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Abstract: This paper describes and illustrates methods for quantifying regional differences in land
use/land cover changes. A series of approaches are used to analyse differences in land cover
change from data held in change matrices. These are contingency tables and are commonly used
in remote sensing to describe the spatial coincidence of land cover recorded over two time periods.
Comparative analyses of regional change are developed using odds ratios to analyse data in two regions.
These approaches are extended using generalised linear models to analyse data for three or more
regions. A generalised Poisson regression model is used to generate a comparative index of change
based on differences in change likelihoods. Mosaic plots are used to provide a visual representation of
statistically surprising land use losses and gains. The methods are explored using a hypothetical but
tractable dataset and then applied to a national case study of coastal land use changes over 50 years
conducted for the National Trust. The suitability of the different approaches to different types of
problem and the potential for their application to land cover accuracy measures are briefly discussed.
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1. Introduction

The correspondence matrix has become the de facto method for reporting on post classification
land cover change [1–3]. There are many examples of its use to describe land cover and land use
change (e.g., [4–7]). It is a form of contingency table, summarising the coincident areas or spatial
intersection of land classified over two time periods and is referred to as the change, correspondence
or transition matrix. A number of summary measures are commonly derived from the change matrix
including the overall change/no change proportions and class probabilities of change from the margin
totals (columns and rows), described in terms of per class Losses from Time 1 and Gains at Time 2.
Various Kappa statistics are frequently used to describe global changes and per class rates of landscape
and land cover changes (e.g., [8]) although these measures are not without their critics [1,9,10].

The purpose of this paper is not to contribute to the debate about the salience of Kappa and
similar statistics for describing change or accuracy. Rather, it is to explore how methods for analysing
contingency tables may be applied to correspondence matrices arising from analyses of land cover and
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land use data in order to generate comparative measures of land use/land cover change. Specifically,
the aim is to describe how land changes observed in one area relate to those observed in another.
Methods for quantifying regional differences are lacking in the land use/land cover and remote
sensing literature and yet the object of much geographical analysis is to determine how processes vary
spatially. Variation may be a result of different underlying environmental processes (e.g., geological,
climatic, etc.), different socio-economic activities, spatial planning policies or different ownership and
management regimes. Possible objectives include determining how much more probable land cover
change is in Region A compared to Region B or C, or the relative likelihood of a specific change (e.g.,
from forest to agriculture) in Zone Z compared to Zone Y.

It is within this context that this paper suggests some statistical approaches that can be readily
applied to land cover change data, as summarised in a correspondence matrix. These are used to
generate comparative statistical measures of per class land cover changes, of regional differences in
change and of the likelihood of specific class to class transitions, arising perhaps as a result of different
land management strategies.

2. Background

There is a longstanding body of literature describing approaches for measuring land cover change
detection. A recent review of land cover change using optical remote sensing identified post-classification
comparison as the most widely used change analysis along with the correspondence matrix [3,11].
Methods for quantifying regional differences in land cover changes are, however, surprisingly lacking in
the remote sensing literature. For example, Lambin et al. [12] describe the different causes of variation
in land cover change operating at regional scales and Lunetta et al. [13] identified variations in the
rates of land cover change in different ecological zones using MODIS data but these present only
high level explanations for observed regional differences. Some reports of regional analyses can be
found. For example, Balzter et al. [14] compared SAR-derived forest maps of Siberia for different forest
enterprise districts, and Pijanowski and Robinson [15] compared transition percentages in different
metropolitan regions at different spatial scales in the USA using the concept of land cover persistence
with ratios of loss and gain. Kumar et al. [16] examined the underlying social and physical reasons for
historical cropland cover change associated with different eco-regions using nonlinear bi-analytical
statistics to model discrete trajectories for different regions. Balej et al. [17] compared the regional
relationships between change and external variables associated with land cover changes, but sought
to identify the regionally varying drivers of change rather than to compare regional changes per se.
In summary, very few regional comparisons of land cover change have been undertaken and where
they have, only simple areal comparisons have been made, with no statistical tests of difference.

In many inter-regional land cover change analyses, the independent probabilities arising from
separate correspondence matrices are compared. For example, Duveiller et al. [18] compared the
proportions of deforestation and reforestation in different regions in Central Africa under a range
of different sampling regimes. Interestingly, Colditz et al. [19] compared land cover in different
bio-geographic regions in Mexico but made no statistical comparison. Indeed, these authors comment
that such regions cannot be compared because of the uneven spatial distribution of land cover classes
across them (“there are known issues in the spatial distribution of classes for specific regions, which can
hardly be quantified with statistical measures” p. 551). Concerns over the use of summary statistics,
commonly in the form of proportions and percentages of loss or gain for different classes, from matrix
row or column totals for regional comparisons may be well-founded: while they provide unconditional
probability measures, these are specific to each matrix and to each regional analysis. As a result, they
may not provide information about how the changes observed in one zone relate statistically to those
in another. In other areas of information sciences and statistics, a number of different approaches have
been developed for analysing and comparing frequencies in contingency tables such as correspondence
matrices, and for performing simple tests to identify statistically surprising results. These are applied
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in the next section, as well as odds ratios and relative likelihoods from generalized linear models, to
allow direct statistical comparisons across different regions.

3. Methods

3.1. Hypothetical Data

A simulated or hypothetical dataset was generated to illustrate the methods and to provide
clarity and transparency. These are presented in a series of change matrices and are shown in Table 1.
These describe the intersecting areas, in pixel counts, of different land classes over two time periods
for three hypothetical regions.

Table 1. Land cover changes for (a) overall; (b) Region 1; (c) Region 2 and (d) Region 3.

Overall
Time 2

Farmland Grass Urban Woodland Loss

Time 1

Farmland 67 2 30 15 47
Grass 7 49 4 2 13
Urban 0 5 66 1 6

Woodland 1 0 4 47 5
Gain 8 7 38 18

(a)

Region 1 Time 2

Farmland Grass Urban Woodland Loss

Time 1

Farmland 35 0 6 1 7
Grass 0 19 1 1 2
Urban 0 2 11 0 2

Woodland 0 0 2 22 2
Gain 0 2 9 2

(b)

Region 2 Time 2

Farmland Grass Urban Woodland Loss

Time 1

Farmland 20 2 6 7 15
Grass 7 19 0 1 8
Urban 0 1 22 1 2

Woodland 1 0 0 13 1
Gain 8 3 6 9

(c)

Region 3 Time 2

Farmland Grass Urban Woodland Loss

Time 1

Farmland 12 0 18 7 25
Grass 0 11 3 0 3
Urban 0 2 33 0 2

Woodland 0 0 2 12 2
Gain 0 2 23 7

(d)

3.2. Visualising Change Matrices

A number of tools are available to analyse contingency tables such as correspondence matrices and
to depict the results of simple statistical tests. These include agreement plots [20] and mosaic plots [21,22].
Their implementation within the vcd package in R is described in code snippets accompanying the
package and worked examples are given in Meyer et al. [23], Zeileis et al. [24] and Friendly [25]. All of
the statistical analyses, tables and figures in this paper were implemented in R version 3.2.1, the open
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source statistical software, using the vcd and gplot packages. The data and code used in this analysis
will be freely provided to interested researchers on request.

Agreement plots [20] provide a graphical representation of the diagonal and off-diagonal elements
in a correspondence matrix. The agreement plots arising from the correspondence matrices in Table 1
are shown in Figure 1. Large off-diagonal values in the matrix are indicated by the areas around
the diagonal and their size, orientation and shading indicates the direction of change. A number of
statements about the correspondence matrices can be very quickly deduced from Figure 1. For example,
the agreement plot shows:

‚ high overall losses from Farmland to Urban and Woodland (Figure 1a);
‚ high overall gains to Urban from Farmland (Figure 1a);
‚ relatively high levels of change in Region 3 compared to the other regions;
‚ high gains in Woodland from Farmland in Region 2 (Figure 1c);
‚ large areas of Urban in Region 3 and its gains from Farmland (Figure 1d).

Figure 1. Agreement plots of the overall and regional correspondence matrices. The size, shade
and orientation of the plot elements indicate the off-diagonal row and column values. (a) Overall;
(b) Region 1; (c) Region 2; (d) Region 3.
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3.3. Comparing Changes in Two Regions Using Odds Ratios

It is possible to make a number of statements from the regional change matrices in Table 1 about
the probability of change for any given class in any given region. Losses and gains are derived from
the row and column marginal totals and diagonals. For example, the probability of Farmland losses
are as follows:

Overall : 47{p67 ` 2 ` 30 ` 15q “ 0.41

Region 1 : 7{p35 ` 0 ` 6 ` 1q “ 0.17

Region 2 : 15{p20 ` 2 ` 6 ` 7q “ 0.43

Region 3 : 25{p12 ` 0 ` 18 ` 7q “ 0.68

The objective in some land cover change studies is to compare changes in different regions,
perhaps relating to management, policy or ownership. Probabilities provide useful descriptive statistics
of the change but they are not directly comparable in this form as they are specific to each region.
Odds ratios provide a widely used technique in land use modelling and assessment, principally to
examine the underlying drivers and factors associated with land use but as yet they have not been
used to compare regional differences.

Odds ratios can be used to compare any two individual regions or class-to-class changes.
They indicate the relative likelihood of change between different treatments. Thus, they provide
a comparative measure of change and can be used to describe regional differences, differences between
land cover classes and differences in specific class to class changes observed in two regions. The odds
ratio, θ, of the relative likelihood of change is defined as follows:

θ “
Oddspchange|RegionAq

Oddspchange|RegionBq
(1)

An odds ratio of 1 indicates change is equally likely to occur in both regions. If it is greater than 1,
then this suggests that change is more likely to occur in Region A. If the odds ratio is less than 1, then
this indicates that change is less likely in Region A than in Region B and, in this case, the ratio is
inverted to describe likelihood of change in Region B relative to Region A.

To determine odds ratios, the diagonal and off-diagonal elements of the change matrices are
collapsed into 2 by 2 matrices, which can then be used to calculate the relative odds of changes in
one region compared to another. The overall changes in Regions 1 and 2 indicate change in 13 out of
100 pixels in Region 1 and in 26 out of 100 pixels in Region 2. This results in no change totals of 87 and
74 pixels respectively. The relative likelihood of land cover change in Region 1 compared to Region 2 is:

θ “
13{87
26{74

“
0.13
0.26

“ 0.425

That is, relative odds of change in Region 2 are 0.425´1 or 2.35 times higher than in Region 1. The significance
of the interactions between regions and land cover change can be tested using a χ2-test and in this case it
indicates a significant difference at the 95% level between Regions 1 and 2 (p-value = 0.032).

It is also possible calculate to the relative odds and associated significance for changes to different
classes. Table 2 shows the relative odds of land cover losses and gains comparing Region 1 with Region 2.

A number of significant differences in land cover change are suggested by Table 2:

‚ the relative odds of loss from Farmland is 3.7 (0.267´1) times greater in Region 2 than in Region 1;
‚ the relative odds of gains in Farmland and Woodland area are 29.4 (0.034´1) and 6.3 (0.158´1)

times greater in Region 2 than in Region 1.

Other losses and gains are not significant.
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Table 2. The odds ratios of land cover losses and gains in Region 1 compared to Region 2.

Class Odds Ratio Log Odds Ratio Std. Error z Value Pr (>|z|)

Loss

Farmland 0.267 ´1.322 0.537 ´2.463 0.014
Grass 0.250 ´1.386 0.855 ´1.622 0.105
Urban 2.000 0.693 1.066 0.650 0.516

Woodland 1.182 0.167 1.274 0.131 0.896

Gain

Farmland 0.034 ´3.382 1.481 ´2.283 0.022
Grass 0.714 ´0.336 0.888 ´0.379 0.705
Urban 2.860 1.051 0.625 1.681 0.093

Woodland 0.158 ´1.846 0.790 ´2.337 0.019

The gross changes may hide more subtle changes in each class. As a result, the odds ratios may
present an example of Simpson’s paradox [26], where different rates (and directions) of per class
changes may be masked by the aggregate gross changes. It is possible to quantify differences in the
likelihood of specific class-to-class transitions, rather than just losses and gains, and how they vary
in different regions. As an example of a specific direction of change, consider the transitions from
Farmland to Urban class in Regions 2 and 3 (Table 1). The diagonal and off-diagonal elements of the
correspondence matrices are collapsed into a 2 by 2 contingency matrix, which is used to generate
the relative odds of a specific land cover transition in one region compared to another, as in Table 3.
The odds ratios suggest that the relative odds of Farmland changing to Urban are (0.218´1) 4.59 times
more likely in Region 3 than in Region 2.

Table 3. The 2 by 2 contingency table describing the areas of change from Farmland to Urban in Regions
2 and 3 and the associated odds ratios. The table values summarise the losses from Farmland to Urban
and to other classes (Urban).

Region Urban Urban

Region 2 6 29
Region 3 18 19

θ1 “
6{29
18{19

“ 0.218

Of course, it is important to consider the data that are used to populate the contingency table: by
including the areas that did not change as well as those that did, the correct interpretation of this odds
ratio above is, change from Farmland to Urban is 4.6 (0.218´1) times more likely in Region 3 than in Region 3,
when all possible states of change and no change are considered, and the χ2-test showed this to be significant
at the 95% confidence level (p-value = 0.0098). This analysis can be further refined to consider only
land use changes (i.e., without considering areas Farmland that did not change). The data are shown
in Table 4 and the odds ratio now describes a different problem: that change from Farmland to Urban is
3.8 times more likely in Region 1 than in Region 2, when only observed changes from Farmland are considered,
although in this case the differences were not found to be significant (χ2 p-value = 0.0956) when only
changes were considered.

Table 4. The 2 by 2 contingency table showing the areas of change from Farmland to Urban and from
Farmland to other land covers in Regions 1 and 2 and the associated odds ratios.

Region Farmland to Urban Farmland to Other

Region 1 6 9
Region 2 18 7

θ2 “
6{9
18{7

“ 18.591
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Finally, the analysis can be extended to determine the relative odds of change to and from all
possible classes. Figure 2 shows the odds ratios for each class to class pair, comparing changes in
Region 2 with those in Region 3. The table elements are shaded by the significance arising from the
χ2-test. Figure 2 describes the relative odds of class-to-class changes in Region 2 compared to Region 3, when
only changes from the original class are considered. It is easy to identify significant regional differences
(shaded in green) and to make the following statements:

‚ changes from Grass to Farmland changes are 35 times more likely in Region 2 than Region 3;
‚ changes from Farmland to Urban change are 125 times more likely (0.008´1) in Region 3 than in

Region 2.

Figure 2. The odds ratios of the class-to-class land cover changes (i.e., excluding the diagonal values in
the correspondence matrices) between Region 2 and Region 3. The cell shading indicates the p-values
arising from a χ2-test, with empty cells indicating where a comparison is not made. The correspondence
matrices for Regions 2 and 3 are included for illustration purposes. Significant regional differences are
shaded in green.

3.4. Comparing Changes in More than Two Regions

The preceding analyses compared only two regions, with data collapsed into 2 by 2 contingency
tables. However, in many studies, the objective is to compare more than two treatments and to evaluate
differences across multiple factors. Consider, for example, the regional losses and gains in Table 5.
These can be analysed using mosaic plots which provide a method to evaluate and visualise statistical
differences in contingency tables (symmetrical and non-symmetrical).

Table 5. The losses and gains in three different regions.

Status Region Farmland Grass Urban Woodland

Loss
Region 1 7 2 2 2
Region 2 15 8 2 1
Region 3 25 3 2 2

Gain
Region 1 0 2 9 2
Region 2 8 3 6 9
Region 3 0 2 23 7
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Mosaic plots were proposed by Hartigan and Kleiner [21] and extended by Friendly [22]. In these,
the significance of the interactions between column and row factors are indicated by the shading, in
which the standardised residuals of a log-linear model are indicated by the colour and outline of the
mosaic tiles. The mosaic plot in Figure 3 has axes for the different regions being compared and the
land cover change types. The size of the plot tiles is proportionate to the land cover areas (counts in the
contingency tables). Their shading indicates whether the combinations of groups, regions, classes etc.
are less or greater than expected under a model of proportionality. In the examples below, tiles shaded
deep blue show interactions that are significantly higher than would be expected (i.e., corresponding to
combinations of change and region whose standardized residuals are greater than +4), when compared
to a model of proportionally equal levels of change. Tiles shaded deep red correspond to residuals
less than ´4 indicating significantly lower frequencies than would be expected when compared to
the model. The standardized Pearson residuals measure the deviation of each tile from independence.
From Figure 3, statements can be extracted under the assumption of proportionally equal levels of
change (loss and gain) for each land cover class and region. In this case, the mosaic plot indicates that
the gains to Urban in Region 3 are much greater than expected.

Figure 3. A mosaic plot comparing the losses from and gains to each land cover class in each
region (R1–R3).

It is possible to apply a different type of analysis to the correspondence matrix in order to compare
regional land use changes against a model that expects proportionally equal levels of change in each
region. Generalised linear models can be used to estimate the likelihood of change as a function of
the regions. The counts of change (loss) and no change are summed for each region in a table of
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counts. In this, the rows indicate whether change had occurred or not and the columns indicate the
region—a transpose of Table 5. To test for an association, A, between the row and column effects, the
Poisson regression model is applied:

A
`

cij
˘

“ log
`

r` Ci ` Rj
˘

(2)

where the count in column i and row j is denoted by cij and has a Poisson distribution, r is an intercept
term, Ci is a column effect and Rj is a row effect, which is compared against the model:

A
`

cij
˘

“ log
`

r` Ci ` Rj ` Iij
˘

(3)

where the extra term Iijis an interaction effect between rows and columns. If this is significantly different
from zero, then it suggests that there is some degree of association between the row and column effects.
Values of Iij were estimated by fitting Equation (3) to the regional data and the resulting coefficients were
related to a comparative index of loss for each of the row categories, using the formula:

CHANGE “ 100
`

exp
`

Iij
˘

´ 1
˘

(4)

In summary, Equations (2)–(4) apply a generalized linear model to a cross-tabulation of how
different factors interact (regions and classes) in order to predict the frequency of occurrence of the
count under a Poisson distribution. Note that in the analyses below the CHANGE term in Equation (4)
is used to evaluate land cover losses from Time 1 and gains at Time 2. Due to the way the interaction
terms are calibrated, this compares each column category j (regions) against a “reference” category
which is usually the region with largest area. However, in this case all of the regions have the same
number of pixels and so the reference is Region 1. A value of 0 suggests the likelihood of loss for
category j is the same as for the reference category. A value of +50 for category j suggests loss is
one-and-a-half times as likely as the reference category, a value of ´50 that it is half as likely, and so on.
The analysis of loss from a transpose of Table 5 was calculated and the results are shown in Table 6.

Table 6. The likelihood of land use changes for different regions in the study area, relative to Region 1.

Region Change Likelihood Pr (>|z|)

Region 2 135.1 0.0225
Region 3 214.9 0.0018

The results in Table 6 suggest that the likelihood of change in Region 2 is 135% greater than in
Region 1 and that the likelihood of change in Region 3 is 215% greater than in Region 1.

The application of the generalised linear models can be further extended to consider how specific
class-to-class transitions vary in different regions. Consider the summary data in Table 7. This describes
the changes from Farmland to Urban and to non-Urban classes (i.e., Grass and Woodland) in the three
regions, ordered left to right by the largest column totals. It is possible to determine the likelihood
of change to Urban in different regions relative to the region with the largest area of change, in this
case Region 3. The results are shown in Table 8 and indicate that likelihood of land cover change from
Farmland to Urban is 286% greater in Region 2 than in Region 3 and 57% less in Region 1 compared to
Region 3, although this difference was not found to be significant.

Table 7. The regional changes from Farmland at Time 1 to Urban and other classes (non-Urban) at Time 2.

Change from Farmland Region 3 Region 2

To Urban 18 6
To non-Urban 7 9
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Table 8. The likelihood of regional land cover changes from Farmland to Urban relative to Region 3.

Change Likelihood Pr (>|z|)

Region 2 285.7 0.0504
Region 1 ´57.1 0.4683

Finally, it is sometimes useful to be able to compare different land cover transitions. Consider the
data in Table 9. They summarise the changes from Farmland to Urban and to Woodland in the
three regions, again ordered left to right by the greatest volume of change. The results are shown in
Table 10 and indicate that likelihood of change from Farmland to Urban rather than from Farmland to
Woodland is 200% greater in Region 2 compared to Region 3 and 57% less in Region 1 compared to
Region 3, although in this case neither of these differences are significant.

Table 9. The changes from Farmland at Time 1 to Urban and to Woodland at Time 2.

Change from Farmland Region 3 Region 2 Region 1

To Urban 18 6 6
To Woodland 7 7 1

Table 10. The likelihood of land cover changes from Farmland to Urban rather than Farmland to
Woodland in Region 2 and Region 1 relative to Region 3.

Change Likelihood Pr (>|z|)

Region 2 200.0 0.1232
Region 1 ´57.1 0.4683

3.5. Summary

The methods presented in this section describe analyses to compare two treatments using odds
ratios (Section 3.3) which are extended to approaches for comparing more than two treatments using
generalized linear models. These approaches are not new, for example, Comber et al. [27] applied the
methods presented in Section 3.4, but they have not been applied in the context of land cover analysis
and data which are commonly summarised in contingency tables.

4. Case Study

4.1. Introduction

The methods presented in Section 3 were developed using a simple, hypothetical case study.
In this section, these are applied to the results of a national coastal land use change study that compared
data from 1965 and 2014. The research was commissioned by the National Trust as part of the Neptune
initiative [28]. The full results are in [29] as well as some press reports [30], and the 1965 and 2015
data are provided online [31]. In brief, coastal land use was recorded in 1965 in a survey conducted
by students from the University of Reading. The survey was updated manually in 2014 using freely
available, open source aerial photography and mapping software, with the remote sensing imagery
providing critical evidence for the update mapping. The project adopted a set of change mapping
protocols that were specifically developed to ensure robust measures of land use change by minimising
spurious or methodological inconsistency between the surveys, details of which are in [29]. Figure 4
shows examples of the hand drawn and annotated basemaps and data from the two time periods, as
well as the National Trust administrative regions.

The National Trust was critically interested in two specific aspects of land use change. First, the
Trust manages around 775 km of the coastline in England, Wales and Northern Ireland (Scotland has
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a separate organisation). Consequently, it wanted to understand what the impacts were of their land
management policies on land use change, in part to demonstrate the conservation value of its activities.
Second, it wanted to understand how changes in coastal land uses varied regionally, specifically across
and between its administrative regions.

Figure 4. Examples of the National Trust land use data (a) the original base maps; (b) the 1965 data;
(c) the 2014 data; and (d) the National Trust administrative regions with the coastal strip in red.
A legend for the classes is not included.
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4.2. Non-National Trust vs. National Trust Change

It is important to recall that land use changes are composed of losses and gains and these may
occur to and from the same class at different locations, reflecting local land use churn—for example,
where a campsite is relocated to a larger field by a farmer, this is both a loss to the Campsite land use
(e.g., to Open countryside) and a larger gain. Table 11 shows the overall losses and gains in coastal
land use recorded on non-National Trust and National Trust land. These are derived from the marginal
totals of the full change matrices included in the Appendices. The data reflect recent, general land use
trends: urbanisation, increases in woodland at the arable fringe, decreases of defence land uses and
increases in leisure activities (camping, caravans, recreational land such as golf-courses and sports
fields which are labelled as Cared for but non-productive).

Table 11. The losses from and gains to different land use classes in hectares on land managed by the
National Trust and other land.

Class
Non-National Trust Land National Trust Land

Same Loss Gain Same Loss Gain

Urban 40,075 1772 19,277 193 35 86
Shacks 61 762 94 2 34 4

Industry 5404 3985 7662 2 39 13
Wasteland 523 2287 2988 7 109 22

Caravans, campsites 3060 1722 3923 8 81 34
Defence 11,622 4757 1302 209 767 13

Blockhouses * 0 197 0 0 12 0
Transport 2324 1489 3644 3 1 0

Open Countryside 283,558 36,654 21,655 32,207 1565 1765
Woodland 15,306 3088 10,556 2200 305 1221

Cared for but non-productive 11,034 2880 6302 515 198 137
Caravans in Woods * 0 31 0 0 0 0

Caravans in Quarries * 0 11 0 0 0 0

* Not mapped in 2014.

The data in Table 11 can be used to compare losses and gains in areas managed by the National
Trust with those in other areas using odds ratios (Equation (1)). These generate regional comparative
measures of the relative odds of change and a χ2-test indicates the significance (statistical likelihood)
of the differences. The results of comparing the losses and gains for each land use class in this way are
shown in Table 12 and indicate the relative odds of change on non-National Trust land compared to
National Trust land. The 95% confidence intervals of the odds for losses and gains are also included.

Table 12. The Odds Ratios of losses and gains for changes on non-National Trust vs. National Trust
land. Bold values show significant likelihoods of greater change on National Trust land.

Class
Loss Gain

OR 2.5% 97.5% p-Value OR 2.5% 97.5% p-Value

Urban 4.05 2.81 5.83 0.000 0.92 0.71 1.19 0.575
Shacks 1.18 0.30 4.57 1.000 1.24 0.25 6.29 1.000

Industry 26.19 6.32 108.55 0.000 4.67 1.06 20.68 0.048
Wasteland 3.63 1.67 7.89 0.001 0.55 0.23 1.30 0.263

Caravans, campsites 18.36 8.82 38.25 0.000 3.34 1.54 7.27 0.002
Defence 8.95 7.65 10.46 0.000 0.54 0.30 0.95 0.039

Transport 0.29 0.01 5.95 0.779 0.10 0.01 1.97 0.154
Open Countryside 0.38 0.36 0.40 0.000 0.72 0.68 0.75 0.000

Woodland 0.69 0.61 0.78 0.000 0.80 0.75 0.87 0.000
Cared for but non-productive 1.47 1.24 1.74 0.000 0.47 0.39 0.57 0.000
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A number of statements about significant land use losses can be made from Table 12. The relative
odds of land use losses on non-National Trust land compared to National Trust land are:

‚ 4.05 times greater for Urban land uses
‚ 26.19 times greater for Industrial land uses
‚ 2.63 times greater for Wasteland
‚ 8.95 times greater for Defence land uses
‚ 18.36 times greater for Caravans and campsites
‚ 1.47 times greater for Cared for but non-productive land

The relative odds of land use losses on National Trust land verses non-National Trust land are:

‚ 3.44 times greater (0.29´1) for Transport land uses
‚ 2.66 times greater (0.38´1) for Open Countryside
‚ 1.46 times greater (0.69´1) for Woodland

A number of statements about significant land use gains can be made from Table 12. The relative
odds of land use gains on non-National Trust land compared to National Trust land are:

‚ 4.67 times greater for Industrial land uses
‚ 3.34 times greater for Caravans and campsites

The relative odds of land use gains on National Trust land versus non-National Trust land are:

‚ 1.82 times greater (0.55´1) for Wasteland
‚ 1.87 times greater (0.54´1) for Defence land uses
‚ 1.39 times greater (0.72´1) for Open Countryside
‚ 1.24 times greater (0.80´1) for Woodland
‚ 2.14 times greater (0.47´1) for Cared for but non-productive land

It also possible to compare the class to class changes on National Trust land with those recorded on
non-National Trust land and to identify any significant differences. The relative odds of class-to-class
changes on non-National Trust land compared to National Trust land, when only changes from the
original class are considered are shown in Figure 5. So, for example, changes from Open Countryside
at Time 1 to Urban at Time 2 (i.e., Urban gains from Open Countryside) were 11.99 times more likely
on non-National Trust land.

Figure 5. Significant differences in class to class changes observed on non-National Trust land compared
to those observed on National Trust land. The figures in the table indicate the odds ratios of those
changes and the shading indicates the results of χ2-test, with significant differences shaded in green.
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4.3. Regional Comparison

One of the main reasons for the original survey in 1965 was concern over what was seen as unfettered
development. In the update, there was particular interest in quantifying how rates of development
varied in different parts of England, Wales and Northern Ireland. To consider this, the changes (gains) to
the land use classes of Urban, Industry, Transport and Caravan and campsites (Table 13) were evaluated
using the generalized linear models described in Equations (2) to (4). The data used for this analysis are
the gains to these classes and the amount of land that did not change (Table 13). The results indicate
the relative likelihoods of these changes across the National Trust regions (Table 14) and show that
development, for example, is 53% greater in London and the South East region than in Wales, whereas
it is ~15% less likely in the South West region. All of the differences were found to be significant.

Table 13. The areal changes in hectares to land use associated with development (Urban, Industry,
Transport and Caravan and campsites).

Region No Change Change

East of England 57,861 2909
Yorkshire & North East 36,401 3007

North West 35,229 2564
Wales 87,868 5589

South West 87,922 4768
London & South East 60,143 5866

Midlands 12,675 495
Northern Ireland 29,822 2122

Table 14. The likelihood of developmental changes in different regions relative to Wales, the region
with the largest area.

Region Change Likelihood Pr (>|z|)

South West ´14.74 0.0000
London & South East 53.33 0.0000

East of England ´20.95 0.0000
Yorkshire & North East 29.85 0.0000

North West 14.42 0.0000
Northern Ireland 11.85 0.0000

Midlands ´38.64 0.0000

The mosaic plot in Figure 6 provides a statistical summary of losses and gains for three regions:
East of England, South West and London & South East. The classes are on the Y-axis and the X-axis
columns indicate the regional losses and gains. The table should be read horizontally to interpret
regional differences in class losses and gains. It provides a convenient statistical summary of the per
class losses and gains, summarising the areas of loss and gain by the size of the tiles which can have
the consequence that the classes may be at different “heights”. It also provides a statistical measure of
the unexpectedness of the observed changes in each region (under a model that assumes equal areas of
change). Tiles that are shaded deep blue show interactions that are significantly higher than would be
expected and those shaded deep red indicate significantly lower frequencies than would be expected.
This provides a detailed comparison of specific losses and gains for individual classes in different
regions. Figure 6 indicates that, for example, Urban gains are greater than would be expected in all
regions, that losses to Cared for but non-productive were less than expected in the East of England and
the South West regions (but not in London and South East) and that gains to Caravan and campsites
were greater than expected in the East of England and the South West regions (but not in London and
South East).
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Figure 6. A mosaic plot of the per class land use losses and gains in different regions: East of England
(EE), South West (SW) and London & South East (LSE).

5. Discussion

This paper describes a series of approaches for statistically comparing land cover change in different
regions (or treatments) based on analyses of data held in correspondence matrices. The methods provide
a suite of approaches from which appropriate techniques can be selected depending on the task in
hand. They are not intended to be used together as they relate to different questions about change:
Section 3.3 describes methods for comparing two treatments or regions and Section 3.4 for comparing
more than two treatments. The methods are based odds ratios and generalised linear models, are
commonly applied to data held in correspondence matrices in other disciplines but have not been
previously applied to quantify differences in land cover change or error matrices.

Each of the approaches uses slightly different formulations of the correspondence matrix, the most
commonly used framework for describing and analysing land use/land cover changes (and also for accuracy
assessments in remote sensing). Odds ratios were used to compare changes in two regions. They describe
the relative likelihood of a change occurring in one region compared to another. Generalised linear models
(Poisson regression models) were used to quantify the relative differences between changes in three
or more regions. An index of change was proposed to compare the likelihood of changes in multiple
regions. This measures the relative change likelihood of regions, when compared to one “reference”
region. In that sense, they perform a series of binary comparisons of each region to the reference region.
This is the nature of comparative statistics—they are by definition relative. However, each region could
be specified as the referent in turn to compare all regions against each other.

The approaches described above are relatively easy to compute from the either the raw, classified
data or from correspondence matrices. These methods are commonly used to analyse data in
contingency tables in many areas of information science and statistics but have not been applied
within land cover research, despite the correspondence matrix being the method of reporting change
and error in land cover and land use analyses. This paper has sought to illustrate that such statistics
are also widely applicable, especially in analyses of land cover change, and have the capacity to
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generate more informative reporting of change and error than simple consideration of different
correspondence matrices.

The correspondence matrix is also the de facto approach for assessing error and accuracy in land
cover and land use. In this context, it is frequently referred to in the literature as the error, validation
or accuracy matrix. In the error matrix, predicted or modelled data, for example from a classification
of remotely sensed imagery, are cross tabulated with observed or ground truth data, commonly
derived from a field survey or data that are deemed to be of higher quality. A number of statistics are
commonly generated describing from the correspondence matrix including overall accuracy and per
class Type I and Type II errors (errors of omission and commission, user and producer accuracies).
The generalised linear models suggested by Equation (4) could be modified such that Accuracy is
predicted by the regression rather than Change (loss or gain) and an Index of error constructed to allow
the likelihood of errors in multiple regions to be compared. Future work will explore these approaches
in accuracy reporting.

6. Conclusions

In much of land mapping work, there is a need to report how “different” changes observed in one
region are from those observed in another. This research was motivated by the need within a project to
generate statistics comparing land ownership regions, but the regions may relate to spatial feature:
management practices, ecological zones, underlying geological process, etc. Methods for doing this are
lacking in the remote sensing and land cover literature and within the sub-disciplines concerned with
quantifying land cover change and accuracy. The analyses described in this paper use odds ratios and
generalised linear models to compare change in different regions. These approaches are commonly
applied in other information sciences. They are simple and intuitive and can be used to compare
overall changes, specific class to class changes and per class loss and gains arising in different locations
or as a result of different treatments.
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Appendix A

The correspondence matrix of land use on non-National Trust land (hectares).

Class
Time 2

Urban Shacks Industry Wasteland Caravans Defence Blockhouses Transport O. Countryside Woodland Cared for C in Woods C in Quarries Amenity Water

Time 1

Urban 40,075 10 251 75 190 41 0 42 499 252 224 0 0 22
Shacks 212 61 3 14 134 0 0 1 304 22 44 0 0 0

Industry 426 0 5404 1287 28 1 0 366 1294 316 120 0 0 1
Wasteland 134 0 429 522 34 4 0 27 1240 262 51 0 0 3
Caravans 451 1 14 58 3060 2 0 1 914 101 122 0 0 2
Defence 531 0 268 204 80 11,622 0 562 2521 200 318 0 0 17

Blockhouses 1 0 69 0 1 0 0 1 75 16 16 0 0 0
Transport 411 0 378 207 10 0 0 2324 322 58 54 0 0 9

O. Countryside 12,487 35 3662 778 3090 927 0 707 283,558 8356 4312 0 0 46
Woodland 445 1 101 30 150 29 0 2 2114 15,306 165 0 0 0
Cared for 1275 22 51 26 90 3 0 65 865 432 11,034 0 0 3

C in Woods 0 0 0 0 10 0 0 0 7 1 13 0 0 0
C in Quarries 1 0 0 0 4 0 0 0 0 6 0 0 0 0

Amenity water 0 0 3 15 0 0 0 0 9 3 1 0 0 0

Appendix B

The correspondence matrix of land use on National Trust land (hectares).

Class
Time 2

Urban Shacks Industry Wasteland Caravans Defence Blockhouses Transport O. Countryside Woodland Cared for C in Woods C in Quarries Amenity Water

Time 1

Urban 193 0 0 1 0 1 0 0 20 9 4 0 0 0
Shacks 3 2 0 0 1 0 0 0 26 2 1 0 0 0

Industry 0 0 2 10 5 0 0 0 18 0 5 0 0 0
Wasteland 1 0 2 7 0 0 0 0 101 4 1 0 0 0
Caravans 2 0 0 0 8 0 0 0 65 9 4 0 0 0
Defence 0 0 0 6 1 209 0 0 734 0 1 0 0 0

Blockhouses 0 0 0 0 0 0 0 0 9 1 2 0 0 0
Transport 0 0 0 0 0 0 0 3 0 0 0 0 0 0

O. Countryside 61 3 11 4 22 11 0 0 32,207 1118 111 0 0 0
Woodland 6 0 0 0 3 0 0 0 283 2200 7 0 0 0
Cared for 6 1 0 0 2 0 0 0 127 60 515 0 0 0

C in Woods 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C in Quarries 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Amenity water 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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17. Balej, M.; Anděl, J.; Koutský, J.; Olšová, P. Comparing Regional Differentiation of Land Cover Changes in
Natural and Administrative Regions of the Czech Republic Using Multivariate Statistics. Available online:
http://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/ersa11acfinal00768.pdf (accessed on 1 January 2016).

18. Duveiller, G.; Defourny, P.; Desclée, B.; Mayaux, P. Deforestation in Central Africa: Estimates at regional,
national and landscape levels by advanced processing of systematically-distributed Landsat extracts.
Remote Sens. Environ. 2008, 112, 1969–1981. [CrossRef]

19. Colditz, R.R.; López Saldaña, G.; Maeda, P.; Espinoza, J.A.; Tovar, C.M.; Hernández, A.V.; Benítez, C.B.;
López, I.C.; Ressl, R. Generation and analysis of the 2005 land cover map for Mexico using 250 m MODIS data.
Remote Sens. Environ. 2012, 123, 541–552. [CrossRef]

20. Bangdiwala, S.I. The Agreement Chart. Department of Biostatistics, University of North Carolina at
Chapel Hill, Institute of Statistics Mimeo Series No. 1859. 1988. Available online: http://www.stat.ncsu.edu/
information/library/mimeo.archive/ISMS_1988_1859.pdf (accessed on 16 January 2016).

21. Hartigan, J.A.; Kleiner, B. Mosaics for contingency tables. In Computer Science and Statistics: Proceedings of the
13th Symposium on the Interface; Springer: New York, NY, USA, 1981; pp. 268–273.

http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1016/j.rse.2006.02.023
http://dx.doi.org/10.1016/j.rse.2015.01.006
http://dx.doi.org/10.1080/01431160010006881
http://dx.doi.org/10.1007/s10661-008-0274-x
http://www.ncbi.nlm.nih.gov/pubmed/18398690
http://dx.doi.org/10.1016/j.apgeog.2008.12.005
http://dx.doi.org/10.1371/journal.pone.0043943
http://www.ncbi.nlm.nih.gov/pubmed/22952816
http://dx.doi.org/10.1007/s00267-005-0276-1
http://www.ncbi.nlm.nih.gov/pubmed/17039389
http://dx.doi.org/10.1080/01431161.2011.552923
http://dx.doi.org/10.14358/PERS.70.5.627
http://dx.doi.org/10.1016/j.rse.2012.10.031
http://dx.doi.org/10.1016/S0959-3780(01)00007-3
http://dx.doi.org/10.1016/j.rse.2006.06.018
http://dx.doi.org/10.1016/j.rse.2006.11.014
http://dx.doi.org/10.1016/j.landurbplan.2011.03.014
http://dx.doi.org/10.1007/s13280-012-0354-6
http://www.ncbi.nlm.nih.gov/pubmed/23151939
http://dx.doi.org/10.1016/j.rse.2007.07.026
http://dx.doi.org/10.1016/j.rse.2012.04.021


Remote Sens. 2016, 8, 176 19 of 19

22. Friendly, M. Mosaic displays for multi-way contingency tables. J. Am. Stat. Assoc. 1994, 89, 190–200. [CrossRef]
23. Meyer, D.; Zeileis, A.; Hornik, K. The strucplot framework: Visualizing multi-way contingency tables with vcd.

J. Stat. Softw. 2006, 17, 1–48. [CrossRef]
24. Zeileis, A.; Meyer, D.; Hornik, K. Residual-based shadings for visualizing (conditional) independence.

J. Comput. Graph. Stat. 2007, 16, 507–525. [CrossRef]
25. Friendly, M. Working with Categorical Data with R and the vcd and vcdExtra Packages. Available online:

http://202.90.158.4/pub/R/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf (accessed on 1 January 2016).
26. Simpson, E. The interpretation of interaction in contingency tables. J. R. Stat. Soc. Ser. B 1951, 13, 238–241.
27. Comber, A.; Brunsdon, C.; Green, E. Using a GIS-based network analysis to determine urban greenspace

accessibility for different ethnic and religious groups. Landsc. Urban Plan. 2008, 86, 103–114. [CrossRef]
28. Fifty Years of Land Use Change at the Coast. Available online: http://www.nationaltrust.org.uk/article-1355914106958/

(accessed on 16 January 2016).
29. Comber, A.; Davies, H.; Pinder, D.; Whittow, J.B.; Woodhall, A.; Johnson, C.M. Mapping coastal land use

changes 1965–2014: Methods for handling historical thematic data. Trans. Inst. Br. Geogr. 2016, submitted.
30. Coastal Construction “How Britain’s Shoreline Changed in 50 Years”. Available online: http://www.theguardian.com/

environment/ng-interactive/2015/oct/20/50-years-british-coast-line-then-and-now (accessed on 16 January 2016).
31. Mapping Our Shores: 1965 & 2014 Land Use. Available online: http://goo.gl/4DlZ09 (accessed on

16 January 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01621459.1994.10476460
http://dx.doi.org/10.18637/jss.v017.i03
http://dx.doi.org/10.1198/106186007X237856
http://dx.doi.org/10.1016/j.landurbplan.2008.01.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Background 
	Methods 
	Hypothetical Data 
	Visualising Change Matrices 
	Comparing Changes in Two Regions Using Odds Ratios 
	Comparing Changes in More than Two Regions 
	Summary 

	Case Study 
	Introduction 
	Non-National Trust vs. National Trust Change 
	Regional Comparison 

	Discussion 
	Conclusions 

