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Abstract Different tests can be performed to measure the fresh state performance 
of SCC mixes and to ensure that the specified requirements in terms of filling 
ability, passing ability and segregation resistance are satisfied. The parameters 
obtained from the slump flow test, V-funnel, L-box and J-ring, dependent on the 
characteristics of the materials used and their amounts, are also strongly 
interdependent. This paper studies the structure of correlations among these fresh 
state parameters and exploits it to develop a general model that relates fresh state 
performance to mix design characteristics. Experimental results from different 
papers and reports were collected in a database that was analyzed using data 
mining and multivariate analysis techniques. The most important aspects of the 
model developed are described and discussed as a first step towards its further 
development into a comprehensive tool for a systematic assessment of the fresh 
state performance of SCC mixes.  
 
Keywords:  database, fresh state, multivariate analysis, testing. 
 
Introduction 
 
In addition to chemical admixtures, SCC mixes typically include mineral powders, 
lower coarse aggregate volumes and higher fine aggregate dosages than in 
conventional concrete [1–3]. The relatively high volume of paste facilitates the 
enhancement of the material's fresh state performance to reach appropriate levels 
of self-compactability. The key characteristics of SCC are filling ability, passing 
ability, and stability or resistance to segregation. The different approaches and mix 
design strategies that have been proposed [4–9] have two aspects in common:  
 Fresh state performance is in most cases measured by means of some of the 

following tests: slump flow, V-funnel, L-box, or J-ring [10]. 
 Filling and passing ability are to be maximized while avoiding segregation.  
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As these three key characteristics are functions of the mix design parameters, the 
search for a trade-off is a multi-objective optimization problem where two 
functions are to be maximized (filling ability, passing ability) and a third one is to 
be minimized (risk of segregation). However, the problem is extraordinarily 
complex as these three aspects are not independent from each other, the parameters 
obtained from the different tests are highly correlated, and there are important non-
linear effects and interactions between the mix design parameters that are not 
easily accounted for. 
 
Scope and Objectives 
 
A review of the literature published on SCC and self-compacting fiber reinforced 
concrete (SCFRC) offers plenty of data concerning many different mix designs and 
their fresh state properties. All this information can be put together and analyzed 
using data mining techniques to take advantage of the high number of cases 
reported and their correlations. This paper reports a first attempt to achieve these 
objectives: 
 Construction of a database with SCC and SCFRC mix designs and fresh state 

results previously published. 
 Study of the correlations between the parameters that are most commonly used 

to describe the fresh state performance of SCC and SCFRC mixes. 
 Reduction of this information to a minimal set of independent variables. 
 Analysis of the relationships between these variables and mix design 

parameters. 
 
Description of the Database 
 
Summary of the Information Compiled 
 
At the time of writing, the following information about 193 SCC and SCFRC 
mixes reported in papers published between 2010 and 2014 [11–22] had been 
collected: 

 Slump-flow test: maximum spread (SF, in mm) and T500 time (in 
seconds). 

 Visual segregation index (VSI), ranging between 0 (no segregation) and 3 
(severe segregation). 

 L-box test: ratio between heights H2/H1 (adimensional). 
 V-funnel test: flow time Tv (in seconds). 
 J-Ring test: maximum spread (SFj, in mm) and passing index (Pj, in mm). 

 
Table I summarizes the composition of the mixes in the database. The percentage 
of non-zeros informs of the relative presence of each mix component in the 
database. Minimum, maximum and average contents are given as representative 
values. 
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Table I. Summary of the SCC mixes included in the database. 
 

Component Percentage 
of non-zeros 

Representative values (kg/m3) 
Minimum Maximum Average 

Water 100.0%   120   266  172 
Binder 100.0%   225   708  475 
Cement 100.0%   200   536  406 
Fly ash (FA)   39.9%     39   354  109 
Silica fume (SF)  32.6%     12     61    33 
Ground granulated blast-
furnace slag (GGBS) 

   5.7%   200   300  232 

Sand 100.0%   525 1134  803 
Coarse aggregate 100.0%   570 1695  877 
Limestone powder (LSP)   21.7%     64   296  144 
Superplasticizer 100.0%        1     18   6.2 
Viscosity modifying 
admixtures (VMA) 

  28.5%     0.1       2   0.6 

Air entrainer   19.2% 0.025    0.1 0.05 
Fibers    22.2%       2   115    39 

 
Treatment of Missing Values 
 
The choice of fresh state parameters to be measured was not consistent throughout 
the different papers considered, and as a result the number of missing data in some 
of the variables was not negligible. Table II summarizes the relative impact of 
unreported data in the database under study. The slump-flow test was always 
carried out, although in some cases the T500 time was not measured. On the other 
hand, the J-Ring was the least common test, with a prevalence of only 29%. 
 

Table II. Missing values corresponding to unreported fresh state results. 
 

Parameter Percentage of 
missing values 

Slump-flow test: maximum spread   0.0% 
Slump-flow test: T500 12.4% 
Visual Segregation Index (VSI) 39.9% 
L-box test: height ratio 49.2% 
Tv, V-funnel test: Tv 52.3% 
J-Ring: maximum spread 71.0% 
J-Ring: passing index 71.0% 

 
Situations like this are not unusual in the context of multivariate statistics, data 
mining or machine learning techniques [23] and different approaches can be 
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followed. The complete removal of incomplete cases is the most straightforward 
but the least convenient, as it implies a significant loss of information. 
 
It was decided to completely discard the parameters from the J-Ring test, while a 
multiple imputation by fully conditional specification was performed to reconstruct 
the missing values of other parameters [24]. 
 
Multivariate Analysis of Fresh State Parameters 
 
Bivariate Correlations 
 
Table III shows the correlation coefficients (r) between any two fresh state 
parameters in the database under study. A strong direct correlation (r = 0.787) was 
observed between 1/T500 and 1/Tv. The parameter with the highest degree of 
correlation with others was the L-box ratio H2/H1, directly correlated with SF (r = 
0.842) and 1/Tv (r = 0.519) and inversely correlated with the VSI (r = -0.640). This 
structure of correlations between the fresh state parameters justified the need for 
the analysis presented in the following sections. 
 

Table III. Correlation matrix. 
 

 SF 1/T500 VSI H2/H1 1/Tv 
SF (1.00) 0.305 0.180 0.842 0.370 
1/T500  (1.00) -0.474 0.355 0.787 
VSI   (1.00) -0.640 -0.166 
H2/H1    (1.00) 0.519 
1/Tv     (1.00) 

 
Principal Component Analysis (PCA) 
 
The fresh state performance of any SCC mix in the database under study was 
described by 5 parameters. From an algebraic point of view, this means that any 
mix was a point in the 5-dimensional space, where the coordinate axes were the 
fresh state parameters measured. However, as they were strongly correlated, they 
did not constitute an orthogonal coordinate system, making the analysis, 
visualization and interpretation of the dataset very problematic.  
 
Principal Component Analysis (PCA) was used to condense this information into a 
reduced set of variables, facilitating a simplified, global representation of the 
dataset under study [25]. It is based on a matrix decomposition procedure, which is 
geometrically illustrated in Figure 1. Prior to the application of PCA, all fresh state 
parameters were centered and scaled to unit variance. Principal components were 
extracted by singular value descomposition of the correlation matrix, applying a 
Varimax rotation with Kaiser normalization [26]. The first three principal 
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components (PC1, PC2, and PC3) were retained as sufficiently informative, as they 
explained 94.66% of the total variance in the original variables.  
 
Each principal component is a linear combination of the original variables. The 
coefficients given in Table IV define the directions of the new, rotated axes PC1, 
PC2 and PC3 in the original coordinate system.  
 

 
 

Figure 1. Illustrative example of PCA for an initial set of three variables. 
 

Table IV. Principal components as function of the original variables. 
 

 PC1 PC2 PC3 
SF 0.962 0.169 0.093 
1/T500 0.234 0.896 -0.219 
VSI 0.140 -0.187 0.971 
H2/H1 0.897 0.361 0.109 
1/Tv 0.258 0.921 -0.081 

 
If the coefficients in Table IV are plotted in the new coordinate system defined by 
the three principal components extracted, Figure 2 is obtained. Three clusters are 
clearly identified, meaning that the variables that are close in these plots are clearly 
associated. PC1 (mostly SF and H2/H1) represented flowability in terms of spread 
and filling capacity, while PC2 (mostly 1/T500 and 1/Tv) represented the quickness 
of the flow. The last principal component PC3 (mostly VSI) was representative of 
the mix stability. 
 
Obtention of the Latent Variables 
 
The values of the original fresh state parameters in the database were rewritten in 
this new coordinate system by linear combination using the loadings in Table IV. 
As a result, the values of the three new variables, LV1, LV2 and LV3 were 
obtained for each of the SCC mixes in the database. 
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Figure 2. Component plots after PCA. 
 
Effect of Mix Design on Fresh State Performance 
 
Regression on the Latent Variables 
 
Multiple linear regression and logistic binary regression were used for the 
development of models that relate LV1, LV2 and LV3, representing particular 
aspects of SCC fresh state performance, to the mix design parameters and their 
interactions. These models made it possible to identify statistically significant 
effects and synergies on SCC fresh state performance, and to interpret the trends 
identified. 
 
A sequential modelling approach was followed. Initial models that included all 
variables and interactions were iteratively simplified by discarding terms that were 
identified as non significant. The final models for LV1, LV2 and LV3 showed the 
best fit to the database and considered only statistically significant terms. Table V 
summarizes these models. Statistically significant terms are marked with an 
asterisk, and the R-squared value is given for each of the three models. 
 
Response Surfaces for LV1 
 
Figure 3 shows the response surfaces for LV1 (flowability in terms of spread) with 
respect to the aggregates. The impact of the total weight of aggregates on LV1 was 
strongly related to the maximum aggregate size to the point that it can reverse the 
trends (Figure 3 left). However, the most influential parameter on LV1 was the 
ratio between coarse aggregate and sand contents (Figure 3 right). 
 
The effect of chemical admixtures on LV1 was significantly affected by the 
addition of LSP, as shown in Figure 4. Increasing the LSP content was shown to 
enhance the efficiency of the superplasticizer especially when used at lower 
dosages. At higher dosages, adding VMA tends to reduce LV1 due to its viscosity 
controlling function. 
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Table V. Summary of MLR analysis results. 
 

 Statistically significant terms 
LV1 LV2 LV3 

water/binder ratio * *  
Cement * * * 
LSP *  * 
SCM = SF+FA+GGBS * * * 
     x LSP  *  
Water content  * * 
     x Cement   * 
     x SCM   * 
     x LSP   * 
Sand weight *  * 
Coarse aggregate weight *  * 
Maximum aggregate size *   
     x Sand weight *  * 
     x Coarse aggr. weight *  * 
Fibers content (Vf) * *  
     x Aspect ratio *  * 
     x Material *   
Superplasticizer * * * 
     x Water  *  
     x LSP *   
     x VMA *   
R-squared 0.58 0.60 0.73 

 

 
 

Figure 3. Effect of the aggregates on LV1. 
 
Figure 5 shows the effect of fibers on LV1 as per the model developed. When steel 
fibers are used, increasing their content and their aspect ratio had a negative impact 
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on LV1. However, the interference of fibers was significantly reduced when 
polypropylene fibers were considered. 
 

 
 

Figure 4. Interaction between chemical admixtures and LSP on LV1. 
 

 
 

Figure 5. Effect of fibers on LV1. 
 
Response Surfaces for LV2 
 
Figure 6 shows the response surface for LV2 (flowability in terms of quickness) 
with respect to the contents of supplementary cementitious materials and LSP. The 
effect of reducing the cement intensity of the binder was shown to follow a 
different trend depending on LSP content. Better flowability was observed for 
higher amounts of supplementary cementitious materials, but this effect was 
reversed in the absence of LSP or when added in small amounts; the threshold 
appears to be 85 kg/m3. 
 
Response Surfaces for LV3 
 
LV3 was representative of the mix stability as it accounted for VSI almost 
exclusively. As the VSI is a discrete parameter, the model developed for LV3 was 
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more complex than the ones developed for LV1 and LV2. This model correctly 
reproduces quite complex synergies and therefore it constitutes a promising 
development as it will allow numeric predictions to account for the risk of 
segregation. Figure 7 shows two plots that illustrate the response surfaces for LV3 
derived from this model, where the vertical axis is the risk of segregation: 0 stands 
for high stability, while 1 corresponds to severe segregation. A detailed discussion 
of this model is not presented here due to space limitations but will be made 
available in upcoming publications. 

 
 

Figure 6. Effect of supplementary cementitious materials and LSP on LV2. 
 

     
Figure 7. Partial plots for LV3. 

 
Conclusions 
 
 A database of SCC and SCFRC mixes has been put together with information 

about the mix components and their amounts as well as the experimental values 
obtained from fresh state tests as reported in previous papers. 

 The parameters obtained from the most usual tests to characterize the fresh state 
performance of SCC and SCFRC mixes are significantly interdependent. 

Cement

N
e

w
L

V
3

0.0

0.2

0.4

0.6

0.8

1.0

200 250 300 350 400 450 500 550 600

Water

150 200 250

Sand

0.0

0.2

0.4

0.6

0.8

1.0

 600  700  800  900 1000 1100



E. Garcia-Taengua 

 

10 

 Principal Component Analysis has proven that the associations between fresh 
state parameters clearly define three latent variables corresponding to the 
following distinct aspects: flowability (T500, Tv), filling capacity (H2/H1, SF), 
and stability (VSI). 

 The impact of the mix design on the fresh state performance of SCC and 
SCFRC mixes has been related to the aforementioned latent variables by means 
of generalised linear regression models. 

 The methodology applied has identified those synergies between mix design 
characteristics that have a statistically significant effect on fresh state 
performance. 
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