This is a repository copy of *On the Security Cost of Using a Free and Open Source Component in a Proprietary Product*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95555/

Version: Accepted Version

Proceedings Paper:

https://doi.org/10.1007/978-3-319-30806-7_12

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/
On the Security Cost of Using a Free and Open Source Component in a Proprietary Product

Stanislav Dashevskyi1,3, Achim D. Brucker2,3*, Fabio Massacci1

1 University of Trento, Italy
{name.surname}@unitn.it
2 Department of Computer Science, The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk
3 SAP SE, Germany

Abstract. The work presented in this paper is motivated by the need to estimate the security effort of consuming Free and Open Source Software (FOSS) components within a proprietary software supply chain of a large European software vendor. To this extent we have identified three different cost models: centralized (the company checks each component and propagates changes to the different product groups), distributed (each product group is in charge of evaluating and fixing its consumed FOSS components), and hybrid (only the least used components are checked individually by each development team). We investigated publicly available factors (e.g., development activity such as commits, code size, or fraction of code size in different programming languages) to identify which one has the major impact on the security effort of using a FOSS component in a larger software product.

Keywords: Free and Open Source Software usage, Free and Open Source Software vulnerabilities, security maintenance costs.

1 Introduction

Whether Free and Open Source Software (FOSS) is more or less secure than proprietary software is a heavily debated question [8,9,22]. We argue that, at least from the view of a software vendor who is consuming FOSS, this question is not the right question to ask. First, there may be just no alternative to use FOSS components in a software supply chain, because FOSS components are the de-facto standard (e.g., Hadoop for big data). Second, FOSS may offer functionalities that are very expensive to re-implement and, thus, using FOSS is the most economical choice.

A more interesting question to ask is which factors are likely to impact the “security effort” of a selected FOSS component.

As the security of a software offering depends on all components, FOSS should, security-wise, be treated as one’s own code. Therefore, software companies that wish to integrate FOSS into their products must tackle two challenges: * Parts of this research were done while the author was a Security Testing Strategist and Research Expert at SAP SE in Germany.
the selection of a FOSS product and its maintenance. In order to meet the FOSS
selection challenge, large business software vendors perform a thorough security
assessment of FOSS components that are about to be integrated in their prod-
ucts by running static code analysis tools to verify the combined code base of a
proprietary application and a FOSS component in question, and by performing
a thorough audit of the results. The security maintenance problem is not easier:
when a new security issue in a FOSS component becomes publicly known, a
business software vendor has to verify whether that issue affects customers who
consume software solutions where that particular FOSS component was shipped
by the vendor. In ERP systems and industrial control systems this event may
occur years after deployment of the selected FOSS product.

Addressing either problem requires expertise about both the FOSS compo-
nent and software security. This combination is usually hard to find and resources
must be allocated to fix the problem in a potentially unsupported product. It is
therefore important to understand which characteristics of a FOSS component
(number of contributors, popularity, lines of code or choice of programming lan-
guage, etc.) are likely to be a source of “troubles”. The number of vulnerabilities
of a FOSS product is only a part of a trouble: a component may be used by
hundreds of products.

Motivated by the need to estimate the efforts and risks of consuming FOSS
components for proprietary software products of a large European software ven-
dor – SAP SE, we investigate the factors impacting three different cost models:
1. The centralized model, where vulnerabilities of a FOSS component are fixed
centrally and then pushed to all consuming products (and therefore costs
scale sub-linearly in the number of products)
2. The distributed model, where each development team fixes its own component
and effort scales linearly with usage
3. The hybrid model, where only the least used FOSS components are selected
and maintained by individual development team

In the rest of the paper we describe the FOSS consumption in SAP (§2),
introduce our research question and the three security effort models (§3), and
discuss related works (§4). Then we present the data sources used for analyzing
the impact factors (§5), describe each variable in detail and discuss the expected
relationships between them (§6). Next we (§7) discuss the statistical analysis of
the data. Finally we conclude and outline future work (§8).

2 FOSS Consumption at SAP

SAP’s product portfolio ranges from small (mobile) applications to large scale
ERP solutions that are offered to customers on-premise as well as cloud solutions.
This wide range of options requires both flexibility and empowerment of the
(worldwide distributed) development teams to choose the software development
model that fits their needs best while still providing secure software.

While, overall, SAP is using a large number of FOSS components, the actual
number of such components depends heavily on the actual product. For example,
Table 1: Our sample of FOSS projects and their historical vulnerability data

(a) Languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
<td>40%</td>
</tr>
<tr>
<td>C++</td>
<td>30%</td>
</tr>
<tr>
<td>PHP</td>
<td>13%</td>
</tr>
<tr>
<td>C</td>
<td>10%</td>
</tr>
<tr>
<td>JavaScript</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
</tbody>
</table>

(b) Distribution of vulnerability types

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoS</td>
<td>30.8%</td>
</tr>
<tr>
<td>Code execution</td>
<td>20.3%</td>
</tr>
<tr>
<td>Overflow</td>
<td>16.6%</td>
</tr>
<tr>
<td>Bypass Something</td>
<td>10.3%</td>
</tr>
<tr>
<td>Gain Information</td>
<td>7.1%</td>
</tr>
<tr>
<td>XSS</td>
<td>5.9%</td>
</tr>
<tr>
<td>Gain Privileges</td>
<td>3.1%</td>
</tr>
<tr>
<td>Directory Traversal</td>
<td>2.4%</td>
</tr>
<tr>
<td>Memory Correlation</td>
<td>2.2%</td>
</tr>
<tr>
<td>CSRF</td>
<td>0.9%</td>
</tr>
<tr>
<td>HTTP response splitting</td>
<td>0.3%</td>
</tr>
<tr>
<td>SQL injection</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

The traditional SAP systems in ABAP usually do not contain a lot of FOSS components; the situation is quite the opposite for recent cloud offerings based on OpenStack (http://www.openstack.com) or Cloud Foundry (https://www.cloudfoundry.org).

For each vulnerability that is published for a consumed FOSS component, an assessment is done to understand whether the vulnerability makes the consuming SAP product insecure. In this case, a fix needs to be developed and shipped to SAP customers. For example, in 2015 a significant number of SAP Security Notes (i.e., patches) fixed vulnerabilities in consumed FOSS components.

Overall, this results in additional effort both for the development teams as well as the teams that work on the incident handling (reports from customers). Thus, there is a need for approaches that support SAP’s development teams in estimating the effort related to maintain the consumed FOSS components.

To minimize the effort associated with integrating FOSS components as well as to maximize the usability of the developed product, product teams consider different factors. Not all of them are related to security; e.g., the compatibility of the license as well as requests from customers play an important role as well. From an effort and security perspective, developer teams currently consider:

- How widely a component is used within SAP? Already used components require lower effort as licensing checks are already done and internal expertise can be tapped. Thus, effort for fixing issues or integrating new versions can be shared across multiple development teams.
- Which programming languages and build systems are used? If a development team has already expertise in them, a lower integration and support effort can be expected.
- What maintenance lifecycle is used by the FOSS components? If the security maintenance provided by the FOSS community “outlives” the planned maintenance lifecycle of the consuming SAP product, only the integration of minor releases in SAP releases would be necessary.
- How active is the FOSS community? Consuming FOSS from active and well-known FOSS communities (e.g., Apache) should allow a developer team to leverage external expertise as well as externally provided security fixes.
Table 1 illustrates the characteristics of a selection of FOSS components used within SAP. We have chosen the most popular 166 components used by at least 5 products.

3 Research Question and Cost Models

Considering the above discussion we can summarize our research question:

RQ Which factors have significant impact on the security effort to manage a FOSS component in centralized, distributed, and hybrid cost models?

A key question is to understand how to capture effort in broad terms. In this respect, there are three critical activities that are generated by using FOSS components in a commercial software company \[29\] and specifically at SAP: the analysis of the licenses, security analysis, and maintenance. Licensing is out of scope for this work, and we focus on the other two stages.

In the previous section we have already sketched some of the activities that the security team must perform in both stages. A development team can be assigned to a maintenance which includes several tasks, security maintenance being only one of them. Therefore, it is close to impossible to get analytical accounting for security maintenance to the level of individual vulnerabilities. Further, when a FOSS component is shared across different consuming applications, each development team can differ significantly in the choice of the solution and hence in the effort to implement it.

Therefore, we need to find a proxy for the analysis of our three organizational models. Preliminary discussion with developers and company’s researchers suggested the combination of vulnerabilities of the FOSS component itself and the number of company’s products using it. A large number of vulnerabilities may be the sign of either a sloppy process or a significant attention by hackers and may warrant a deeper analysis during the selection phase or a significant response during the maintenance phase. This effort is amplified when several development teams are asking to use the FOSS component as a vulnerability which eschewed detection may impact several hundred products and may lead to several security patches for different products.

We assume that the effort structure has the following form

\[
e = e_{\text{fixed}} + \sum_{i=1}^{m} e_i
\]

where \(e_i\) is a variable effort that depends on the \(i\)-th FOSS component, and \(e_{\text{fixed}}\) is a fixed effort that depends on the security maintenance model (e.g., the initial set up costs). For example, with a distributed security maintenance approach an organization will have less communication overhead and more freedom for developers in distinct product teams, but only if a small number of teams are using a component.
Let $|vulns_i|$ be the number of vulnerabilities that have been cumulatively fixed for the i-th FOSS component and let $|products_i|$ be the number of proprietary products that use the component:

1. In the **centralized model** a security fix for all instances of a FOSS component is issued once by the security team of the company and then distributed between all products that are using it. This may happen when, as a part of FOSS selection process, development teams must choose only components that have been already used by other teams and are supported by the company. To reflect this case the effort for security maintenance scales logarithmically with the number of products using a FOSS component.

$$e_i \propto \log(|vulns_i| \times |products_i|)$$ \hspace{1cm} (2)

2. The **distributed model** covers the case when security fixes are not centralized within a company, so each development team has to take care of security issues in FOSS components that they use. In this scenario the effort for security maintenance increases linearly with the number of products using a FOSS component.

$$e_i \propto |vulns_i| \times |products_i|$$ \hspace{1cm} (3)

3. The **hybrid model** combines the two previous models: security issues in the least consumed FOSS components (e.g., used only by lowest quartile of products consuming FOSS) are not fixed centrally. After this threshold is reached and some effort linearly proportional to the threshold of products to be considered has been invested, the company fixes them centrally, pushing the changes to the remaining products.

$$e_i \propto \begin{cases} |vulns_i| \times |products_i| & \text{if } |products_i| \leq p_0 \\ p_0 \times |vulns_i| + \log(|vulns_i| \times (|products_i| - p_0)) & \text{otherwise} \end{cases}$$ \hspace{1cm} (4)

As shown in Figure 1, the hybrid model is a combination of the distributed model and centralized model, when centralization has a steeper initial cost. The point V_0 is the switching point where the company is indifferent between the centralized and distributed cost models. The hybrid model captures the possibility of a company to switch models after (or before) the indifference point. The fixed effort of the centralized model is obviously higher than the one of a distributed model (e.g., setting up a centralized vulnerability fixing team, establishing and communicating a fixing process, etc.).

Hence, we extend the initial function after the threshold number of products p_0 is reached so that only a logarithmic effort is paid on the remaining products. This has the advantage of making the effort e_i continuous in $|products_i|$. An alternative would be to make the cost logarithmic in the overall number of products after $|products_i| > p_0$. This would create a sharp drop in the effort for the security analysis of FOSS components used by several products after p_0 is reached. This phenomenon is neither justified on the field, nor by economic
theory. In the sequel, we have used for p_0 the lowest quartile of the distribution of the selected products.

We are not aiming to select a particular model – we consider them as equally possible scenarios. Our goal is to see which of the FOSS characteristics can have impact on the effort when such models are in place, keeping in mind that this impact could differ from one model to another.

We now define the impact that the characteristics of the i-th FOSS component have on the expected effort e_i as a (not necessarily linear) function f_i of several variables and a stochastic error term ϵ_i:

$$ e_i = f(x_{i1}, \ldots, x_{il}, y_{il+1}, \ldots, y_{im}, d_{im+1}, \ldots, d_{in}) + \epsilon_i \quad (5) $$

The variables $x_{ij}, j \in [1, l]$ impact the effort as scaling factors, so that a percentage change in them also implies a percentage change in the expected effort. The variables $y_{ij}, l \in [l+1, m]$ directly impact the value of the effort. Finally, the dummy variables $d_{ij}, j \in [m+1, n]$ denote qualitative properties of the code captured by a binary classification in $\{0, 1\}$.

For example, in our list the 36-th component is “Apache CXF” and the first scaling factor for effort is the number of lines of code written in popular programming languages so that $x_{i,1} = \text{locsPopular}_i$, and $x_{36,1} = 627,639$.

Given the above classification we can further specify the impact equation for the i-th component as follows

$$ \log(e_i) = \beta_0 + \log\left(\prod_{j=1}^{l}(x_{ij} + 1)^{\beta_j}\right) + \sum_{j=l+1}^{m} \beta_i * e_{ij}^0 + \sum_{j=m+1}^{n} \beta_i * d_{ij} + \epsilon_i \quad (6) $$

where β_0 is the initial fixed effort for a specific security maintenance model.

These models focus on technical aspects of security maintenance of consumed FOSS components putting aside all organizational aspects (e.g., communication overhead). For organizational aspects please see ben Othmane et al. [4].
Table 2: Vulnerability prediction approaches

<table>
<thead>
<tr>
<th>Paper</th>
<th>Predictors</th>
<th>Vulnerability data</th>
<th>Predicted vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massacci & Nguyen [14]</td>
<td>Known vulnerabilities</td>
<td>MFSA, NVD, Bugzilla,</td>
<td>Vulnerabilities</td>
</tr>
<tr>
<td>Shin & Williams [25]</td>
<td>Code complexity metrics</td>
<td>MFSA, NVD, Bugzilla</td>
<td>Vulnerable functions</td>
</tr>
<tr>
<td>Nguyen & Tran [16]</td>
<td>Member and Component dependency graphs, Code metrics</td>
<td>MFSA, NVD</td>
<td>Vulnerable functions</td>
</tr>
<tr>
<td>Walden & Doyle [27]</td>
<td>SAVD, SAVI</td>
<td>NVD</td>
<td>Post-release vulnerabilities</td>
</tr>
<tr>
<td>Scandriato et al. [21]</td>
<td>Frequencies of terms</td>
<td>Fortify SCA warnings</td>
<td>Vulnerable files</td>
</tr>
<tr>
<td>Walden et al. [28]</td>
<td>Code metrics, Frequencies of terms</td>
<td>NVD</td>
<td>Vulnerable files</td>
</tr>
</tbody>
</table>

4 Related Work

An extensive body of research explores the applicability of various metrics for estimating the number of vulnerabilities of a FOSS component.

The simplest metric is time (since release), and the corresponding model is a Vulnerability Discovery Model. Massacci and Nguyen [14] provide a comprehensive survey and independent empirical validation of several vulnerability discovery models. Several other metrics have been used: code complexity metrics [25][24][16], developer activity metrics [24], static analysis defect densities [27], frequencies of occurrence of programming constructs [21][28], etc. We illustrate some representative cases in Table 2.

Shin and Williams [25] evaluated software complexity metrics for identifying vulnerable functions. The authors collected information about vulnerabilities in Mozilla JavaScript Engine (JSE) from MFSA[4] and showed that nesting complexity could be an important factor to consider. The authors stress that their approach has few false positives, but several false negatives. In a follow-up work, Shin et al. [24] also analyzed several developer activity metrics showing that poor developer collaboration can potentially lead to vulnerabilities, and that code complexity metrics alone are not a good vulnerability predictor.

Nguyen and Tran [16] built a vulnerability prediction model that represents software with dependency graphs and uses machine learning techniques to train the predictor. They used static code analysis tools to compute several source code metrics and tools for extracting dependency information from the source code, adding this information to the graphs that represent an application. To validate the approach, the authors analyzed Mozilla JSE. In comparison to [25], the model had a slightly bigger number of false positives, but less false negatives.

Walden and Doyle [27] used static analysis for predicting web application security risks. They measured the *static-analysis vulnerability density* (SAVD) metric across version histories of five PHP web applications, which is calculated as the number of warnings issued by the Fortify SCA tool per one thousand lines of code. The authors performed multiple regression analyses using SAVD values for different severity levels as explanatory variables, and the post-release vulnerability density as the response variable showing that SAVD metric could be a potential predictor for the number of new vulnerabilities.

Scandriato et al. [21] proposed to use a machine learning approach that mines source code of Android components and tracks the occurrences of specific patterns. The authors used the Fortify SCA tool: if the tool issues a warning about a file, this file is considered to be vulnerable. However, it may not be the case as Fortify can have many false positives, and authors verified manually only the alerts for 2 applications out of 20. The results show that the approach had good precision and recall when used for prediction within a single project. Walden et al. [28] confirmed that the vulnerability prediction technique based on text mining (described in [21]) could be more accurate than models based on software metrics. They have collected a dataset of PHP vulnerabilities for three open source web applications by mining the NVD and security announcements of those applications. They have built two prediction models: 1) a model that predicts potentially vulnerable files based on source code metrics; and 2) a model that uses the occurrence of terms in a PHP file and machine learning. The analysis shows that the machine learning model had better precision and recall than the code metrics model, however, this model is applicable only for scripting languages (and must be additionally adjusted for languages other than PHP).

Choosing the right source of vulnerability information is crucial, as any vulnerability prediction approach highly depends on the accuracy and completeness of the information in these sources. Massacci and Nguyen [13] addressed the question of selecting the right source of ground truth for vulnerability analysis. The authors show that different vulnerability features are often scattered across vulnerability databases and discuss problems that are present in these sources. Additionally, the authors provide a study on Mozilla Firefox vulnerabilities. Their example shows that if a vulnerability prediction approach is using only one source of vulnerability data - MFSA, it would actually miss an important number of vulnerabilities that are present in other sources such as MFSA and NVD. Of course, the same should be true also for the cases when only the NVD is used as the ground truth for predicting vulnerabilities.

To the best of our knowledge, there is no work that predicts the effort required to resolve security issues in consumed third-party products.

5 Data Sources

We considered the following public data sources to obtain the metrics of FOSS projects that could impact the security effort in maintaining them:

1. **National Vulnerability Database (NVD)** – the US government public vulnerability database, we use it as the main source of public vulnerabilities (https://nvd.nist.gov).

2. **Open Sourced Vulnerability Database (OSVDB)** – an independent public vulnerability database. We use it as the secondary source of public vulnerabilities to complement the data we obtain from the NVD (http://osvdb.org).

3. **Black Duck Code Center** – a commercial platform for the open source governance can be used within an organization for the approval of the usage of FOSS components by identifying legal, operational and security risks that can be caused by these components. We use SAP installation to identify the most popular FOSS components within SAP.

4. **Open Hub (formerly Ohloh)** – a free offering from the Black Duck that is supported by the online community. The Open Hub retrieves data from source code repositories of FOSS projects and maintains statistics that represent various properties of the code base of a project (https://www.openhub.net/).

5. **Coverity Scan Service website** – in 2006 Coverity started the initiative of providing free static code scans for FOSS projects, and many of the projects have registered since that time. We use this website as one of the sources that can help to infer whether a FOSS project is using SAST tools (https://scan.coverity.com/projects).

6. **Exploit Database website** – the public exploit database that is maintained by the Offensive Security company. We use this website as the source for the exploit numbers (https://www.exploit-db.com/).

7. **Core Infrastructure Initiative (CII) Census** – the experimental methodology for parsing through data of open source projects to help identify projects that need some external funding in order to improve their security. We use a part of their data to obtain information about Debian installations (https://www.coreinfrastructure.org/programs/census-project).

6 FOSS Project Metrics Selection

Initially we considered SAP installation of the Black Duck Code Center repository as the source of metrics that could impact the security maintenance effort when using FOSS components. We also performed a literature review and a survey of other repositories to identify potentially interesting variables not currently used in the industrial setting, clustering them by the following four categories:

- **Security Development Lifecycle (SDL)** – metrics that characterize how the SDL is implemented within a FOSS project. It includes indicators whether a project encourages to report security issues privately, is using one or more static analysis tools during development, etc.

- **Implementation** – various implementation characteristics such as the main programming language and the type of a project.

6 https://www.offensive-security.com/
Popularity – metrics that are relevant to the overall popularity of a FOSS project (e.g., user count and age in years).

Effort – we use these variables as the proxy for the desired response variable - the effort required by companies to update and maintain their applications that are using FOSS components.

Table 3 shows the initial set of metrics that we considered, describing the rationale for including them and references to the literature in which the same or similar metrics were used.

The age of a project, its size and the number of developers (years, locsTotal, and contribs) are traditionally used in various studies that investigate defects and vulnerabilities in software [7,31], the software evolution [5,8] and maintenance [32]. We consider security vulnerabilities to be a specific class of software defects, which are likely to be impacted by these factors.

Several studies considered the popularity of FOSS projects as being relevant to their quality and maintenance [19,20,32] - we used userCount from Open Hub and debianInst from CII Census as measures of popularity for a project. Many studies investigated whether frequent changes to the source code can introduce new defects [15,34,24,32,11] - we intended to capture this with locsAdded, locsRemoved, and commits metrics from Open Hub.

The presence of security coding standards as a taxonomy of common programming errors [10,23] that caused vulnerabilities in projects should reduce the amount of vulnerabilities and the effort as well. We could not find references to how the presence of security tests could impact the effort.

Wheeler [29] suggested that successful FOSS projects should use SAST tools, which should at least reduce the amount of “unforgivable” security issues discussed by Christey [6].

Numbers of vulnerabilities and exploits have a strong correlation (in our dataset: rho = 0.71, p < 0.01) because security researchers can create exploits to test published vulnerabilities and, alternatively, they can create exploits to prove that a vulnerability indeed exists (so that it will be published as a CVE entry after an exploit was disclosed). We tested both values without finding significant differences and for simplicity we report here the vulns variable as the proxy for effort.

After obtaining the values of these metrics for a sample of 50 projects we understood that only variables that could be extracted automatically and semi-automatically are interesting for the maintenance phase. Gathering the data manually introduces bias and limits the size of a dataset that we can analyze, and, therefore, the validity of the analysis at all. Thus, we removed the manual variables and expanded the initial dataset up to 166 projects (at least 5 consuming products in SAP Black Duck repository).

We also tried to find commonalities between FOSS projects and to cluster them. However, this process would introduce significant human bias. For example, the “Apache Struts 2” FOSS component is used by SAP as a library in one project, and as a development framework in another one (indeed, it can be considered to be both a framework and a set of libraries). If we “split” the
“Apache Struts 2” data point into another two instances marked as “library” and “framework”, this would introduce dependency relations between these data points. Assigning arbitrarily only one category to such data points would also be inappropriate.

A comprehensive classification of FOSS projects would require to perform a large number of interviews with developers to understand the exact nature of the usage of a component and the security risk. However, it is unclear what would be the added value to developers of this classification.

Below we describe relations between explanatory and response variable:

1. locsPopular and locsBucket (x_{ij}) – the more there are lines of code, the more there are potential vulnerabilities (that are eventually disclosed publicly). We use these two variables instead of just having locsTotal because almost every project in our dataset is written in multiple programming languages, including widely-used languages (locsPopular), and rarely-used ones (locsBucket). Therefore, different ratios between these two variables could impact the effort differently.

2. locsEvolution (y_{ij}) shows how the code base of a project was changed for the whole period of its life. We compute this metric by obtaining the sum of the total number of added and removed lines of code divided by locsTotal. Figure 2 shows that we could not use added and deleted lines of code as the measure of global changes as they correlate with each other and with locsTotal, however locsEvolution has no correlations with locsTotal and can be used as an independent predictor.

3. userCount and debianInst (y_{ij}) – the more there are users, the more potential security vulnerabilities will be reported. debianInst provides an alternative measure for userCount, however, the two measures are not exactly correlated as some software is usually downloaded from the Web (e.g., Wordpress) so it is very unlikely that someone would install it from the Debian repository, even if a corresponding package exists. On the other hand, some software may be distributed only as a Debian package.

4. years (y_{ij}) – more vulnerabilities could be discovered over time.

5. commits (y_{ij}) – many commits introduce many atomic changes that can lead to more security issues.

6. contribs (y_{ij}) – many contributors might induce vulnerabilities as they might not have exhaustive knowledge on the project and can incidentally break some features they are unaware of.

7. noManagedLang (d_{ij}) – parts written in programming languages without built-in memory management could have more security vulnerabilities (e.g., DoS, Sensitive information disclosure, etc.).

8. scriptingLang (d_{ij}) – software including fragments in scripting languages could be prone to code injection vulnerabilities.

In spite of their intuitive appeal we excluded dummy variables related to the programming language from our final analysis because we realized that essentially all projects have components of both, therefore, all regression equations would violate the independence assumption.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Source</th>
<th>Collection method</th>
<th>Rationale</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>noSecTest</td>
<td>SDL</td>
<td>Project website, code repository</td>
<td>Manual</td>
<td>The test suite neither contains tests for past vulnerabilities (regression) nor for tests for security functionality.</td>
<td>[29] [1] [6]</td>
</tr>
<tr>
<td>privateVulns</td>
<td>SDL</td>
<td>Project website</td>
<td>Manual</td>
<td>There is a possibility to report security issues privately.</td>
<td></td>
</tr>
<tr>
<td>secList</td>
<td>SDL</td>
<td>Project website</td>
<td>Manual</td>
<td>There is a list of past security vulnerabilities.</td>
<td></td>
</tr>
<tr>
<td>noSast</td>
<td>SDL</td>
<td>Project website, code repository, Coverity website</td>
<td>Manual</td>
<td>A project is not using static code analysis tools.</td>
<td>[29] [1]</td>
</tr>
<tr>
<td>noManagedLang</td>
<td>Implement.</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Parts of the project are written in a language without automatic memory management.</td>
<td>[32] [30]</td>
</tr>
<tr>
<td>scriptingLang</td>
<td>Implement.</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Parts of a project are written in a scripting language.</td>
<td>[32]</td>
</tr>
<tr>
<td>noCodingStand</td>
<td>Implement.</td>
<td>Project website</td>
<td>Manual</td>
<td>A project has no coding standards for potential contributors.</td>
<td>[1]</td>
</tr>
<tr>
<td>locsTotal</td>
<td>Implement.</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Total size of code bases (LoC).</td>
<td>[5] [7] [31]</td>
</tr>
<tr>
<td>locsBucket</td>
<td>Implement.</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Size of the code bases for other programming languages (LoC).</td>
<td></td>
</tr>
<tr>
<td>locsAdded,</td>
<td>Implement.</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>The development activity of a project.</td>
<td>[15] [17] [19]</td>
</tr>
<tr>
<td>locsRemoved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[24] [1] [34]</td>
</tr>
<tr>
<td>userCount</td>
<td>Popularity</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>The user count of a project (Open Hub).</td>
<td>[15] [18] [11]</td>
</tr>
<tr>
<td>debianInst</td>
<td>Popularity</td>
<td>CII Census</td>
<td>Semi-automatic</td>
<td>The number of installations of a Debian package that corresponds to a project.</td>
<td>[19] [20] [10]</td>
</tr>
<tr>
<td>commits</td>
<td>Popularity</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Number of total commits.</td>
<td>[15] [24] [32]</td>
</tr>
<tr>
<td>contribs</td>
<td>Popularity</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Total number of contributors.</td>
<td>[15] [24] [32]</td>
</tr>
<tr>
<td>years</td>
<td>Popularity</td>
<td>Open Hub</td>
<td>Automatic</td>
<td>Age of a project in years.</td>
<td>[17] [32] [11]</td>
</tr>
<tr>
<td>vulns</td>
<td>Effort</td>
<td>NVD, OSVDB, and other vuln. databases</td>
<td>Semi-automatic</td>
<td>The total number of publicly disclosed vulnerabilities.</td>
<td>[17] [32] [11]</td>
</tr>
<tr>
<td>exploits</td>
<td>Effort</td>
<td>Exploit DB website</td>
<td>Semi-automatic</td>
<td>The total number of publicly available exploits.</td>
<td></td>
</tr>
<tr>
<td>blackduck</td>
<td>Effort</td>
<td>Black Duck Code Center</td>
<td>Automatic</td>
<td>The total number of requests for a FOSS component within SAP.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 shows the descriptive statistics of response and explanatory variables selected for the analysis.

![LOCS_TOTAL vs LOCS_ADDED](image1)

![LOCS_TOTAL vs LOCS_REMOVED](image2)

![LOCS_ADDED vs. LOCS_REMOVED](image3)

![LOCS_TOTAL vs LOCS_EVOLUTION](image4)

Fig. 2: The locsEvolution metric

7 Analysis

To analyze the statistical significance of the models and identify the variables that impact security effort, we employ a least-square regression (OLS). Our reported R^2 values (0.21, 0.34, 0.39) and F-statistic values (5.30, 10.13, 12.41) are acceptable considering that we have deliberately run the OLS regression with all variables of interest, as our purpose is to see which variables have no impact. The results of estimates for each security effort model are given in Table 5.
Table 4: Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min 1st Quartile</th>
<th>Median</th>
<th>Mean 3rd Quartile</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>effort_centralized</td>
<td>0.69</td>
<td>3.64</td>
<td>4.43</td>
<td>4.81</td>
</tr>
<tr>
<td>effort_distributed</td>
<td>2.00</td>
<td>38.24</td>
<td>84.50</td>
<td>706.60</td>
</tr>
<tr>
<td>effort_hybrid</td>
<td>2.00</td>
<td>2540.00</td>
<td>44.00</td>
<td>210.10</td>
</tr>
<tr>
<td>years</td>
<td>1.00</td>
<td>7.00</td>
<td>10.00</td>
<td>10.27</td>
</tr>
<tr>
<td>userCount</td>
<td>0.00</td>
<td>9.00</td>
<td>52.00</td>
<td>258.00</td>
</tr>
<tr>
<td>debianInst</td>
<td>0.00</td>
<td>42.75</td>
<td>1407.00</td>
<td>21970.00</td>
</tr>
<tr>
<td>commits</td>
<td>1.00</td>
<td>15.00</td>
<td>32.00</td>
<td>115.20</td>
</tr>
<tr>
<td>commits</td>
<td>18.00</td>
<td>1166.00</td>
<td>4365.00</td>
<td>9765.00</td>
</tr>
<tr>
<td>locsPopular</td>
<td>0.00</td>
<td>32350.00</td>
<td>110706.00</td>
<td>345700.00</td>
</tr>
<tr>
<td>locsBucket</td>
<td>58.00</td>
<td>5216.00</td>
<td>32770.00</td>
<td>195600.00</td>
</tr>
<tr>
<td>locsEvolution</td>
<td>1.70</td>
<td>4.85</td>
<td>7.10</td>
<td>15.18</td>
</tr>
<tr>
<td>locsEvolution</td>
<td>1.50</td>
<td>4.85</td>
<td>7.10</td>
<td>15.18</td>
</tr>
</tbody>
</table>

Table 5: Ordinary least-square regression results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Centralized model</th>
<th>Distributed model</th>
<th>Hybrid model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9.40 \times 10^{-1} (4.29 \times 10^{0})</td>
<td>1.89 \times 10^{0} (2.33 \times 10^{0})</td>
<td>-1.83 \times 10^{0} (1.96)</td>
</tr>
<tr>
<td>log(locsPop+1)</td>
<td>2.68 \times 10^{-2} (1.32 \times 10^{0})</td>
<td>1.46 \times 10^{-1} (1.94 \times 10^{0})</td>
<td>0.25 \times 10^{0} (2.89)</td>
</tr>
<tr>
<td>log(locsBucket+1)</td>
<td>-4.01 \times 10^{-5} (-2.00 \times 10^{-3})</td>
<td>1.28 \times 10^{-2} (1.86 \times 10^{-1})</td>
<td>9.42 \times 10^{-2} (1.20)</td>
</tr>
<tr>
<td>locsEvolution</td>
<td>1.83 \times 10^{-4} (0.31 \times 10^{0})</td>
<td>8.62 \times 10^{-4} (3.98 \times 10^{0})</td>
<td>9.31 \times 10^{-4} (0.58)</td>
</tr>
<tr>
<td>years</td>
<td>2.07 \times 10^{-2} (2.66 \times 10^{0})</td>
<td>8.47 \times 10^{-2} (2.94 \times 10^{0})</td>
<td>9.47 \times 10^{-2} (2.87)</td>
</tr>
<tr>
<td>commits</td>
<td>-1.01 \times 10^{-6} (-0.46 \times 10^{0})</td>
<td>-5.96 \times 10^{-6} (-7.26 \times 10^{-7})</td>
<td>-1.11 \times 10^{-5} (-1.19)</td>
</tr>
<tr>
<td>contribs</td>
<td>-7.50 \times 10^{-5} (-0.47 \times 10^{0})</td>
<td>-3.31 \times 10^{-4} (-0.57 \times 10^{0})</td>
<td>5.66 \times 10^{-4} (0.84)</td>
</tr>
<tr>
<td>debianInst</td>
<td>8.77 \times 10^{-5} (2.22 \times 10^{0})</td>
<td>5.49 \times 10^{-4} (3.74 \times 10^{0})</td>
<td>5.81 \times 10^{-4} (3.46)</td>
</tr>
<tr>
<td>debianInst</td>
<td>1.70 \times 10^{-6} (2.39 \times 10^{0})</td>
<td>8.99 \times 10^{-6} (3.41 \times 10^{0})</td>
<td>1.10 \times 10^{-5} (3.64)</td>
</tr>
</tbody>
</table>

N: 166, Multiple R²: 0.21, Adjusted R²: 0.17, F-statistic: 5.30 (p < 0.01)

Note. t-statistics are in parentheses. Signif.codes: * 5%, † 1%, ‡ 0.1%, ‡ 0.001%

Zhang et al. [31] demonstrated a positive relationship between the size of a code base (LOC) and defect-proneness. Zhang [33] evaluated the LOC metrics for defect prediction and concluded that larger modules tend to have more defects. Security vulnerabilities are a subclass of software defects, and our results show that this effect only holds for particular programming languages: the locsPopular variable has a positive impact on the effort (it is statistically significant for the distributed and hybrid models), the locsBucket is essentially negligible as a contribution (10^{-5}).

The locsEvolution, commits and contribs variables do not seem to have an impact. We expected the opposite result, as many works (e.g., [15, 24]) suggest a positive relation between number (or frequency) of changes and defects. However, these works assessed changes with respect to distinct releases or components or methods, while we are using the cumulative number of changes for all versions in a project; we may not capture the impact because of this.

The study by Li et al. [12] showed that the number of security bugs can grow significantly over time. Also, according to the vulnerability discovery process model described by Alhazmi et al. [2], the longer is the active phase of a software the more attention it will attract, and more hackers will get familiar with it to
break it. Massacci and Nguyen [13] illustrated this model by showing that the vulnerability discovery rate was the highest during the active phase of Mozilla Firefox 2.0. We find that the age of a project – years has a significant impact in all our effort models, thus supporting those models.

It is a folk knowledge that “Given enough eyeballs, all bugs are shallow” [19], meaning that FOSS projects have the unique opportunity to be tested and scrutinized not only by their developers, but by their user community as well. We found that in our models the number of external users (userCount and debian-Inst) of a FOSS component has small but statistically significant impact. This could be explained by the intuition that only a major increase of the popularity of a FOSS project could result in finding and publishing new vulnerabilities: not every user would have enough knowledge in software security for finding vulnerabilities (or motivation for reporting them).

8 Conclusions

In this paper we have investigated the publicly available factors that can impact the effort required for performing security maintenance process within large software vendors that have extensive consumption of FOSS components. We have defined three security effort models – centralized, distributed, and hybrid, and selected variables that may impact these models. We automatically collected data on these variables from 166 FOSS components currently consumed by SAP products and analyzed the statistical significance of these models.

As a proxy for security maintenance effort of consumed FOSS components we used the combination of the number of products using a these components, and the number of known vulnerabilities in them. As the summary of our findings, the main factors that influence the security maintenance effort are the amount of lines of code of a FOSS component and the age of the component. We have also observed that the external popularity of a FOSS component has statistically significant but small impact on the effort, meaning that only large changes in popularity will have a visible effect.

As a future work we plan collecting a wider sample of FOSS projects, assessing other explanatory variables and investigating our models further. Using the data for prediction of the effort is also a promising direction for the future work.

Acknowledgments

This work has been partly supported by the European Union under agreement no. 285223 SECONOMICS, no. 317387 SECENTIS (FP7-PEOPLE-2012-ITN), the Italian Project MIUR-PRIN-TENACE, and PON - Distretto Cyber Security attività RI.4.

References

