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Abstract. - We introduce an heterogeneous nonlinear q-voter model with zealots and two types
of susceptible voters, and study its non-equilibrium properties when the population is finite and
well mixed. In this two-opinion model, each individual supports one of two parties and is either
a zealot or a susceptible voter of type q1 or q2. While here zealots never change their opinion,
a qi-susceptible voter (i = 1, 2) consults a group of qi neighbors at each time step, and adopts
their opinion if all group members agree. We show that this model violates the detailed balance
whenever q1 6= q2 and has surprisingly rich properties. Here, we focus on the characterization of
the model’s non-equilibrium stationary state (NESS) in terms of its probability distribution and
currents in the distinct regimes of low and high density of zealotry. We unveil the NESS properties
in each of these phases by computing the opinion distribution and the circulation of probability
currents, as well as the two-point correlation functions at unequal times (formally related to a
“probability angular momentum”). Our analytical calculations obtained in the realm of a linear
Gaussian approximation are compared with numerical results.

Introduction. – Since Schelling’s pioneering work [1]
there has been increasing interest in using simple theoret-
ical models to describe social phenomena such as the dy-
namics of opinions [2]. In this context, individual-based
models commonly used in statistical physics are particu-
larly insightful, as they reveal the micro-macro connection
in social dynamics [1,2]. The voter model (VM) [3] serves
as a reference to describe the evolution of opinions in so-
cially interacting populations. (See e.g. [2, 4] and refer-
ences therein.) In spite of its paradigmatic role, the VM
relies on a number of unrealistic assumptions, such as the
total lack of self-confidence of all voters and their per-
fect conformity, which invariably leads to a consensus. In
fact, it has been shown that members of a society respond
differently to stimuli and this greatly influences the un-
derlying social dynamics [5–7]. An approach to model a
population with different levels of confidence is to assume
that some agents are “zealots” who favor one opinion [8]
or maintain a fixed opinion [9]. Since the introduction of
these simple types of behavior in the VM, a large variety

of zealot models have been studied, see, e.g., Refs. [10].

In this Letter, we focus on a variant of the VM known
as the two-state nonlinear q-voter model (qVM) [11] which
has attracted much interest [12]. In the qVM, a voter
can be influenced by a group of q neighbors. The version
with q = 2 is closely related to the well-known models
of Refs. [13]. Motivated by important psychology and so-
ciology tenets [5, 6], the basic ideas underlying the qVM
and zealotry have been combined into the q-voter model
with inflexible zealots (qVMZ) [14]. Indeed, social scien-
tists have established that conformity by imitation, an im-
portant mechanism for collective actions, is observed only
when the group-size is large and can be altered by individ-
uals who are able to resist the group pressure [6, 7]. It is
understandable that social conformity is unlikely for small
groups and can be significantly suppressed by the presence
of zealots. In the qVMZ dynamics, both group-size limited
conformity and zealotry are accounted for. Furthermore,
in a well-mixed setting, this dynamics obeys detailed bal-
ance, so that the exact stationary distribution is easily
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found [14]. The system resembles one in thermal equi-
librium, characterized by two phases: As zealotry is low-
ered through a critical level, the opinion distribution tran-
sitions from being single-peaked to being bimodal, with
non-trivial switching dynamics (in finite populations).

Unlike in the models described above, the populations in
our society are highly heterogeneous. In principle, we may
describe the relevant situation of different responses to so-
cial stimuli by considering a distribution of q’s [5]. Does
this generalization modify the conclusions of the qVMZ?
If so, how? In this Letter, we explore the simplest way
to this broader view, namely, a population with just two
subgroups with different q’s (denoted by 2qVZ): q1 < q2.
Similar to the qVMZ, phase transitions exist in the 2qVZ.
Unlike in qVMZ, the dynamics of this model does not
obey detailed balance, so the system relaxes into a non-
equilibrium steady state (NESS). Thus, from the stand-
point of statistical physics, 2qVZ is a highly non-trivial
extension. In general, there is no simple way to compute
a NESS distribution [15], while persisent probability cur-
rent prevails [16]. As a consequence, there are observable
quantities which are trivially zero in the qVMZ that do not
vanish in the 2qVZ. For example, opinions among those
with smaller q change more readily, and “drive” those in
the other subgroup. Though subtle, directed “oscillations”
associated with fluctuating quantities can be measured.
Here, we report results of a baseline study with the sim-
plest case q1,2 = 1, 2. Our methods include stochastic sim-
ulations and numerical solutions of the master equation for
systems finite size N , as well as a continuum version based
on the Fokker-Planck equation and its analysis through a
linear Gaussian approximation (LGA) [16–19].

Model specification and NESS . – Our model, the
2qVZ, consists of a population of N voters who support
one of two parties, the opinion of each denoted by ±1.
Some voters are inflexible zealots, never changing their
opinions. Their numbers are denoted by Z±, the sub-
script showing the associated opinion. The rest are swing
voters of two types, denoted by q1 and q2. Known as qi-
susceptibles, their numbers are Si, with i = 1, 2. During
the evolution, each agent maintains its behavior, so that
Z± and Si are all conserved (with S1+S2+Z++Z− = N).
At each time step, a voter is chosen at random and if
it is a zealot then no action is taken. However, if a qi-
susceptible is chosen, then it collects the opinions from a
random group of qi neighbors and adopts the opinion of
the group only if their opinion is unanimous 1 (See Sup-
plementary Material (SM) [20]). For simplicity, we inves-
tigate this model on a complete graph (well-mixed pop-
ulation). Since there is no spatial structure, our system
is completely specified by the number ni of qi-susceptible
voters holding opinion +1 (also denoted by ~n = (n1, n2)).

1As in Refs. [11,12,14], we allow repetition. Note that in Ref. [11]
a voter can change its opinion with a flip rate ǫ even in the absence
of consensus among its q neighbors. Here, as in most of Refs. [12,14],
we set ǫ = 0.

Since configuration space is a discrete set of S1 × S2

points and updates involve a single step to a nearest neigh-
bour on a square lattice, our system behaves exactly as a
two-dimensional random walker, with inhomogeneous and
biased rates. Thus, our simulation runs consist of record-
ing the trajectories of such a random walker. Meanwhile,
the full stochastic process is defined by a master equation
(ME) for the evolution of P (~n;T ) [21], the probability to
find our system in state ~n, T time steps (attempts) af-
ter some initial configuration ~n0. Since our main interest
is the stationary distribution, P ∗ (~n), we suppress refer-
ences to ~n0. As T increases by unity, a walker at ~n steps
to ~n′ with probability W (~n → ~n′), a process represented
by the ME P (~n;T + 1) =

∑

~n′ G (~n, ~n′)P (~n′;T ). Here,
~n′ ∈ {(n1 ± 1, n2), (n1, n2 ± 1)} is one of the four near-
est neighbors of ~n, from which the transitions occur with
respective stepping probabilities W±

1 (~n) and W±
2 (~n):

W+
i (~n) =

Si − ni

N

(

Z+ + n1 + n2

N − 1

)qi

(1)

W−
i (~n) =

ni

N

(

Z+ + S1 + S2 − n1 − n2

N − 1

)qi

. (2)

From here, it is straightforward to write an explicit form
for G, as well as joint probabilities P (~n, T ;~n′, T ′) at two
different times2. Much of our attention here will be de-
voted to the change, P (~n;T + 1) − P (~n;T ), given by
a sum of probability currents which account for transi-
tions into, or out-of, the configuration ~n. Specifically, the
net probability current from ~n to ~n′ ≡ (n1 + 1, n2) is
K1(~n;T ) = W+

1 (~n)P (~n;T )−W−
1 (~n′)P (~n′;T ), and a sim-

ilar expression for K2(~n;T ) for ~n to (n1, n2 + 1). Thus,

GP is intimately related to the current ~K = (K1,K2).
To verify that this dynamics violates detailed balance

(and time reversal), we may apply the Kolmogorov crite-
rion [23] on any closed loop, the simplest being four ~n’s
around a plaquette [22]. As a consequence, our system set-
tles into a NESS, with non-trivial P ∗ and stationary cur-
rent ~K∗. Though the main behavior of our model is quali-
tatively the same as in the qVMZ, the presence of ~K∗ leads
to important, distinguishing features, displayed through
physical observables, such as means, 〈ni〉 ≡

∑

~n niP
∗ (~n),

and correlations, 〈ninj〉T ≡ ∑

~n,n′ n′
injP∗ (~n, T ;~n′, 0).

Note that the order of indices in the latter is crucial: i
(j) is associated with the earlier (later) variable when
T > 0. One key observable is the antisymmetric part
of 〈ninj〉T 6=0: Being odd under time reversal, it highlights
the underlying NESS characteristic, and so, vanishes in the
qVMZ. When the time difference is infinitesimal (T = 1,
large N), it can be identified as the total “probability an-
gular momentum” [24], in analogy with the classical an-
gular momentum associated with current loops in fluids.
To illustrate these novel features, we examine in detail a
specific model – Z+ = Z−, S1 = S2, q1,2 = 1, 2 – and
provide several explicit results below.

2Assuming T > T ′, P (~n, T ;~n′, T ′) = GT−T ′

(~n, ~n′)P (~n′, T ′).
Details will be provided in [22].
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Analytic results & simulation studies . –

Mean-field Approximation (MFA): This approach offers
the most intuitive picture, valid when N → ∞ with fixed
densities: (z±, si, xi) = (Z±, Si, ni) /N (continuous vari-
ables subjected to z+ + z− + s1 + s2 = 1 and xi ∈ [0, si]).
In this limit, the rates W±

i become w+
i (~x) = (si − xi)µ

qi

and w−
i (~x) = xi(1 − µ)qi , where µ ≡ z+ + x1 + x2 clearly

represents the fraction holding opinion +1. In the MFA,
averages of products are replaced by products of averages,
and from the ME, we find the rate equations (REs)

ẋi ≡ ∂txi = w+
i − w−

i = (si − xi)µ
qi − xi(1− µ)qi . (3)

As in the qVMZ [14], the REs admit one or three fixed
points, depending on z±. At the fixed point(s), x∗

i , the
ratio ρ ≡ µ∗/ (1− µ∗) satisfies z+ +

∑

i=1,2 si/(1 + ρqi) =
1/(1 + ρ), while x∗

i = si/(1 + ρqi). For models with
z+ = z−, ρ = 1 is always a solution, associated with the
symmetric fixed point x∗

i = si/2 (denoted by ~x(0) below).
Above a critical density of zealots, zc, this is the only fixed
point and is stable. For z < zc, ~x

(0) turns unstable, while
two others (denoted by ~x(±)) emerge and both are stable.

For our specific model (z± = z, si = s = 1/2−z, qi = i),
the MFA for zc is 1/6 (i.e., sc = 1/3). When z < zc, ~x

(±)

are given by the two solutions to ρ + (1/ρ) + 1 = 1/(2z),
associated with the spontaneously breaking of the Ising-
like symmetry (ρ ⇔ 1/ρ). Thus, this MFA predicts the
same phase transition as in the qVMZ (pitchfork bifurca-
tion [14]). Of course, being deterministic, it cannot ac-
count for fluctuations.

Fokker-Planck equation (FPE): In finite populations, de-
mographic fluctuations are important, as they drive
interesting time-dependent phenomena in the station-
ary state. For large but finite N , these fluctua-
tions are embodied in the probability density P (~x; t),
the continuum version of P (~n;T ). Here, t ≡ T/N
also becomes continuous, as P (~n;T + 1) − P (~n;T ) →
N−1∂tP (~x; t). To the leading, non-trivial order in
1/N , the evolution is adequately captured by the FPE:

∂tP (~x; t) =
∑

i=1,2
∂

∂xi

[

∂
∂xi

ui(~x)P + vi(~x)P
]

[21], where

ui ≡
(

w+
i + w−

i

)

/2N and vi ≡ w−
i − w+

i . Clearly, the
right-hand-side can be identified as the divergence of the
probability current density

Ki(~x; t) = −∂ [uiP ] /∂xi − viP

(continuum version of Ki(~n;T )). The stationary prob-

ability density P ∗ (~x) is given by 0 = ~∇ · ~K∗. For a

dynamics which satisfies detailed balance, ~K∗ necessarily
vanishes, leading to equations for P ∗ that can be easily
solved [21]. In a NESS, ~K∗ 6= 0, i.e., non-trivial cur-

rents persist. Clearly, the curl of ~K∗ does not vanish and,
known in fluid dynamics as the vorticity, ~∇× ~K∗ is a one-
component field in two dimensions. Of course, ~K∗ can
also be expressed as the curl of another field, the stream
function. (See [20] for some details). In other words, the

currents form closed loops, which lead us to identify

Lij =

∫

~x

[

xiK
∗
j (~x)− xjK

∗
i (~x)

]

d~x (4)

as the total ‘probability angular momentum’ [24], by for-
mal analogy with the total mass angular momentum
(
∫

~x
~x× ~J d~x) in fluids with current density ~J . As a pseu-

dotensor in arbitrary dimensions, Lij has just a single in-

dependent component, (say) L12 = L. Since ~K∗ is linear
in P ∗, we identify L as the steady state average of a func-
tion of ~x. Below we show that the simple approximation
~K∗ ∝ ~xP ∗ provides many analytic results, e.g., an expres-
sion for the two-point correlation at unequal times 3

Cij (τ) ≡ 〈xixj〉τ (for τ 6= 0). (5)

Decomposing Cij into the symmetric and antisymmetric

parts, we see that C̃ij ≡ Cij −Cji is odd in τ , highlighting
time reversal violation and serving as a principal charac-
teristic of a NESS. Indeed, to lowest order (in ~x), Lij is

given by ∂τ C̃ij

∣

∣

∣

0
.

Linear Gaussian Approximation (LGA): In this scheme,

we consider deviations from a fixed point, ~ξ ≡ ~x − ~x∗,
and, keeping the lowest non-vanishing order, we find the
linearized version of the FPE [21]

∂tP (~ξ, t) =
∑

i,j

∂i
{

Dij∂
j + F j

i ξj

}

P (~ξ, t), (6)

where ∂i ≡ ∂/∂ξi, Dij = δijw
∗
i /N with w∗

i = w+
i (~x∗) =

w−
i (~x∗), and F j

i ≡ −(∂ẋi/∂xj)|~x=~x∗ is the linear stability
matrix at ~x∗. Thus, the LGA is defined by two matrices:
Dij and F j

i , or D and F for short. This linearized FPE
can be translated into Langevin equations with linear drift
−F~ξ plus Gaussian white noise controlled by D [21]. Below
we show that the LGA provides much insight into the
non-equilibrium character of our model by allowing us to
find analytic expressions for various quantities. From the
explicit expressions [20], we find that detF ∝ 1 − 6z (in
all cases) and its eigenvalues, denoted by λ±, are positive
in the regions of interest. Also expected, D is O (1/N), so

that fluctuations of ~ξ are O
(

1/
√
N
)

, and we note that

D11 > D22 which confirms that the q1-susceptibles are
more likely to change their opinions.
If D−1F is symmetric, then detailed balance is satisfied

and P ∗ ∝ exp
{

−~ξD−1
F~ξ/2

}

is a Gaussian distribution

for which D−1F/2 is the “potential”. Here, we find that
D−1F is not symmetric. Nevertheless, the solution of (6)

is still a Gaussian [16–19]: P ∗
(

~ξ
)

∝ exp
(

−~ξC−1~ξ/2
)

,

where the elements of C are 〈ξiξj〉0, the truncated Cij (0)
4.

It can be expressed in terms of the eigenvectors and eigen-
values of F [16, 17], or by solving S [FC] = D [18, 19],

3Also known as the lagged correlation or lagged co-variance.
4〈ξiξj〉0 ≡ 〈xixj〉0 − 〈xi〉〈xj 〉 = Cij (0) − 〈xi〉〈xj〉.
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where S [FC] denotes the symmetric part of FC. Defer-
ring the explicit forms of C to elsewhere [22], we present

here the implications for ~K∗ and the physical observables.
Since ~ξP ∗ = −C~∂P ∗, the steady currents in Eq. (6) can

be written as ~K∗ = [FC− D] ~∇P ∗ [16]. We emphasize
that, given S [FC] = D, the matrix FC− D is precisely
the antisymmetric part of FC , here denoted by A [FC].

Thus, ~K∗ is manifestly divergence free.
Proceeding to observables, we consider Lij or simply, L.

Since
∫

~x
~K∗d~x = 0, the ~x in Eq. (4) can be replaced by

~ξ. In the framework of the LGA, we readily find the re-
markably simple expression L = 2A [FC]. In this setting,
we see that FC = D + L/2, placing this angular momen-
tum on an equal footing with diffusion5. In our specific
2qVZ, the only independent component is L, given by
s2/ [(6− 8s)N ] and 4z2/ [(2z + 3)N ] for ~x(0) and ~x(±),
respectively. Further, we recall that L is intimately re-
lated to the two-point correlation C (τ) ≡ 〈ξiξj〉τ 6. In
the LGA, C (τ) is explicitly C exp

(

−F
T τ

)

[19]. Here, its
antisymmetric part is just one independent quantity and
so, we focus on (say) C̃12 (τ). Dropping the subscript, we
find the explicit expression

C̃ (τ) = L
(

e−λ−τ − e−λ+τ

λ+ − λ−

)

(7)

which exposes some noteworthy features: Clearly,

∂τ C̃ (τ)
∣

∣

∣

0
= L. Moreover, its long time behavior is gov-

erned by λ−, the smallest eigenvalue of F. Unlike typi-
cal correlations at unequal times, C̃ (τ) is non-monotonic,

with a peak at τ̂ = (λ+ − λ−)
−1 ln (λ+/λ−).

Below we show that all these predictions by the LGA are
borne out in simulations and exact numerical results (for
appropriate regions). Since the LGA is formulated around
a single fixed point, it clearly cannot describe double-
peaked distributions or escape times. By contrast, near
each peak, the reliability of the LGA improves in the limit
of N → ∞ with fixed z 6= 0, zc.
Exact numerical solution: For systems with small S, nu-
merical methods can be used to obtain P ∗, by exploiting
the relation [G (~n, ~n′)]

∞
= P ∗ (~n) (independent of ~n′!).

For example, for S = 30, by iterating G2τ = GτGτ just
64 times, we find changes at . 10−20. Illustrated in
Fig. 1(a,b) are heat maps (contour plots) on 30× 30 grids
for two cases: Z = 20 and 13. Associated with above and
below zc, they clearly show the expected single vs. double
peaked distributions. In the SM [20], we show this tran-
sition in S = 50 systems with many such plots compiled
into a movie.
In Fig. 1a, we see that the contours resemble ellipses

typical of Gaussian distributions. Two other prominent
features are: (i) The width in n1 is much smaller than
that in n2, indicative of the relative ease with which the q1-
susceptibles change their opinion, so that they stay closer

5Note our distribution has unit “mass” (
∫

P ∗ = 1) is unitless, so
that the units of L are x2/t, precisely those of diffusion.

6Specifically, L = 2A
[

∂τ C (τ)|
0

]

.

Fig. 1: (Color online). Stationary distribution and probability
current obtained from the exact numerical solution of the ME
in the high/low zealotry phase (left/right panels) with S = 30.
Top: P ∗ as function of ~x = ~n/N ; dark/light blue (grey) en-
codes a high/low probability. Bottom: The wind-field vectors
represent ~K∗ at each point ~x. Parameters are Z = 20 and
N = 100 in (a, c), and Z = 13 and N = 86 in (b, d).

to the “center” typically. Since these widths scale with√
N (≈ 10 here), we should expect only a qualitative fit

from Gaussians. (ii) The alignment of the ellipses implies a
strong corrleation between the two variables, an expected
result of both groups of susceptibles following the whims
of the other.

In the z < zc case, we see that the q2-susceptibles dis-
play a larger spontaneous symmetry breaking than q1-
voters, reflecting the same behavior as in the qVMZ.
Meanwhile, if left alone, the q1-susceptibles would reach
a coexistence state [9]. Thus, the broken symmetry in
the opinion of the former acts as an external imbalance
on the latter, dragging them to lean toward one pole or
the other. Now, due to the strong finite size effects, the
region around each peak appears quite asymmetric and se-
riously non-Gaussian when N is small. We also note that
the peaks are linked via a “ridge” the lowest point along
which is often refered to as a “gap” by mountaineers. If we
consider − lnP ∗, then this gap represents the lowest bar-
rier between two “wells.” Also known as the saddle point,
its height is expected to control the escape times faced by
the random walker trapped in one or the other well. As
we expect the height difference between the saddle and the
well bottom to scale with N , we anticipate escape times
to scale with eN , as found in the qVMZ [14]. Finally, note
that the analysis of the critical region z ∼= zc necessitates
a detailed finite size scaling study, which is beyond the
scope of this Letter.

From P ∗, we have computed numerically other exact
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quantities of interest. The wind-field like plots of ~K∗

shown in Fig. 1(c,d) provide good impressions of the gen-
eral counterclockwise swirl. Other characteristics (vortic-
ity and stream function) are displayed in the SM [20].
More quantitatively, the physical observables are readily
obtained and can be compared with the predictions of the
LGA. Here, due to symmetry, the exact 〈~x〉 is ~s/2, re-
gardless of the location of the peak(s). The simplest non-
trivial quantities are two point correlations (C,L) and we
find that the predictions of the LGA are in qualitative
agreement with exact calculations [20] in the high zealotry
phase z > zc. In principle, we access the exact decay con-
stants (λ±) by analyzing Gτ numerically, a task deferred
to a future study [22]. In the low zealotry phase, z < zc,
we emphasize that P ∗ includes all trajectories, with visits
near both x(±). Yet, the LGA can be expected to be good
only around one of the two peaks. Hence, blindly comput-
ing C or L from this P ∗ will not allow us to compare them
with the predictions of LGA. Indeed, it is a highly non-
trivial task to interpret L, since a detailed understanding
of the contributions from tunneling is necessary. As for
comparisons with simulations results, the key is whether
the runs are long enough to permit a good sampling of
both wells. In summary, while the LGA succeeds in cap-
turing the essentials of the z systems here, the finite size
effects are too large for good quantitative agreement. For
z < zc cases, we expect that the predictive power of the
LGA will improve when the zealotry is asymmetric since
tunneling events then become extremely rare [14, 22].

Simulation studies: While the above methods yield exact
results, they are restricted to small systems. To study
larger N ’s, we rely on stochastic simulations, based on
running a random walker on a S × S lattice with the bi-
ased and inhomogeneous stepping probabilities (1,2), and
performed using the Gillespie algorithm [25]. Using z’s
not particularly close to either 0 or zc, our runs are up to
108 steps, for systems as large as N = 3600. The entire
trajectory of each run is recorded, giving us the time se-
ries ~n (T ) and so, ~x (t) and ~ξ (t). Examining these, we find
that, within 1000 time steps of starting at (0, 0), the walk
appears to be in a steady state. With these traces, we can
construct time averages and obtain 〈~x〉 and the general
two-point correlation function Cij (τ) in the NESS .

First, as a check, we collected data for the small systems
discussed above (S = 30, with Z = 20, 13). For the for-
mer, we find the truncated Cij (0) to be (C11, C12, C22) =

(1.74, 1.66, 3.53)× 10−3. Further, we compile C̃ (τ) and
find the behavior predicted in Eq. (7), see Fig. 2. By
fitting with this form, we find λ± = 0.833, 0.091 and
L ∼= 2.16×10−4. Both Cij (0) and L are in excellent agree-
ment (within 0.6%) with the exact result [20]. By contrast,
the LGA predictions are qualitatively acceptable (from a
few % to the right order of magnitude). For the Z = 13
case, the walker spends much of its time wandering back
and forth between the wells, implying that P ∗ is attained.
As a result, the findings for C are also in excellent agree-

Fig. 2: (Color online). C̃ (τ ) vs. τ in the high zealotry phase,
with N = 100, Z = 20, and S = 30: Results of simulations
(black) obtained by sampling every 0.01 time step and averaged
over 99×106 data points. Comparison with the LGA expression
(7) for with λ+ = 0.833 and λ− = 0.091 (red/grey), see text.

ment (within 1%) with the exact results [20]. However,
in this case the comparison with the LGA predictions is
pointless, since the LGA is devised for just one well.

Turning to large systems, two examples (Z = 400 and
800, S = 1000) are offered in the SM [20]. In the low
zealotry case, the walker remains in one well for the en-
tire run. Thus, it is meaningful to compare both sets of
data with MFA/LGA predictions. For z < zc , the sim-
ulation results of 〈~x〉 compares well with the MFA ~x(±).
In both cases, the data for the correlations 〈ninj〉0 and
〈ninj〉1 are in quantitatively good agreement with the
LGA predictions for C and FC [20]. In summary, we have
found that the LGA is indeed quite reliable for large S,Z
(around each ~x∗). Meanwhile, the various methods pre-
sented in this section all point to the presence of interest-
ing new phenomena associated with the NESS aspect of
2qVZ, namely, the presence of observable quantities odd
under time reversal.

Summary and outlook. – In this Letter, we intro-
duced a generalization of the qVMZ (q-voter model with
zealots) [14] which takes into account expected inhomo-
geneities in the behavior of swing voters and the presence
of zealots. In arguably the simplest generalization of the
qVMZ, we have just two groups of swing voters, distin-
guished by needing a consensus of q1 or q2 of its neigh-
bors to adopt their opinion. As in Ref. [14], our model
is characterized by two phases: When the fraction z of
zealots is low, the long-time opinion distribution is bi-
modal whereas it is single-peaked when a critical value
(z > zc). However, a major and far-reaching difference
between the qVMZ and ours is that detailed balance is
violated here. Hence, though the qualitative features are
similar to those recently reported in [14], our system set-
tles into a genuine NESS. As a result, there are persis-
tent probability current loops which are odd under time
reversal. We investigate these currents and some observ-
able manifestations thereof, in the simple but generic case
q1,2 = 1, 2. with S1 = S2 and Z+ = Z−. Using numer-
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ical methods for small systems, Gaussian approximation
for large ones, and simulation runs for both, we arrive at
a comprehesive picture for our system. Quite remarkably,
we show that this simple model exhibits stationary micro-
scopic current loops (see Fig. 1), resulting in oscillations
in certain macroscopic observables (e.g., the antisymmet-
ric part of the two-point correlation function at unequal
times, see Fig. 2). While the detailed relationships be-
tween microscopic probability currents and macroscopic
social phenomena remain to be explored, our study clearly
points to the presence, albeit subtle, of predator-prey like
oscillations. The overall counter-clockwise flow in ~K∗ im-
plies that fluctuations in the q2-susceptibles follow those of
the other group, much like the population of lynxs follow
those of hares. We believe this stems from the presence of
“leaders” and “followers” in a society. Clearly, this study
provides only the initial steps towards a systematic inves-
tigation of multi-q VM’s, which are expected to display
other interesting phenomena. For this particular model,
much more can be examined, e.g., finite size effects, scaling
properties near zc, and full distributions of L [24]. Be-
yond studying the 2qVZ and similarly tractable models,
the goal of our long-term efforts is to explore fundamental
issues of NESS, in an attempt to formulate an overarching
framework for non-equilibrium statistical mechanics.
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M. A., Journal of Statistical Mechanics: Theory and Ex-
periment, 2015 (2015) P01030; Mobilia M., Chaos, Soli-
tons & Fractals, 56 (2013) 113; Mobilia M., Physical Re-
view E, 86 (2012) 011134; Mobilia M., Physical Review
E, 88 (2013) 046102; Mobilia M., Journal of Statistical
Physics, 151 (2013) 69.
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