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Summary: Applications of circular regression models appear in many different fields such as evolutionary psychology,

motor behavior, biology, and, in particular, in the analysis of gene expressions in oscillatory systems. Specifically,

for the gene expression problem, we need to model the relation among peak expressions of cell-cycle genes in two

species with different cell phase lengths. This challenging problem reduces to the problem of constructing a piecewise

circular regression model and, with this objective in mind, we propose a flexible circular regression model which allows

different parameter values depending on sectors along the circle. We give a detailed interpretation of the parameters

in the model and provide maximum likelihood estimators. We also provide a model selection procedure based on the

concept of generalized degrees of freedom. The model is then applied to the analysis of two different cell-cycle data

sets and through these examples we highlight the power of our new methodology.
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1. Introduction

Analysis of circular data has a long history with well-developed theory and methodology

documented in several books (see, for example, Fisher (1993); Mardia and Jupp (2000)). It

is well known that circular data analysis presents many challenges due to the non-Euclidean

nature of the circle. All basic concepts have to be redefined as even the usual arithmetic

mean is not meaningful in this case, since, for example, the mean value of 1 and 359

degrees cannot be 180 degrees (which is in the opposite side of the circle) but should be

0 degrees which is the circular mean. Until recently much of the literature was developed for

describing circular models and drawing inferences on individual angular parameters, such

as comparing the mean directions of two or more populations. In recent years, the circular-

circular regression problem (i.e. when both regressor and response are circular variables) has

received some attention (see, for example, Downs and Mardia (2002), Kato et al. (2008),

Kato and Jones (2010) or Polsen and Taylor (2015)). In order to perform circular regression

a link between the two variables is needed in order to get meaningful results since there is no

concept of scaling/slope on this manifold. With this in mind, it is not surprising that there

is not a unique approach to circular regression unlike for linear regression. The most natural

model using a tangent link function and based on Möbius transformations was introduced by

Downs and Mardia (2002) under the assumption that the angular variables were distributed

according to the von Mises distribution; the von Mises distribution is the standard analogue

on the circle of the univariate normal distribution. Our piecewise circular regression model

introduced in this paper is based on this model. This is a very flexible as required by our

motivating applications. In particular, the proposed model is able to deal with the additional

complication of the continuity restrictions, computational burden introduced by the piecewise

character of the model, and some specific requirements of the our applications.

This paper is motivated by a problem encountered in cell biology where researchers are
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interested in correlating angular data from two or more sources (e.g. experiments or species).

We now give insight into the data. There are four major phases of distinct biological functions

through which a cell-cycle gene (among eukaryotic cells) goes during cell division, namely

the four phases are G1, S, G2 and M. These genes participating in the cell-cycle tend to

have a periodic pattern of expression over time. Consequently, the time to peak expression

(known as the phase angle) of such genes can be mapped onto a unit circle. Further the

time boundaries of each phase are mapped in to sectors which for our application in Section

3.2 are (2.10, 2.80, 4.00, 5.75). These sector boundaries are important for this paper and will

be denoted by θ∗i , i = 1, 2, ..., 4 (Section 2.1). Figure 1 shows the four gene phases and the

sectors so, for example, a gene in G1 takes a value in the sector (2.10, 2.80). From our data

set (Application in Section 3.2), the figure shows phase angles (data points) of the four S.

cerevisiae genes: RFA1, HHT1, FHK1, and DBF2. The figure also shows the cell phase length

of each cycle (0.70, 1.20, 1.75, 2.63) and their relative percentages (11%, 19%, 28%, 42%).

[Figure 1 about here.]

To illustrate the methodology we use cell-cycle data available from the cyclebase data

base www.cyclebase.org (Santos et al. (2015)). This database contains data obtained from

20 different experiments conducted in different laboratories on budding yeast (S. cerevisiae)

and fission yeast (S. pombe).

Cell-biologists are often interested in drawing inferences regarding the phase angle of cell-

cycle genes since they are considered to be associated with the gene’s biological function.

Often two types of inferences are of interest. Using the data obtained from a single experiment

on a given species, one may be interested in estimating the phase angle of a set of cell-cycle

genes in that species when the relative order of peak expression is known a priori (Rueda

et al. (2009)). Another question of interest is to detect whether the order of the phase angles

of a set of cell-cycle genes is consistent across multiple experiments on the same species (Liu
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et al. (2004)), or more broadly if the order of the phase angles of a set of cell-cycle genes is

the same across multiple species (Fernández et al. (2012)).

For our applications, we need a model with the following features. 1. Monotonicity. In the

cell-cycle, the function relating the peak expressions has to be increasing as a decrease in the

function would mean that the cycle is going backwards, which is biologically not sensible.

2. ”Synchronicity” (defined with more detail in Section 2.3). As we are relating the data

coming from a single cycle in the response variable to those coming from a single cycle in

the regressor variable, the response has to run one cycle when the regressor variable runs

through one cycle. We show in Section 2.3 how these conditions can be incorporated in our

model which will not be easy in the non-parametric models such as of Di Marzio et al. (2013).

While, as demonstrated in Liu et al. (2004), the regression model proposed in Downs and

Mardia (2002) is likely to perform well when the cell phase lengths are the same across all

species, it may be too rigid when the cell phase length in each of the four phases is not the

same across different species. For this reason, in Section 2 we introduce a flexible piecewise

regression model that can be useful for drawing inferences when the cell phase lengths vary

across species.

Piecewise regression, although not defined for manifolds until now, has been well studied in

the Euclidean setting (see for example Seber and Wild (1989)). To highlight some challenges

in circular piecewise regression, we consider the simplest linear case. Namely, the case of a

single change point with no error

y = a1 + b1x, x 6 c; y = a2 + b2x, x > c

with the continuity constraint

a1 + b1c = a2 + b2c. (1)

We note that if x and y are are angular variables, a single change point c has no meaning

because a single point does not define two sectors in the closed circumference, so there should
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be at least two change points; the two sector boundaries could consists of, say, day and night.

(We note that our applications in Section 3 show four change points). Furthermore, in the

linear case, this problem for computational purpose can be reparametrized as

y = A+Bx+ C(x−D)SGN(x−D) (2)

where now

c = D, a1 = A+ CD, a2 = A− CD, b1 = B − C, b2 = B + C

so the constraint (1) is included in (2). As noted later in the paper, such a simplification is

not available for the circular case. Of course, when the noise is added the inference problems

become more intricate as we will see in Section 2.

The methodological contributions of this paper are provided in Section 2 where we develop

the piecewise circular regression model and interpret the parameters of the model. We then

describe the estimation of these parameters. In that section we also describe a model selection

procedure based on the Generalized Akaike Information Criterion.

In Section 3 we illustrate our methodology by applying it to a cell-cycle gene expression

that motivated this study. In the first example, both data sets are on the same species but

obtained from different laboratories. In the second example, the data are obtained from two

different species of yeast, namely, fission yeast and budding yeast. Finally, in Section 4, we

discuss a variety of other biological applications, and explain the flexibility of our model for

different applications. We also point out various extensions of our work.

2. The circular piecewise regression model

In Section 2.1, we define the piecewise circular regression model that extends Downs and

Mardia (2002) while allowing for flexible relationships between regressor and the response

variable in different sectors of the circle. In the subsequent sections, Section 2.2–Section 2.3,

we interpret the parameters of the model and derive the maximum likelihood estimators. We
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demonstrate that our model is flexible to allow for monotonicity by imposing a restriction

on the parameters. In Section 2.4 we define a model selection criterion based on generalized

degrees of freedom by Ye (1998).

2.1 The Model

Consider a circular response variable ψ and a circular regressor variable θ. We denote by

k the number of different pieces or sectors in the unit circle and as θ∗i , i = 1, 2, ..., k the

sector boundaries (or change/break points in the linear piecewise regression model in the

line) which are assumed to be known. Note that k > 1 as we need two change points to define

two sectors on the circle. We denote as Θ the vector of values for the regressor variable with

components θij; i = 1, 2, ..., k and j = 1, 2, ..., ni, where the first index is the sector the

observation belongs to, so that θ∗i < θij 6 θ∗i+1 for 1 6 i 6 k − 1 and the index i takes value

k when θ∗k < θij 6 2π or 0 6 θij 6 θ∗1, the second index j is the number of the observation

in the corresponding sector, ni is the number of observations in sector i and N =
∑k

i=1 ni

is the total number of observations. Accordingly we denote as Ψ the vector of observed

values and as ψij the corresponding components of this vector. We further assume that ψij

given θij comes from independent von Mises distributions M(µij, κ) with density function

f(θij, µij, κ) =
1

2πI0(κ)
eκ cos(θij−µij), where I0 denotes the modified Bessel function of the first

kind and order 0.

We now describe the circular–circular (c-c) regression model of Downs and Mardia (2002)

where we take the circular response variable ψ, and the circular regressor variable θ, but in

this case there are no boundaries for θ. Further, ψ given θ comes from a von Mises distribution

with M(µ, κ) and

tan
1

2
(µ− β) = ω tan

1

2
(θ − α),

where α and β are angular location parameters and ω is a slope parameter which is restricted

to the closed interval [−1, 1] by adjusting α and β appropriately. Next, we propose our
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piecewise circular regression model with

tan
1

2
(µij − µ) = ωi tan

1

2
(θij − νi), j = 1, . . . , ni; i = 1, . . . , k, (3)

where, to ensure continuity, we take

ωi tan
1

2
(θ∗i − νi) = ωi−1 tan

1

2
(θ∗i − νi−1), i = 1, . . . , k, (4)

and ν0 = νk, ω0 = ωk. This model maintains the functional relationship of the Downs

and Mardia model but allows a different parameters in each of the sectors while imposing

continuity on the global function. Equivalently, our model (3) can be rewritten as

µij = µ+ 2 arctan

(

ωi tan
1

2
(θij − νi)

)

, (5)

for j = 1, . . . , ni and i = 1, . . . , k.

When k = 2 there is a simplification of the model given in Web Appendix A. Note also

that we cannot restrict all the ωi values to the interval [−1, 1] for the piecewise model. In the

c-c model the ω parameter can be restricted to that interval as an equivalent model can be

obtained considering µ′ = µ− π, ω′ = 1/ω and ν ′ = ν − π. However, in the piecewise model

it is not possible to make a transformation to ensure that ωi ∈ [−1, 1] simultaneously for all

i = 1, . . . , k as that would require more than one value for the single µ parameter. In spite

of this, from equation (3) it is clear that, as in the c-c model, the model with parameters

ω = (ω1, . . . , ωk), ν = (ν1, . . . , νk) and µ is completely equivalent to that with parameters

ω
′ = (1/ω1, . . . , 1/ωk), ν

′ = (ν1 − π, . . . , νk − π) and µ′ = µ− π.

2.2 Interpretation of the model parameters

Since the meaning of the parameters in our model is not straightforward (as for example

in the normal linear regression model), we give a detailed interpretation of each of them.

Parameter µ can be easily interpreted as a global location parameter quantifying the rotation

of the response that allows effective alignment with the regressor variable. Since there are

different sectors, different rotation parameters in each of the sectors are also needed for an
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appropriate alignment between the regressor variable and the response; this is accounted for

by the νi parameters.

The ωi are slope parameters for the θij observations in the sector (θ∗i , θ
∗

i+1] but its inter-

pretation is not that easy. If we leave aside the µ parameter, notice that each set of (ωi, νi)

parameters corresponds to one of the curves appearing in (5). From each of these k curves,

the model only uses a sector of length θ∗i+1−θ
∗

i for sector i when i = 1, . . . , k−1 and of length

2π − θ∗k + θ∗1 for sector k. The sector used is that from the interval
(

θ∗i − νi, θ
∗

i+1 − νi
)

when

i = 1, . . . , k− 1 and (θ∗k − νk, θ
∗

1 + 2π − νk) for i = k. As the model is not linear, a higher ωi

parameter (we will assume ωi > 1 in this paragraph) does not always mean a steeper curve

in the model. A high ωi parameter corresponds to a steep curve in the central part of the

[0, 2π] interval and to a flat curve at both extremes of that interval. Therefore, as only a part

of the curve corresponding to the aforementioned intervals is used, the steepness in a sector

does not only depend on ωi but also on νi and on θ∗i and θ∗i+1.

To illustrate these points we consider the following example coming from the data analyzed

in Section 3.2. That is, we assume a model with the known parameters (estimated in

Section 3.2) as given in Table 2 for which the sector boundaries considered are θ∗ =

(θ∗1, θ
∗

2, θ
∗

3, θ
∗

4) = (2.10, 2.80, 4.00, 5.75). From these parameters it may appear that the slope

on the first sector (2.10, 2.80] (ω1 = 1.658) should be lower than in the fourth one (5.75, 2.10]

(ω4 = 6.517) while it is clear from the model graph at Figure 2 (bottom) that it is not so.

From the same Figure, when compared with the third sector (4, 5.75], it is also apparent that

the slopes in the sectors are not constant. The ω3 parameter of this third sector (65.711) is

the highest of the four but there are some parts of the sector where the curve is not steep.

To give further detail on the relationship between the νi and the ωi parameters, consider

Figure 2 (top left); it gives the four curves from which the model is built. The blue curve

corresponds to ω1 = 1.658, the red one to ω2 = 0.066, the grey one to ω3 = 65.711 and the
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green one to ω4 = 6.517. The νi parameters and θ∗i values determine which part of each curve

is used in the model. Depending on νi and θ
∗

i , the same ω value can translate into a more or

less steep curve.

[Figure 2 about here.]

Figure 2 (top right) shows how these curves are combined in Figure 2 (top left) using the

νi parameters, finally leading to the model graph as shown in the bottom of the Figure 2

(bottom). The solution appearing in Figure 2 (bottom) follows the thin blue line from 2.10

(where it intersects the green line for the second time) to 2.80 (where the thin blue line

intersects the red line), then the red line from 2.80 to 4.00 (where the red line intersects the

grey line), next the grey line from 4.00 to 5.75 (where the grey line intersects the green line)

and finally the green line from 5.75 to 2π and from 0 to 2.1.

2.3 Estimation

We now describe the derivation of maximum likelihood estimators by assuming that the

response components are independently distributed according the von-Mises distribution

M(µij, κ), where the log-likelihood is given by

max
κ,µ,ω,ν

[

−N ln I0(κ) + κ

k
∑

i=1

ni
∑

j=1

cos

(

ψij − µ− 2 arctan

(

ωi tan
1

2
(θij − νi)

))

]

. (6)

This expression has to be maximized under the continuity condition (4) which leads to the

following constraints on the parameters for the existence of a non-trivial continuous solution.

tan

(

θ∗1 − νk
2

) k−1
∏

i=1

tan

(

θ∗i+1 − νi
2

)

=
k
∏

i=1

tan

(

θ∗i − νi
2

)

ωi =
tan
(

θ∗i+1
−νi+1

2

)

tan
(

θ∗
i+1

−νi

2

) ωi+1 for i = 1, . . . , k − 1.

(7)

The above constraints are general for our piecewise circular regression model. However,
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recall that two additional conditions have to be imposed for the cell-cycle application. One

is the condition for monotonicity and another is of “synchronicity” which we now describe.

The monotonicity condition ensures that the solution is an increasing function which leads

to the following constraints:

ωi > 0 for i = 1, . . . , k. (8)

By “synchronicity” condition, we mean that the response runs through only one cycle as

the regressor variable runs one cycle. For this purpose, we impose the constraints that the

solution only crosses the 0 barrier once. Let

zi = νi + 2 arctan

(

1

ωi

tan

(

−µ

2

))

for i = 1, . . . , k.

The zi value is the possible zero of ith piece of the function. It will be a zero of the global

function if this value belongs to the appropriate interval. Thus, the constraints under the

synchronicity condition can be written as

♯
{

zi : zi ∈
(

θ∗i , θ
∗

i+1

]}

= 1, (9)

with θ∗k+1 = θ∗1. Hence, we need to optimize the log-likelihood (6) with the additional

constraints given by (8) and (9).

Implementation. In order to compute the maximum likelihood estimates of our model,

we rewrite the model as the following piecewise circular-linear model

tan
1

2
(µij − µ) = ω1X1 + . . . ωkXk,

where the regressor variables Xi are defined as Xi = tan
(

θij−νi
2

)

I(θ∗
i
<θij6θ∗

i+1
]. Now, we

can compute the maximum likelihood estimates of {κ, µ, ω1, ν1, . . . , ωk, νk} using the the-

ory developed by Fisher and Lee (1992) for circular-linear models, and the R package of

Agostinelli and Lund (2011). The optimization has to be performed under the constraints

given by (7), (8) and (9). This makes the problem more complex. To solve it, we chose the

solution maximizing (6) after repeating the following procedure. We first chose values for
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the νi parameters verifying the restrictions (7). Then, for these values, we optimized the log-

likelihood function (6) in ωk (as according to (7) the rest of the ωi values can be expressed

as a function of ωk and the νi parameters) taking into account the restrictions (8) and (9).

Web Appendix A includes the results of a numerical study showing the performance of this

procedure when conditions such as the number of points per sector, length of the sectors or

variability parameter κ change.

2.4 Model selection

In applications of our piecewise model, we need a procedure to assess the performance of

our model relative to the performance of the Down and Mardia model for fitting the angular

data. The question of model selection in the Euclidean space setting is well discussed in the

literature going back to the seminal paper by Akaike (1973). However, to the best of our

knowledge, the model selection problems have not been well addressed for circular models.

For the Euclidean space data a simple strategy used for measuring how well a model fits

the data is to compute model residuals. Analogously, in the case of circular data, one may

use the circular residuals defined as eij = 1 − cos
(

ψij −
(

µ̂+ 2arctan
(

ω̂i tan
1
2
(θij − ν̂i)

)))

,

and define a circular distance criterion (CDC) as CDC = 1
N

∑k

i=1

∑ni

j=1 eij.

Although, for a pair of competing models, the difference between the two CDC values

may be insightful, it is not an ideal measure because a complex model, such as the proposed

piecewise model, will always have a lower CDC than a simpler one, such as the c-c model.

Alternatively, suppose l(M) denotes the log-likelihood corresponding to model M . Then one

may consider the Akaike Information Criterion (AIC), defined as AIC(M) = 2 ln(l(M))−2D,

which corrects for the number of free parameters in the modelM using the penalization factor

D. A model is selected which gives the largest value of AIC(M). Akaike (1973) suggested

D = p which represents the number of parameters in the model. The choice of D is not

always straightforward for complex models such as lasso (Tibshirani and Taylor (2012)),
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the mixed effects models (Muller et al. (2013)), semiparametric additive monotone models

(Rueda (2013)) or in the present situation where the parameters from a circular model are

subject to complicated constraints. More precisely, in our piecewise model, we have 2k + 1

parameters and k restrictions (7) which reduce the number of free parameters, to 1 + k.

However, it is not clear how to incorporate restrictions (8) and (9) to get an exact count of

the number of free parameters D.

For the case of piecewise linear regression some authors have also used modified AIC

or Bayesian Information Criteria (BIC) for selecting the best model (Muggeo and Adelfio

(2011); Painting and Holwell (2013)), although these proposals obviously do not take into

account the restriction (9) or the manifold we are considering in this paper.

Suppose Y = (y1, ..., yN)
′ denotes the observed data and its estimated mean vector (which

is a function of Y) is given by µ̂(Y) = (µ̂1(Y), ..., µ̂(Y)′). Then Ye (1998) defined the

generalized degrees of freedom GDF as
∑N

i=1
∂

∂µi
µ̂i(Y). According to Ye (1998), the GDF is

the “sum of the sensitivity of each fitted value to perturbations in the corresponding observed

value”. This concept was later extended to other models by Zhang et al. (2012). Not only

is GDF applicable to complex modeling procedures but is also easy to evaluate as noted

in Web Appendix B. In the case of normal linear regression model with p parameters, the

GDF = p. Hence, motivated by Ye (1998), in this article we use the Generalized Information

Akaike Criterion given by,

GAIC = AIC(M) = 2 ln(l(M))− 2ĜDF

for evaluating and comparing models, with the model with the largest GAIC value being

the preferred one. Details regarding the derivation of ĜDF are provided in Web Appendix

B. The numerical study in Web Appendix A also contains results showing how this criterion

works for distinguishing between the situations where the Downs and Mardia (2002) model

works well or the piecewise model is needed.
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3. Applications

When a study or experiment is conducted/repeated by multiple labs then it is common to

ask how reproducible the data and results are. With the advent of microarray technology,

during the past decade multiple labs conducted cell-cycle experiments to compare phases of

cell-cycle genes in the genome of various species. However, researchers have been concerned

about the reproducibility of results across labs even within the same species. If the phase

angles within the same species, obtained from different labs or experiments correlate poorly

with each other, then it will be difficult to compare phase angles of cell-cycle genes across

multiple species. There is a need for a methodology to assess relations among phase angles

between a pair of experiments. However, with the exception of the geometric approach of Liu

et al. (2004), to the best of our knowledge there does not seem to exist a formal statistical

procedure to make such diagnostics for angular data. Often biologists use visual displays

such as heatmaps when assessing similarities between experiments or studies. Such graphical

tools ignore variability in the data and hence are not very satisfactory.

Using some recently published cell-cycle data, in the following we demonstrate that the

methodology developed in this paper can be used to assess correlations between a pair of

experiments. We consider two examples. In the first example we apply our methodology on

a pair of experiments conducted in two different labs on the same species of yeast, namely,

S. cerevisiae. In the second example we apply the methodology on data from two different

species of yeast, namely, S. cerevisiae and S. pombe, conducted in two different labs.

3.1 Within species between labs correlation of phase angles of cell-cycle genes

In this example we considered phase angle estimates of 32 S. cerevisiae cell-cycle genes

obtained from the Spellman cdc experiment (Spellman et al., 1998) and from Pramilla38

experiment (Pramila et al., 2006). The phase angle data obtained from the Spellman cdc

experiment were taken to be regressors (θ) and those from Pramilla38 experiment were taken
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to be the response variables (ψ). Using the information available in the cyclebase database,

we placed the change points at θ∗ = (θ∗1, θ
∗

2, θ
∗

3, θ
∗

4) = (1.50, 2.80, 4.00, 5.75). The estimated

phase angles, for the 32 cell-cycle genes, the sector they are placed in and a scatterplot of

these data can be found in Web Table 3 and in Web Figure 1 respectively.

Using the proposed piecewise circular regression model we obtain the results summarized

in Table 1. The fitted model is plotted in Figure 3 while the residuals are in Web Figure

2. For comparison purposes, in each table and graph we also provide results using the c-c

model.

[Table 1 about here.]

[Figure 3 about here.]

The value of the CDC measure for the piecewise model is 0.138 while for the c-c model it is

0.148. The CDC has been reduced by 6.76%. To evaluate further whether this improvement

is big enough we consider the selection diagnostics we defined in Section 2.4. The GDF

values appearing in Table 3 are the mean values obtained by averaging the results of several

runs of the GDF algorithm with different values of the tuning parameter τ . The value of

GAIC for the piecewise model is 55.474 while for the c-c model it is 55.977, so that there is

no evidence of significant improvement due to the piecewise model.

If the role of the variables is reversed, i.e. the Pramilla38 experiment is taken as regressor

and the Spellman cdc experiment is taken as response, and the appropriate change points

are considered we get the the same result, namely, the GAIC of the piecewise model is lower

than that of the c-c model.

As the piecewise model does not yield a significant improvement in this case over the

c-c model, we can infer that there is no need for different functional relationships in the

different cell phases. In this sense we may also say that there is congruence between these

two experiments performed by different laboratories.
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3.2 Between species and between labs correlation of phase angles of cell-cycle genes

In this example we considered phase angle estimates of 32 cell-cycle genes obtained from two

different species S.cerevisiae and S. pombe. Furthermore, the data were obtained from two

different labs. We used the phase angle estimates from the Spellman cdc (Spellman et al.

(1998)) on S. cerevisiae as the regressors (θ) and those from the Oliva elut2 experiment

(Oliva et al. (2005)) on S. pombe as the response variables (ψ). For this case, we placed the

change points at θ∗ = (θ∗1, θ
∗

2, θ
∗

3, θ
∗

4) = (2.10, 2.80, 4.00, 5.75). There is only a small change

in the first change point with respect to the previous example that is also congruent with

the information available in the cyclebase database. The estimated phase angles for the 32

cell-cycle genes, the sector they are placed in and a scatterplot of the data can be found in

Web Table 4 and in Web Figure 3 respectively.

Using the proposed piecewise circular regression model we obtain the results summarized

in Table 2. The fitted model is plotted in Figure 4 and the residuals are plotted in Web

Figure 4. As in the previous example, for comparison purposes, in each table and graph we

also provide results using the c-c model by Downs and Mardia (2002).

[Table 2 about here.]

[Figure 4 about here.]

In this case, the value of the CDC measure for the piecewise model it is 0.332 while for the

c-c model is 0.394. The CDC has been reduced by 9.91%. As in the previous example the

values of the GDF appearing in Table 2 are obtained by averaging the results from several

runs of the GDF algorithm with different values of the tuning parameter τ . The value of the

Generalized Akaike Information Criterion GAIC for the piecewise model is 19.809, while for

the c-c model it is 19.412, so that there is some evidence of improvement due to the piecewise

model in spite of its higher complexity. The difference between these two values is not as

big as might be expected from the log-likelihood values (16.448 for the piecewise model and
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13.553 for the c-c model, see Table 2) as the GDF are 6.544 and 3.847 for the piecewise

and the c-c model respectively. (We note that our model selection proposal is somewhat

conservative as using the usual DF values, 5 for the piecewise model and 3 for c-c, gives

a bigger difference (22.896 vs 21.106) between the models.) As this conservative approach

still yields a difference in favor of the piecewise model we are reinforced in our conclusions.

Moreover, reversing the role of the variables as we did in the previous example also yields

the same result, as the GAIC for the piecewise model is higher than that of the c-c model.

Another application of our method is to estimate the duration of time the cells spend

in various phases of the cell-cycle. It is well-known among cell biologists that during the

cell division cycle, S. cerevisiae spends equal time in all phases (nearly 25% in each phase)

whereas S. pombe spends a large proportion of time (according to some estimates nearly

70%) in the G2 phase. Interestingly, our method allows us to estimate these phase durations.

More precisely, the images of the change points θ∗ = (θ∗1, θ
∗

2, θ
∗

3, θ
∗

4) = (2.10, 2.80, 4.00, 5.75)

by the piecewise model are (5.61, 6.25, 1.48, 4.76). Thus the lengths of the phases in the

regressor species (S. cerevisiae) are (0.70, 1.20, 1.75, 2.63), while using the piecewise model

the estimated phase lengths for the response (S. pombe) are (0.64, 1.51, 3.28, 0.85), so that

there are differences in the 3rd and 4th sectors which correspond to cell phases G2 and M

respectively. Thus according to our estimates, S. cerevisiae spends 27.85% of its time in G2

phase whereas S. pombe spends 52.20% of its time in the G2 phase during the cell-cycle.

4. Discussion

Piecewise regression models have proved very useful in the case of data on the line to describe

multi-linear relationships representing the different effects of the explicative variable on the

response, before and after some change points values on the explicative. Something similar

is likely to occur in circular models. This paper is a first contribution to the study of these
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models in the circular setting. The model where the change points are assumed to be known

has been described, estimated and applied to cell-cycle gene expression data.

The choice of these change points is obviously an important question. In the applications

we provide in Section 3, these points have been established using information available from

those applications. This would certainly be the case in many applications. Otherwise, a visual

inspection of the data may provide a good guide in this choice. Moreover, some other more

sophisticated approaches may be used. For example, the circular isotonic regression estimator

(CIRE) of a vector under a fixed order defined in Rueda et al. (2009) may be useful. Given a

fixed circular order, when this estimator is computed for a vector of circular values it yields

the vector that follows that circular order and is as close as possible (using a circular distance

criterion, see Rueda et al. (2009)) to the original vector. Then, if we compute the CIRE of

the response variable under the order given by the values of the regressor variable, we will

obtain several sets of indexes (called level sets) where the CIRE is constant. A good choice

for the change points would then be to select values of the regressor variable between those

that generated the highest jumps among the level sets.

There are many interesting biological questions related to cell-cycle that can be answered

from our circular piecewise model. For example, we can construct a formal test as to whether

there is a significant difference in phase lengths in two given species. Similar to Liu et al.

(2004), we can construct a test to assess if the order of the phase angles of cell-cycle genes

from different labs/experiments on the same species is preserved. We can also evaluate if the

phase angle has changed evolutionarily detecting these changes as the outliers in the model.

It is to be noted that the model we propose is not only interesting for cell biology

applications. Another application appears when dealing with women’s menstrual cycle which

consists of three phases, namely, follicular, ovulation (single point) and luteal. Although the

blood or urine concentration of hormones such as estrogen and progesterone are periodic
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during the approximate 28-day cycle, they have distinct patterns according to the phase of

the cycle. For example, during the follicular phase, the beginning of menses, the concentration

of estrogen rises sharply (almost like an exponential curve) and the blood estrogen levels drop

sharply to the baseline at ovulation; it then starts to rise during the luteal phase and attains

its peak in the middle of the luteal phase, then begins to drop slowly towards the end of the

monthly period.

The model proposed is of general interest beyond cell-cycle data. For example, it is appli-

cable in fields such as circadian biology (Kondratova and Kondratov (2012)), evolutionary

biology (De Quadros-Wander and Stokes (2007)) and motor behavior (Baayen et al. (2012)).

From a methodological point of view, there are some extensions of the proposed model

that can be dealt with. One of these extensions is the inclusion of other regressor variables in

the model. In the linear piecewise regression literature this is done assuming that the change

points depend either on only one of the regressor variables or on the time the observations

are taken (see, for example, Liu et al. (1997)). In this way, it is easy to include other circular

variables θ2, . . . , θs and/or linear ones Z1, . . . , Zt in the model, replacing formulation (5) by

µij = µ+ 2arctan

(

s
∑

l=1

ωil tan
1

2
(θijl − νil) +

t
∑

m=1

βimzijm

)

,

where βim is the slope of the linear variable Zm in sector i, and replacing also the continuity

conditions (4) by the corresponding ones. Notice that, since our estimation scheme relies on

the circular-linear model from Fisher and Lee (1992), the estimation of the parameters can

be performed as when only one circular regressor variable is present, although restrictions

on the parameters may be more involved. The same holds for model selection. Our GAIC

criterion and its computation does not depend on how many variables are in the model, or

if they are circular or linear, thus making easy the task of variable selection.

Another extension that can be solved easily is that of dropping the known θ∗i assumption

and estimating the phase boundaries as unknown parameters, or even the assumption of an
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unknown number of sectors. As with the previous extension no change on the estimation or

model selection procedure is needed. However, it is obvious that the computational burden

of both parameter estimation and model evaluation will be highly increased.

5. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2.1, 2.3, 2.4, 3.1 and 3.2 are

available with this paper at the Biometrics website on Wiley Online Library.
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Figure 1. The four phases of a normal cell division cycle (G1, S, G2 and M) together with
their sector boundaries, phase length and their relative percentages of the time spent. The
arrow shows the direction of the cell-cycle. Four data points (the phase angle of the four
genes RFA1, HHT1, FHK1, and DBF2) are also displayed (by triangles).
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Figure 2. Top left: curves used in the piecewise model; Top right: curves used in the
piecewise model shifted to their actual location; Bottom: final regression curve.
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Figure 3. Fit of the estimated models for the S. Cerevisiae data (piecewise at left and c-c
at right).
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Figure 4. Fit of the estimated models for the two species data (piecewise at left and c-c
at right)
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Table 1

Maximum likelihood estimates and diagnostics under the piecewise regression model and the c-c model for the S.
Cerevisiae data

Parameters Estimated values (piecewise) Estimated values (c-c)

µ -0.840 3.099
ω (1.491, 1.664, 0.485, 3.416) 0.546
ν (5.214, 5.138, 0.003, 5.828) 3.032
κ 3.734 3.511

CDC 0.138 0.148
ln(l(m)) 32.723 31.421
GDF 4.986 3.432
GAIC 55.474 55.977
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Table 2

Parameter estimations and diagnostics obtained using the piecewise regression model and the c-c model for the two
species data

Parameters Estimated values (piecewise) Estimated values (c-c)

µ 1.646 -0.725
ω (1.658, 0.066, 65.711, 6.517) 0.244
ν (3.986, 5.824, 4.003, 2.774) 0.897
κ 1.822 1.592

CDC 0.332 0.394
ln(l(M)) 16.448 13.553
GDF 6.544 3.847
GAIC 19.809 19.412


