1 2 2 2 1 1 12 2 2( )( ) ( ) ( ) ( )o dR / dR dR / dq dq / dq / dR / dq q / q                              (17) 

where ( )k kq  is the density function associated with ( )k kq . We then have: 

            2
12 12 2 1 1 2 2 22 2 2 2 12 11 1 1 1 12 12( ( ) ( ))[ ( ( ) ( )) ( ( ) ( )) ]o od / dq q / q q / q q / q                            (18) 

If ( )k kq is unimodal with a mode at o
kq and a positive value to its slope kk k k/ q    for o

k kq q  and a 

negative value to its slope for o
k kq q  for each 1 2k , , a given unit improvement in its assessed 

research quality score 1q  will give a potentially much greater boost to the EDMU’s research ranking 1R  

in (17) than otherwise, for any given reduction in its teaching ranking along the possibility frontier, if 

the EDMU is currently close to the mode of the associated population distribution for 1q  but distant 

from the mode of the population distribution for 2q . This in turn introduces another important source 
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of non-linearity into the scope for increases in allocative efficiency, here with respect to the position of 

the EDMU in the relevant league tables. Moreover non-convexity of the associated possibility frontier 

may again arise here, with the convexity condition 12 0o   not guaranteed to be fulfilled in (18) when 

1 1
oq q  and/or 2 2

oq q , and hence 11 0   and/or 22 0  , even if the local convexity condition 12 0   

holds along the frontier between the kq directly.  

 

6. Non-parametric frontier analysis for non-convex production possibility sets 

An output-orientated non-parametric technique that is consistent with the existence of both convex 

and non-convex regions of the efficient frontier can be generated by modifying the Free Disposal Hull 

(FDH) model proposed by Deprins et al (1984). This seeks the largest proportionate reduction in j ’s 

inputs that still involves at least as much of each input as an actual producer in the sample with which 

it is compared and which has achieved no less of each output as producer j , with the associated 

mixed-integer program (see Cooper et al, 2007):       

                         1 0 1 1j j j j rmin s.t. X X , Q Q , u , , for each r ,...,n          { }                            (19) 

      Output Q j1 
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When inputs and outputs are both positive in value, we can transform (19) from an input- into an 

output-orientated FDH model by substituting the reciprocal of the output variables as  inputs and the 

reciprocal of input variables as outputs in (19) and in the associated available software, to yield:  

                1 1 1 1 1 1 ( ) ( ) ( ) ( )j k j j k jmin s.t. / Q / Q , / X / X for each k ,...,K and ,...,L                      (20) 

for an appropriate choice of the comparator producer  . (20) in turn is equivalent to:  

      . . , 0, 1, 0,1 1,..., , 1 /j j j j j jmax s t X X Q Q u { } for each n with                          (21) 

that generates an output-orientated alternative to the DEA program (1) which avoids DEA’s 

requirement that the technology is convex. (21) results instead in a step-function form of the fitted 

efficient frontier through all the efficient points, such as  A,B, E, F and H in Figures 1 and 3, that are 

actually achieved by individual producers, rather than the convex hull which DEA considers and which 

may include non-feasible convex combinations, such as point N in Figure 1. The value of j  in (21) 

provides a measure of technical efficiency of the EDMU j  that equals the ratio OJ / OE in Figure 3, 

and which has the property that its product with the corresponding measure of allocative efficiency 

OE / OM equals the true overall measure of efficiency OT OJ / OM  .     

An alternative non-radial measure of technical efficiency suggested by Portela et al (2003) in another 

context would include here the additional slack E E  that a comparison with the efficient point E 

indicates can be achieved in output 1jQ . However, once there are additional slacks in several 

directions, as in Tone (2001), defining a single such non-radial measure of technical efficiency raises 

the issue of the weight to be placed upon output increases in different directions. After examining 

alternative single radial and non-radial measures of technical efficiency under FDH, De Borger et al 

(1998) conclude that “unfortunately, none of these measures satisfies all of the desirable properties... 

with wide differences in the distributions of the efficiency scores and in the resulting correlations 
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across alternative measures and orientations”, despite the fact that “because the efficient subset is 

relatively small for the FDH reference technology, the choice among various efficiency measures is of 

crucial importance in measuring technical efficiency”.  However, rather than seeking a single measure 

of technical efficiency for FDH when significant slacks exist, an alternative approach adopted by 

Mayston (2014) is to compute both an overall measure based upon the maximum feasible proportional 

expansion in the existing output vector, and a set of individual measures that indicate the 

improvements which can be made in each individual output direction when the remaining slacks are 

included in addition to the overall maximum feasible radial expansion.    

Use of an explicit valuation function would have the additional advantage of demonstrating what 

further movements along the efficiency frontier beyond point E, such as to point B in Figure 3, may be 

desirable. The reciprocal of the associated measure of allocative efficiency Aj OE / OM  indicates 

the extent of the additional beneficial gains which can be made by changing the educational output 

mix from that at points J  and E to that at the optimal point B , with  

             ( ) ( ) ( ) ( )E' * J *
Aj j j OT j jOE / OM V / V OE / OB and OJ / OM V / V OJ '/ OB                  (22) 

under a homothetic valuation function which is homogeneous of degree one in the elements of the 

educational output vector jQ . Where an explicit valuation function is not available, Halme et al (2014) 

provide a method of incorporating into FDH binary preference information between pairs of existing  

outcomes to approximate the efficiency assessments that would be generated by a valuation function 

that is quasi-concave in outputs and quasi-convex. 

While, as noted above, there are many DEA studies of efficiency in education, there are comparatively 

few that make use of FDH (exceptions are Afonso and St Aubyn, 2005; Oliveira and Santos, 2005; De 

Witte et al, 2010; Mayston, 2014), and even fewer studies that compare the results of deploying the 

two methods empirically. One which does is Mayston (2014), which found positive, though imperfect, 
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Pearson and Spearman rank correlations between the efficiency score under the two methods, with 

DEA estimating only 34 per cent of the 50 UK university departments of economics to be fully efficient, 

in contrast to the 60 per cent which were found to be fully efficient under FDH. At the level of 

individual countries, Alfonso and St Aubyn (2005) found “very similar” DEA and FDH efficiency scores 

for their sample of 17 OECD countries using PISA average score results for 15 year-olds as outputs. In 

an earlier study of the wider range of public services provided by Belgian municipalities, Vanden 

Eeckaut et al (1993), however, found substantially higher efficiency estimates under FDH than DEA, 

concluding that “unless the convexity assumption can be given a strong a priori support – which is not 

the case with the data at hand – we see no reason to maintain it, and therefore reject the DEA results 

derived from it”. Similarly, in a study of Spanish municipalities, Balaguer-Coll et al (2007) found 

substantially higher technical efficiency estimates under FDH than DEA, with 69.8 per cent found to be 

fully efficient under FDH but only 7.7 per cent under DEA. 

Elsewhere, Cummins and Zi (1998) concluded from their efficiency study of firms in the US life 

insurance industry that: “The distributional assumption imposed on the error term in the econometric 

models makes little difference with our data. Of much greater importance is the choice between 

econometric and mathematical programming methods, on the one hand, and whether to impose the 

convexity assumption in mathematical programming on the other” finding that DEA and FDH can yield 

“significantly different results”. Substantially higher values of technical efficiency were found using 

FDH rather than DEA by Wanke (2012) in his study of Brazilian airports, with many more container 

ports found to be technically efficient under FDH than DEA in the study by Cullinane et al (2005). The 

annual US federally managed fisheries capacity estimated by Walden and Tomberlin (2010) of 13.3 

million pounds using DEA differs substantially from that of only 8.3 million pounds using FDH. 

As Briec et al (2004) stress, in the case of large samples, “asymptotically, there is no reason for 

imposing convexity” since if the technology or the cost function “is truly convex, the FDH estimator 
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converges to the true estimator” though with a lower convergence rate than for the convex estimator. 

More generally, Briec et al (2004) have suggested that the ratio between the input efficiency measures 

(cost function value) produced by DEA and FDH under similar returns to scale assumptions provides a 

non-parametric goodness of fitness test for the convexity of the underlying technology (cost function), 

which would imply that the wide divergences between the technical efficiency estimates produced 

under FDH and DEA call into question the empirical validity of the convexity assumption. More 

recently, Kneip et al (2015) have proposed an alternative more rigorous test for convexity based upon 

comparing the efficiency scores under FDH and DEA from different sub-samples of the dataset of 

DMUs, which they use to “test and soundly reject” DEA’s assumption of convexity of the production 

set for the US banking industry. 

 

7. Conclusions 

Particularly when published measures of the assessed output quality of educational organisations, 

such as schools and universities, are included in the efficiency analysis, DEA’s underlying assumption of 

convexity of the associated feasible set may not hold, so that care must be taken in the choice of non-

parametric technique to estimate the associated scope for improvements in technical efficiency.  At 

the same time, greater recognition may be needed of the scope for improvements in allocative 

efficiency from non-proportional changes in the educational output mix. An assessment of allocative 

efficiency itself requires a clarification of the valuation function which the institution places upon the 

volume and assessed quality of its educational outputs. When educational institutions are under 

managerial pressure to perform well according to their rankings in published league tables, the scope 

for non-convexities may increase, further boosting the importance of allocative efficiency and the need 

for more stark choices to be made by individual EDMUs between different assessed output quality 

variables. The shape of the output possibility frontier which maps out the trade-offs that an EDMU 
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may face between the different assessed output quality variables at different points on the frontier 

may be better revealed by relaxing the convexity assumption, as in the above output-orientated FDH 

model. At the same time, national policy makers need to re-assess whether the grading and weighting 

systems which result in the management choices which individual EDMUs face along this frontier of 

assessed outcomes are consistent with wider educational goals. 
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