A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State

Introduction

Schiff-base ligands are amongst the most widely studied chelators in inorganic chemistry, with salen-type ligands (imine-bisphenolates) forming a popular class of Schiff-bases. The nitrogen atoms on the backbone may also be saturated to form salan-type (amine-bisphenolate) ligands. Salen-type ligands in particular have been coordinated to a broad range of metal centers and have been used widely in catalysis, in addition to biomedical and materials applications.[1–8] Synthetic methods to salen complexes are relatively diverse and are very much dependent upon the desired metal and the oxidation state of the metal center. A common method to prepare metal–salens involves reaction of the ligand with metal acetate, with high temperatures often being necessary (e.g., Fe and Mn) and column chromatography being required for purification (e.g., Cu), often resulting in low yields.[9] Other general methods include reaction of the ligand with metal alkoxide[10] or amide precursors,[11, 12] or reaction with metal halide in the presence of a base.[13, 14] The use of sensitive precursors can lead to complicated product mixtures, particularly where metal–alkoxides are used due to the process being an equilibrium reaction.[5] Metal-salts generated when metal halides are used may coordinate to the Lewis-basic oxygen atoms of the salen, leading to problems with purification.

We have previously developed an electrochemical method for the preparation of CuI–N-heterocyclic carbene (NHC) complexes.[15–17] The route was found to be simple, efficient, and versatile, and does not require the use of high temperatures or basic conditions. During the electrochemical reaction, an imidazolium (HL) ligand precursor is reduced at the cathode, releasing H2 as the only by-product to form a free NHC (L). Concomitantly, oxidation of the sacrificial copper anode occurs, liberating Cu+ ions into solution. These two species combine to deliver the desired CuI–NHC complex. To complement these findings and extend the current state-of-the-art,[18–25] it was hypothesized that any HL ligand with an appropriate reduction potential could be used with a range of metals to electrochemically prepare organometallic complexes in a simple and economical manner. Herein, we report an important extension to the electrochemical syntheses through the use of different ligand types and transition metals (Scheme 1).

![Scheme 1. Electrochemical synthesis of metal–ligand complexes: a) reduction of HL ligand; b) oxidation of metal; c) combination of ligand and metal.](Image)

[a] M. R. Chapman, S. E. Henkelis, Dr. B. N. Nguyen, Dr. C. E. Willans
School of Chemistry, University of Leeds
Woodhouse Lane, Leeds LS2 9JT (United Kingdom)
E-mail: c.e.willans@leeds.ac.uk
B.Nguyen@leeds.ac.uk

[b] Prof. N. Kapur
School of Mechanical Engineering, University of Leeds
Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Results and Discussion

At the outset, scope and generality of the method were evaluated; therefore, ligand precursors 1a–1h were prepared using literature procedures and fully characterized (Scheme 2).\cite{26–28}

Cyclic voltammetry of ligands 1a–1e indicated reduction potentials in the range −2.04 to −2.55 V (vs. FeCp₂/FeCp₂⁺), similar to those found for imidazolium salts (see Supporting Information). Ligand precursors 1a–1e were dissolved in hydrous acetonitrile, and two metal electrodes of copper, nickel, or zinc were inserted into the solution under an atmosphere of air. A potential was applied across the electrodes, maintaining a constant current of 50 mA for 90 min under aerobic conditions. The complexes precipitated from solution and were collected via vacuum filtration, to obtain analytically pure product in good yield (Scheme 2 and Table 1).

Table 1. Isolated yields (%) of Cu–, Ni–, and Zn–salen complexes.

<table>
<thead>
<tr>
<th></th>
<th>Cu²⁺ [Yield / %]</th>
<th>Ni²⁺ [Yield / %]</th>
<th>Zn²⁺ [Yield / %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>(79)</td>
<td>3a (91)</td>
<td>4a (88)</td>
</tr>
<tr>
<td>2b</td>
<td>(54)</td>
<td>3b (84)</td>
<td>4b (79)</td>
</tr>
<tr>
<td>2c</td>
<td>(81)</td>
<td>3c (80)</td>
<td>4c (83)</td>
</tr>
<tr>
<td>2d</td>
<td>(86)</td>
<td>3d (77)</td>
<td>4d (77)</td>
</tr>
<tr>
<td>2e</td>
<td>(78)</td>
<td>3e (88)</td>
<td>4e (94)</td>
</tr>
<tr>
<td>2f</td>
<td>(58)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In all cases, complexes were characterized by high-resolution mass spectrometry (HRMS) and elemental analysis. Diamagnetic Ni²⁺ and Zn²⁺ complexes were also subjected to NMR spectroscopic analysis. Whilst only Cu²⁺ species were observed in the electrochemical synthesis of Cu–NHCs,\cite{19} in the presence of salen ligands, Cu⁰ (or Ni⁰/Zn⁰) products were isolated solely. This is likely due to the presence of two reducible HL sites per ligand, in addition to the stabilization of M¹⁺ complexes by salen-type chelating ligands. Further, Ni-complexes 3b and 3e were characterized in the solid-state using X-ray crystallography, with both complexes illustrating one ligand coordinating each metal through two phenoxide oxygen atoms and two imine donors, with distorted square planar environments around the metal centers (Figure 1).

Interestingly, during the formation of Zn complexes, one molecule of water coordinates to the metal center in each case, which is consistent with microanalytical data. The solid-state structure of 4e exhibits a coordinated dimethyl sulfoxide molecule which has displaced the water during crystallization (Figure 2). In the absence of bulky ortho-substituents on the phenoxide moiety, Zn²⁺-salens are known to dimerize through axial coordination of one of the oxygen atoms of each ligand to the Zn²⁺ center of a neighboring unit.\cite{29} In the presence of other donor ligands such as water or dimethyl sulfoxide, dimerization is suppressed.

Reduction (often hydrogenation) of the salen ligand produces a new tetradeinate ligand, coined as salan. Such ligands do not possess a C–N double bond, resulting in a more flexible structure around the metal center which is more resistant to hydrolysis. Several metal–salan complexes have been reported, namely with Cu,\cite{30–33} Co,\cite{31} Ni,\cite{32,34} V,\cite{35,36} and Zn.\cite{37} However,
common to their syntheses are the use of refluxing temperatures, acidic waste-streams, and often addition of strong base to allow the products to precipitate from the reaction mixture for isolation. Therefore, N-saturated salan precursors 1g–h underwent electrochemical conversion in a similar manner to their unsaturated analogues, using two copper plates with hydrous solvent under aerobic conditions. Following 90 min reaction time, analytically pure CuII–salan complexes 2g and 2h were filtered from solution in 83 and 75% isolated yield, respectively, with no further purification required (Scheme 3).

Formation of complexes 2g and 2h was monitored via high-resolution mass spectrometry and confirmed by microanalysis. In addition, dark green needles of each complex were isolated and analyzed by X-ray crystallography (Figure 3).

Applying the optimized (aerobic/non-anhydrous) procedure to ligand precursors 1a–e using Fe electrodes, dinuclear [FeIII(salen)]2O complexes 5a–e were isolated and fully characterized (Scheme 4, right). μ-Oxo-bridges are a common feature of FeIII-salens due to the high oxygen affinity of the FeIII ion,[38] with such complexes being used in catalytic transformations,[39] or as precursors to add another ligand. The presence of oxo-bridges suggests that FeIII-salens are initially formed electrochemically, and subsequently oxidize in the presence of O2 to FeIV. The solid-state structure of 5a displays a square-base pyramidal geometry around the metal center, coordinating two phenoxide oxygen atoms, two imine donors, and a bridging oxo group (Figure 4). All FeIV complexes were characterized via high-resolution mass spectrometry and elemental analysis.

Despite FeIV-salens becoming very well established within the synthetic community, isolation of FeIII-salen complexes is...
much less common due to their air- and moisture-sensitivity, which presents challenges regarding their syntheses and handling. Such sensitivity largely originates from the Fe
II center which is forced to occupy highly distorted square-planar geometry; the upshot of which is formation of a highly reactive metal complex. One approach toward the preparation of Fe
II-salens involves the organometallic reagent, Fe
IIMes
\textsubscript{4}, which is prepared through reaction of ferrous halide with preformed mesityl Grignard.
\cite{40} However, Fe
\textsubscript{2}Mes
\textsubscript{4} is highly air-sensitive and difficult to handle itself, as are other common reagents such as Fe(N(SiMe
\textsubscript{3})
\textsubscript{3})
\textsubscript{2}, which is prepared via reaction of Fe
II halide with Li[N(SiMe
\textsubscript{3})
\textsubscript{2}], followed by high-vacuum distillation of the highly sensitive product. Another reported synthetic method involves reaction of ligand precursors with Fe(OAc)
\textsubscript{2},
\cite{49} though in our hands this route furnishes an Fe
III complex when ligand precursor 1b is used (see Supporting Information), as do other literature examples.
\cite{41} Fe
II-salens have been rendered inactive in catalysis in some cases, which may be explained by the presence of Fe
III.
\cite{12}

Similar to our electrochemical methodology, Sousa and co-workers developed an electrochemical procedure toward the synthesis of Fe
III complexes of 1- and 2-substituted pyridines, with control over oxidation state for one example.
\cite{42} Despite simple product isolation in most cases, the resulting Fe
\textsubscript{2} complexes were not air- or moisture-sensitive, with each product forming an unreactive hydrated complex. Through using anhydrous and anoxic conditions in the electrochemical synthesis of Fe complexes, we have accessed highly air-sensitive, spectroscopically pure Fe
III complexes which are highly reactive and efficient in high yields and relatively short reaction times (Scheme 4, left). All complexes were characterized via high-resolution mass spectrometry and microanalysis, with single crystals of complex 6e also subject to X-ray crystallographic analysis (Figure 4). Magnetic susceptibility measurements for each complex were performed in solution by means of the Evans NMR method, with effective magnetic moments calculated between 4.9–5.0 \(\mu_B\), indicative of high-spin Fe
II (see Supporting Information).

 Whilst Mn
IV-oxo complexes of Schiff bases appeared in the early 1990s, their syntheses involves reaction of the corresponding MnL(acac) with H
\textsubscript{2}O
\textsubscript{2} (L = Schiff base), or oxidation of a basic solution containing [Mn
III(L)
2] via an over pressure of air.
\cite{43, 44} Pleasingly, use of a manganese/nickel alloy anode (88% Mn, 12% Ni) with ligand precursors 1a–e under aerobic/ non-anhydrous conditions led to electrochemical formation of their corresponding bis(µ-oxo) [Mn
IV(salen)]
\textsubscript{2}O
\textsubscript{2} complexes 7a–e in high yield (Scheme 5, right). The use of this alloy enables high concentration of a brittle (non-machinable) metal, such as Mn, to be incorporated into the electrode surface. The potential required to liberate Mn
2+ ions into solution is 0.9 V more...
negative than that of Ni$^{2+}$, allowing selective metalation of 1a–e at Mn with no corresponding Ni-salen detected by elemental analysis, X-ray fluorescence, or atomic absorption spectroscopy (see Supporting Information). All MnII complexes were characterized using high-resolution mass spectrometry and elemental analysis, with complexes 7a and 7e further probed by single crystal X-ray diffraction analysis (Figure 5 and Supporting Information).

Akin to FeII-salens, analogous complexes of MnII are typically prepared using Mn(OAc)$_2$, with subsequent exposure to air providing access to their higher-valent Mn congeners. However, the intermediate MnII-salen complexes are often not isolated on account of their sensitivity, with our efforts regarding reaction of precursor 1a with Mn(OAc)$_2$ exclusively producing an acetate-bridged [MnII(salen)(OAc)]$_2$ polymer (see Supporting Information). In terms of electrochemical synthesis, early work by Sousa developed a protocol to salicylaldiminate complexes of MnII which are proposed to form via their neutral MnII complexes counterparts. However, isolation of MnII Schiff base complexes which are not stabilized by additional pyridyl donors are much less common due to their high reactivity.

Employing anhydrous/anoxic conditions to our method, analytically pure MnII-salen complexes 8a, 8b and 8e were accessed under equally mild and general conditions to those outlined within. All complexes were characterized by high-resolution mass spectrometry and microanalysis, and each exhibits solution magnetic moments between 5.7–5.9 μ_B, characteristic of high-spin MnII (see Supporting Information). Single crystals of complex 8e were further analyzed via X-ray crystallography, illustrating a square-based pyramidal MnII metal center coordinated to a single salen ligand, with one molecule of solvating dimethyl sulfoxide (DMSO, crystallization solvent) also occupying the coordination sphere (Figure 5, bottom).

Conclusion

Although metal–salen complexes may be accessed relatively easily in some cases, in other circumstances (e.g., FeII- and MnII-salens) high temperatures, sensitive precursors, and byproduct contamination can cause problems. Synthetic methods are diverse and are dependent upon the ligand, metal, and metal oxidation state. This work describes a ‘one size fits all’ approach to the synthesis of metal–salen and metal–salan complexes using an electrochemical procedure that is simple, efficient, clean, and high yielding. The electrochemical route has been shown to be versatile with regard to ligand, metal, and metal oxidation state, and could be applied to a broad array of HL-type ligand precursors and metals. Furthermore, a bimetallic alloy can be used in the system, with remarkable control over metal selectivity through applied potential. It is envisaged that this synthetic route may be used generally by organometallic, synthetic, supramolecular, and materials scientists to easily prepare organometallic and coordination species which are otherwise difficult or impossible to access.

Experimental Section

General procedure for CuII, NiII, ZnII, FeIII, and MnIV complexes

A three-necked round bottomed flask equipped with stirrer bar was charged with salen precursor (1.0 mmol), tetrabutylammonium tetrafluoroborate (0.03 mmol), and CH$_3$CN (50 mL). Two metal electrodes (30 \times 10 x 1 mm) were introduced to the solution and a potential applied via an external power supply [22.0–25.0 V] to maintain a constant current of 50.0 mA for 90 min. The resulting precipitate was collected via vacuum filtration, washed with CH$_3$Cl$_2$ (2 x 10 mL), water (2 x 30 mL), and diethyl ether (3 x 30 mL) and dried in vacuo to deliver the corresponding M–salen complex as a microcrystalline solid.

General procedure for FeII and MnIII complexes

A flame-dried three-necked round bottomed flask equipped with stirrer bar was charged with salen precursor (1.0 mmol) and tetrabutylammonium tetrafluoroborate (0.03 mmol) and further dried in vacuo. Anhydrous (anoxic) CH$_3$CN (50 mL) was added via cannula, and the solution further degassed via bubbling a stream of argon for about 30 min through the solution. Two metal electrodes (30 \times 10 x 1 mm) were introduced to the solution and a potential applied via an external power supply (22.0–25.0 V, operating in CV mode) to maintain a constant current of 50.0 mA for 90 min. The suspended precipitate was isolated via cannula filtration and washed with

Figure 5. Top: molecular structure of MnII-salen 7a. Bottom: molecular structure of MnII-salen 8e (DMSO). Ellipsoids are drawn at the 50% probability level; hydrogen atoms are omitted for clarity.
anhydrous (anoxic) CH₂CN (2 x 15 mL), followed by rinsing with anhydrous (anoxic) diethyl ether (3 x 15 mL) before drying in vacuo to deliver the corresponding M-salen complex as a (highly air- and moisture-sensitive) powder.

Full synthetic procedures to all ligand precursors and metal complexes, analytical data, and crystallographic data can be found in the Supporting Information. CV measurements, magnetic susceptibility measurements, and atomic adsorption and X-ray fluorescence data are also provided in the Supporting Information, in addition to photographs to show the electrochemical reactor configuration.

Acknowledgements

This work was supported by the University of Leeds and AstraZeneica. The XRF measurements were made at the Department of Chemistry (York) by Prof. I. J. S. Fairlamb. The XRF instrument was funded by a University of York Strategic Equipment grant, upgraded by an Engineering and Physical Sciences Research Council (EPSRC) Core Capability grant (EP/K039660/1), involving the N8 Universities Equipment sharing initiative. The authors would also like to thank Dr. A. N. Kulak (University of Leeds, School of Chemistry) for assistance with atomic absorption spectroscopy measurements.

Keywords: electrochemistry · organometallic compounds · salen · Schiff bases · synthesis

Received: February 23, 2016
Published online on April 15, 2016