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Directing cell therapy to anatomic target sites
in vivo with magnetic resonance targeting
Munitta Muthana1, Aneurin J. Kennerley2,*, Russell Hughes3, Ester Fagnano1, Jay Richardson1, Melanie Paul1,

Craig Murdoch4, Fiona Wright1, Christopher Payne5, Mark F. Lythgoe5, Neil Farrow6, Jon Dobson7, Joe Conner8,

Jim M. Wild9 & Claire Lewis3

Cell-based therapy exploits modified human cells to treat diseases but its targeted application

in specific tissues, particularly those lying deep in the body where direct injection is not

possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to

direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour

sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic

iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the

tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into

tumours, resulting in increased tumour macrophage infiltration and reduction in tumour

burden and metastasis. Our study indicates that clinical MRI scanners can not only track the

location of magnetically labelled cells but also have the potential to steer them into one or

more target tissues.
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A
dvances in our understanding of the molecular
mechanisms underpinning major diseases have led to
the development of a wide array of cell-based therapies

to deliver a therapeutic agent such as a protein or virus, or a
modified, repopulating stem cell1. When the disease is not
confined to one site in the body, or is in a tissue inaccessible by
direct injection of cells, such cell-based therapies have to be
administered systemically.

Previous studies have shown that magnetic particles or cells
loaded with super-paramagnetic iron oxide nanoparticles (SPIOs)
can be injected systemically and attracted to a target tissue in
mice by the application of a local external magnet2–6. Indeed, we
have previously showed that SPIO-loaded human macrophages
could be attracted from the circulation into tumours in mice
using such an approach7. However, this approach can only be
applied to superficial target tissues. While localized magnetic field
gradients could be achieved in deeper tissues using implanted
ferromagnetic stents8, this necessitates invasive surgery.

An exciting, alternative approach is magnetic resonance
targeting (MRT) that uses the magnetic field gradient coils
inherent to all magnetic resonance imaging (MRI) systems, to
steer ferromagnetic particles (or cells containing them) to a target
site4. We have previously shown that MRI could be used to steer
iron-labelled human peripheral blood mononuclear cells in a
vascular model7, and early studies in pigs demonstrated this
concept by steering a 1.5-mm ball bearing a distance of 5 cm
inside the right carotid artery of the animal using the gradient coil
currents of a standard 1.5 T MRI system9,10.

Bone marrow-derived cells are increasingly being used in
cell-based therapies for such diseases as infarcted myocardium11,
spinal cord injury12, cerebral ischaemia13 and degenerative
diseases such as Parkinson’s disease14, Alzheimer’s disease15

and cancer16–18. In the latter disease, numerous clinical trials
have administered bone marrow-derived cells systemically in an
attempt to treat malignant tumours, including T cells19,20,
dendritic cells21, macrophages22,23 and stem cells24. However,
only a small proportion of these cells subsequently locate to the
tumour site, with many found subsequently in other tissues. This
lack of targeting not only reduces the therapeutic efficacy but also
increases the risk of side effects.

When macrophages were found to accumulate in large
numbers in avascular hypoxic/necrotic areas of such tissues in
mice and humans17,25,26, we suggested that these cells could
be used to deliver therapeutic agents such as oncolytic viruses
(OVs) to these poorly vascularized, and therefore relatively
inaccessible, areas of tumours17. In the present report, we show
that MRT can be used to increase the number of OV-loaded
macrophages in primary and metastatic tumours in mice.
Importantly, MRT markedly increased the anti-tumour effects
of this macrophage virotherapy. Our results suggest that it is
possible to use a standard MRI scanner to non-invasively steer
cells to both primary and secondary tumours, and, so, in theory,
this approach could be used to steer any cell-based therapy to its
target site(s) within the body.

Results
MRT of magnetic cells into three-dimensional tumour spheroids.
Before applying MRT techniques in vivo, we first established that
a pre-clinical 7 T MRI system fitted with a 600 mT m� 1 gradient
coil (limited to B300 mT m� 1 for this study) set could generate
substantial actuation forces on magnetic macrophages in vitro by
steering them across an endothelial layer into three-dimensional
human multi-cellular tumour spheroids (MTS). To do this, we
designed a transendothelial migration (TEM) flow chamber in
which human macrophages circulated across the surface of a

perforated membrane coated with a layer of human vascular
endothelial cells, thereby mimicking flow in tumour venules.
MTS were cultured in a non-adherent chamber below the
membrane (Fig. 1a). Human macrophages infected with a green
fluorescent protein (GFP) reporter adenovirus (Ad-CMV-GFP)
were loaded with SPIOs (1.18±0.3 mg ml� 1)7 and then steered
across the membrane into MTS when the chamber was placed in
the isocentre of a pre-clinical MRI system. SPIO uptake did not
affect macrophage viability (Fig. 1b).

MRT experiments used a pulsed magnetic field gradient (2-ms
on, 7-ms off, 50% strength B300 mT m� 1 (ref. 4)) for 1 h in the
direction of the spheroids (Fig. 1a) with an effective additional
magnetic field offset, BoffBþ 1.5 mT around the MTS site.
In control conditions, samples were exposed to the magnetic field
of the scanner but gradients were not pulsed. Following MRT, we
found a T2*-weighted signal loss indicating higher concentration
of iron in comparison with the control samples for MRT samples
(n¼ 6) (Fig. 1c, upper panel). GFP-expressing macrophages
were also clearly visible within MTS (Fig. 1c, second panel)
and flow analysis further confirmed macrophage uptake
with significantly more viable infiltrating CD14þ /propidium
iodide� -expressing macrophages with MRT (29.7±2.6%) than
without (2.9±1.8%; Fig. 1c, lower panel).

MRT improves tumour uptake of magnetic cells in vivo. We
then investigated whether such an MRI gradient system could be
used to steer magnetic macrophages to tumours in vivo (Fig. 2).
Three million SPIO-loaded macrophages were administered
intravenously to mice bearing orthotopic primary and metastatic
(lung) prostate tumours. A pulsed magnetic field gradient4 was
applied for 1 h, in the direction of the prostate (Fig. 2a), with an
effective magnetic field offset, BoffBþ 7 mT on top of the static
magnetic field of the scanner (B0¼ 7 T). The control group was
exposed to the static magnetic field of the scanner in the absence
of the steering gradients (no MRT).

MRT significantly (unpaired student t-test, P¼ 0.0001)
increased uptake of SPIO-loaded macrophages in primary
prostate tumours (42.2±2.5%) compared with the control group
who did not undergo MRT (7.17%±0.8) (Fig. 2b). Moreover, we
observed these SPIOþ human macrophages were distributed
throughout tumours with very few signs of cell clumping in the
tumour vasculature following MRT as seen by labelling sequential
sections of tumours using an antibody against human CD68
(a pan macrophage marker) and a histological stain for
iron (Prussian blue) (Fig. 2c). This was also confirmed by
immunofluorescence staining where tumour cells are labelled
with the anti-GFP antibody (green) and tumour infiltrating
human macrophages with anti-CD68 (red) (Supplementary
Fig. 1a). MRI steering of macrophages did not adversely affect
the tumour vasculature (Supplementary Fig. 1b); we examined the
morphology and integrity of every CD31þ blood vessel in each
of the five tumours in these two groups and found no differences
between them. We could not see signs of endothelial cell
disruption nor were there any signs of blood clotting
(for example, platelet aggregation) in, or on, the abluminal side
of blood vessels after MRI targeting. In the multi-echo rapid
acquisition with relaxation enhancement (RARE) magnetic
resonance images of tumours, little difference can be seen
between the MRT and no MRT groups (Fig. 2d).
This is most likely due to the blood pool iron content per voxel.
However, a marked difference between SPIO-injected and
non-injected subjects is evident in the T2-weighted long echo
time (TE) images, with the loss in signal intensity within the
tumour indicating the presence of high concentrations of iron
(Fig. 2e). In an effort to assess the increased uptake of magnetic
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macrophages in vivo, we used magnetic resonance relaxometry to
measure the magnetic resonance transverse relaxation decay rate
(R2) in tumours in both the groups. R2 measurements were
21.8 s� 1 for the MRT group and 18.8 s� 1 for the control group.
Normal R2 decay rate of tumour tissue without the presence of
any SPIOs is also included for comparison (10.5 s� 1).
The increased R2 decay rate indicated increased iron uptake for
the MRT group, suggesting that it is possible to assess the
uptake with MRI, as seen with the post-mortem analysis
(Supplementary Fig. 1c). The difference in targeted and
non-targeted R2 values was used to estimate the optimal TE for
analysing signal differences with spin echo-based MRI sequences

(TE of 60 ms). Using this TE, MRT leads to a 10% decrease in
signal over the time-matched controls.

Additional controls included tumour-bearing mice: (i) with
unlabelled macrophages and MRT and (ii) with unlabelled
macrophages without MRT. For these control groups, we detected
very few macrophages within tumours as confirmed by MRI
(Supplementary Fig. 1d) and flow cytometry of enzymatically
dispersed tumours (Supplementary Fig. 1e). Of note, we detected
virtually no human CD68þ macrophages in other tissues
including the liver (o2% of all cells per tissue section), spleen
(o1%) and kidneys (none detected) (Supplementary Fig. 2).
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Figure 1 | MRT using a novel transendothelial migration (TEM) flow assay. We have designed a flow chamber that can accommodate three-dimensional

(3D) tumour spheroids as well as a vascular endothelial layer. The flowing ‘magnetic cells’ will therefore need to cross the vascular barrier before entering a

3D tumour simulating the passage of cells across endothelial cells in a blood vessel wall (a, left panel). The TEM flow chamber is placed in the isocentre of

an MRI scanner with a spherical (6-mm diameter) homogenous 7 T magnetic field. We applied a pulsed gradient (50% of max) with strength of

300 mTm� 1 in the (� y) gradient direction. The resulting heterogeneous magnetic field (dB/dy field) can steer magnetic particles towards the tumour

spheroids for increased uptake (a, right panel). Cell viability following SPIO uptake was not compromised as assessed by flow cytometry for propidium

iodide uptake (b). Uptake was confirmed by a distortion in the MRI image and a loss of signal compared with when no MRT was applied (c, upper panel).

Corresponding fluorescent images of whole spheroids infiltrated with macrophages carrying a reporter adenovirus (Ad-CMV-GFP) are shown in (c, second

panel). Scale bar, 100mm. Flow cytometry of enzymatically dispersed spheroids revealed that the number of magnetic cells infiltrating spheroids (% of

all cells present in spheroids that were CD14þ ) was significantly increased when a gradient was applied (c, lower panels). All images and data

(means±s.e.m.) are derived from six independent experiments. Comparisons between the groups were performed using two-tailed unpaired Student’s

t-test ***P¼0.0001, compared with no MRT group.
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To further investigate whether macrophage delivery to
tumours by MRT disrupted the function or integrity of the
tumour vasculature, vascular perfusion and permeability was
determined using intravenous (i.v.) tomato lectin and Ricinus
communis agglutinin I staining, respectively27. We could not
detect any differences in the number of perfused vessels or
vascular leakage between the no MRT and þMRT groups

(Fig. 2f). This was confirmed by estimating vascular permeability
to gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by
dynamic contrast-enhanced MRI (Fig. 3).

MRT of magnetic cells to pulmonary metastasis. MRT has
particular application when tumours are difficult or impossible to
remove surgically, as in the lung, brain, liver or spinal cord and
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Figure 2 | Magnetic macrophages were steered into primary prostate tumours using MRT. (a) Schematic of targeted regions using imaging gradients for

MRT. We applied a � y gradient equally across the animal to target the location of the prostate as depicted (red box). Three million magnetically labelled

macrophages were then administered to mice via i.v. injection and anaesthetised mice were then placed into the isocentre of a 7 T MRI scanner. Subjects

were split into two groups with n¼ 5 mice per group. Group 1 were imaged after 1 h (no MRT). Group 2 underwent MRI targeting. Post mortem, we

confirmed the increased levels of human macrophage uptake by (b) FACS analysis of collagenase-treated tumours 1 h after MRI targeting, and (c)

histological staining of paraffin wax-embedded tumour sections with an anti-human CD68 antibody and Prussian blue (CD68-positive macrophages are

brown and SPIO-positive macrophages are blue: see arrows). Representative RARE images from five mice per group and R2 maps for each group are shown

in d and e. T, tumour; scale bar, 200mm. (f) The number of perfused vessels in tumours in mice that underwent MRT compared with mice with no MRT was

determined by perfusion with tomato lectin (green). Arrows point to areas vascular leakage. Mean±s.e.m., P¼0.75, Student’s t-test; analysis of tumours

from n¼ 5 mice per group and 5–10 fields of view (FOV) per tumour. The total volume of leaky vasculature does not differ between tumours in the two

groups of mice (mean±s.e.m.; P¼0.6, Student’s t-test; analysis of tumours from three mice per group and 5–10 FOV per tumour). Scale bar, 34 mm.
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may enable delivery of cell-based therapies to primary or
metastatic tumours in such locations. In a second in vivo
experiment, we used MRT to steer SPIO-labelled macrophages
into the lungs of our mice bearing metastatic prostate tumours
(Fig. 4). This was performed immediately after i.v. administration
of 3 million macrophages. Mice not exposed to MRT, but exposed
to the magnetic field of the scanner for the same length of time,
were used as controls.

Flow cytometric analysis of enzymatically dispersed lungs
showed the presence of significantly more human CD14þ
macrophages following MRT than in the control group
(17.7%±4 versus 4.4%±2.6, respectively) (Fig. 4a). This was
also confirmed by histological and immunofluorescence staining
of the lungs, where human CD68þ macrophages were detected
in or close to the small metastatic deposits present within the
lungs of mice following MRT (Fig. 4b; Supplementary Fig. 3a).
These macrophages also stained positive for Prussian blue (iron)
(Fig. 4b) and their iron content was also visible following
haematoxylin and eosin staining (Supplementary Fig. 3b). We
inspected the morphology of CD31þ blood vessels in the lungs
following their uptake of SPIO-labelled macrophages with or
without MRT (Fig. 4c). Due to the short T2/T2* of lung tissue, it
was not possible to image the lung parenchyma with conventional
1H MRI techniques at high field for in vivo validation of increased
uptake. Future technical developments may make this possible,
for example, the use of hyperpolarized gases in the airspaces
could be used as an indirect magnetic resonance signal detection
method28. Nevertheless, in different organs or soft tissues, or on
clinical systems, T2* imaging may have a place.

MRT of oncolytic macrophages reduces tumour growth. In
a final experiment to assess the therapeutic benefits of MRT,
SPIO-loaded macrophages armed with the OV, Seprehvir
(HSV1716), were administered to tumour-bearing mice.
HSV1716 replication is supported by PC3 prostate cancer cells29

and here we show, for the first time, oncolysis in LNCaP cells in
both hypoxic (0.5% O2) and normoxic (20% O2) conditions
(Supplementary Fig. 4a). Seprehvir is readily taken up by
macrophages and while uptake is significantly higher in
normoxic culture conditions (Supplementary Fig. 4b), viral
replication is greater in hypoxia and macrophage cell death is
equally effective in a hypoxic environment (Supplementary
Fig. 4c,d). In our in vivo model, tumour-bearing mice received
either a single i.v. injection of OV-carrying macrophages
(monocyte-derived macrophage (MDM)þOV), were placed
in the static field of the scanner without MRT ‘MDMþOV
(no MRT)’, or were exposed to the scanner with MRT
(MDMþOVþMRT). For the purpose of comparison, ‘free’
OV was administered to a separate group of mice. Additional
control groups of mice received either 100ml saline treatment
(control) or 3 million untreated macrophages (MDM) i.v. OV
(1� 107 plaque-forming unit29 alone significantly delayed
primary tumour growth for up to 7 days compared with mice
receiving PBS or MDM only (Fig. 5a). This effect was significantly
prolonged with macrophage-mediated delivery of Seprehvir
(Po0.006 at day 14 and Po0.007 day 21, a one-way analysis
of variance followed by post hoc Bonferroni test was used for
statistical analysis) and concurred with our previous studies
where macrophages carrying OV were more effective over viral
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has remained intact following MRT therapy. All data are means±s.e.m. from n¼ 3 mice per group.
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infusion alone17,18. Of note, no differences were observed in mice
receiving MDMþOV but were not exposed to the MRI scanner
and MDMþOV (no MRT) where the latter is exposed to the
scanner but with no steering. However, MRT of our macrophage
virotherapy was not only better at reducing the growth of the
primary tumours from day 7 onwards but also delayed primary

tumour regrowth for the entire experiment (Fig. 5a).
Bioluminescence of mice receiving macrophage OV therapy
with or without MRT on the first day of treatment (day 0) and at
the end of the experiment (day 21) showed this marked reduction
of the primary tumour (Fig. 5a,b). This was confirmed visually on
the MRI scans (Fig. 5c). Furthermore, tumours undergoing MRT
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targeted delivery of magnetic macrophages into the lungs had no adverse affects on the lung vasculature compared with delivery without targeting.

Representative data are shown from one of two replicate experiments in which n¼ 3 mice per group. s.e.m.’s are depicted and Student’s t-test Po0.75

compared magnetic resonance targeted with non-magnetic resonance targeted lungs.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9009

6 NATURE COMMUNICATIONS | 6:8009 | DOI: 10.1038/ncomms9009 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


following macrophage-delivered OV were significantly more
necrotic than those not receiving MRT (Fig. 5d).

In the lungs, few metastases were detected in mice injected
with PBS or MDM alone since mice had to be culled at day 14
(due to the large size of their primary tumours). Therefore, it
was not valid to compare metastases in these control groups
with the other experimental groups. However, as shown in
Fig. 5e, the number of lung metastases was markedly reduced in
mice that received magnetic resonance targeted, OV-bearing
macrophages than in those which received the cells but not MRT.

Discussion
In this study, we show that an MRI scanner can be used to non-
invasively steer cells to both primary and secondary tumours
within the body leading to a significant improvement in
therapeutic outcome. Moreover, relaxometry measurements
suggest that standard MRI can then be used to monitor the
efficacy of this therapy. While this study has focused on cell
delivery to tumours, the technology could be used to target any
cells (for example, mesenchymal stem cells and so on) to a given
tissue in the body including non-phagocytic cell types, which
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Figure 5 | Magnetic targeting increases the anti-tumour effects of oncolytic macrophages. Tumour-bearing mice were administered with a single dose of

human monocyte-derived macrophages (MDMs) carrying the oncolytic virus, HSV1716 (MDMþOV). These were divided into three groups of mice

(each with five mice per group). One group underwent MRT to either the prostate gland or lungs (MDMþOVþMRT) for 1 h, another was exposed to the

MRI scanner but with no MRT (MDMþOV no MRT) and the third (MDMþOV) did not enter the MRI scanner. Additional groups of mice received 100 ml

of PBS (Control), a single dose of 1� 107 plaque-forming unit HSV1716 (OV) or 3 million untreated MDM. Mice were imaged weekly using the IVIS imaging

system and, after 21 days, tumours and lungs were removed and processed for histology. (a) Tumour luminosity in n¼ 5 mice per group showed MRT

significantly improved the effect of OV-MDM on tumour growth. (b) Representative IVIS images and photographs of primary tumours following various

treatments. (c) Representative RARE images for MDMþOV with or without MRT show marked difference in tumour size at the beginning and end of

therapy. Representative images of haematoxylin- and eosin-stained sections from n¼ 5 mice per group show (d) the area of necrosis (N) in primary

tumours and (e) the number of metastases (see arrow, M, metastasis) in the lungs of mice receiving MDMþOV with or without MRT. Scale bar, 200mm

(d–e). Data shown are means±s.e.m. of n¼ 5 mice per group. For the lung metastasis, quantitative analysis was carried out on 10 high-power fields (� 20

magnification) per tissue section. Comparisons between more than two groups were performed using one-way analysis of variance followed by post hoc

Bonferroni test. *Po0.05; **Po0.001; ***Po0.0001 compared with MDMþOVþMRT to MDMþOV (no MRT) and ^Po0.05 and ^^Po0.001 is

comparing MDMþOV (no MRT) and free OV group.
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could be ‘magnetized’ using SPIO-conjugated antibodies directed
against proteins on their cell surface (Fig. 6).

The use of MRT, which exploits the magnetic field gradients
within MRI systems to increase delivery of cells, is ideally suited
to deep or superficial tissue7. The question of clinical translation
is dependent on the ability to provide the same targeting force on
a clinical MRI system. Clinical scanners, with high-performance
magnetic field gradient systems of 300 mT m� 1, are already in
use and as such have the potential to produce similar forces30.
Moreover, we were able to image the cell distributions following
MRT, indicating the possibility for real-time image-guided
targeting using an MRI system. These findings support the
potential value of MRT with concomitant imaging for improved
targeting of cells for therapy.

Methods
Isolation and culture of human macrophages. All patients donating blood gave
informed consent to the Sheffield blood Transfusion Service and all procedures
have been approved by the University of Sheffield Ethics Committee. Mononuclear

cells were isolated from platelet-depleted buffy coats (Blood Transfusion Service,
Sheffield, UK) using Ficoll-Paque Plus (Amersham Pharmacia, St Albans, UK).

In brief, 50 million monocytes were plated into T75 tissue culture flasks
(NUNC, UK) and after 2 h non-adherent cells were removed. The remaining
adherent cells were cultured over 7 days in IMDM (Lonza, UK) supplemented with
2 mmol l� 1 L-glutamine, 100 U ml� 1 penicillin, 100mg ml� 1 streptomycin and
2% human Ab serum (Lonza).

Endothelial cell cultures. Human umbilical vein endothelial cells were obtained
from Promocell, (Heidelberg, Germany) and used in the experiments up to passage
8. Cells (150,000) were seeded for 24 h onto collagen-coated (0.1 mg ml� 1, human
type IV) membranes containing a 5-mM pore polyethylene terephthalate mem-
brane (Neuroprobe).

Human multi-cellular tumour spheroids. Human prostate cancer cell line, LNCaP
(ATCC CRL-1740), was seeded (5� 103) in 100ml medium into each well of a
2% agarose (Sigma, Dorset, UK)-coated 96-well tissue culture plate. After 7–10 days,
each well contained a tumour spheroid with an average diameter of 700–800mm.

Infection of primary macrophages. Day 3 MDMs were infected with a replica-
tion-deficient adenovirus (CMV-AdV5-GFP) at multiplicity of infection (MOI)
100. The E1A/B-deleted adenovirus, CMV-AdV5-GFP (driven by a CMV
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Figure 6 | Principle of MRT to steer cell-based therapies to specific tissues. (a) The cells used for these studies are derived from monocytes isolated

from patient blood. These cells are cultured in the presence of various stimuli to produce ‘therapeutic’ macrophages (for example, cytokines, therapeutic

genes or viruses) and loaded with SPIOs before reinfusion back into the same patient. (b) The subject is then placed in the centre of an MRI scanner where

linear spatial encoding magnetic gradients can be used to induce a force on a magnetized body. The magnetic cells injected into the bloodstream of the

subject circulate and are targeted into the diseased organ/tissue under the influence of the applied magnetic field. Field map plots demonstrate that

significant field gradients can be generated in various directions by the MRI gradient coils. The resulting magnetic field (dB/dy field) can steer magnetic

cells towards the diseased tissue for increased cell uptake.
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promoter), was isolated from a single plaque, expanded in 293 human embryonic
kidney cells. All the viruses were purified by double caesium-gradient centrifuga-
tion, and titred by plaque assay on 293 cells with the titre expressed as
plaque-forming units per cell. The MOI used in this study was previously
optimized in macrophages and are described in ref. 17.

Cellular uptake of magnetic nanoparticles by macrophages. MDMs (infected
with Ad-CMV-GFP) were cultured overnight with 100mg ml� 1 SPIOs (25 nm)
(Sigma-Aldrich, Poole, UK). SPIO accumulation in cells was previously assessed by
flow cytometry and confirmed by attraction of the cells towards a magnet placed at
the side of the culture dish as observed by light microscopy (Leica Microsystems
UK Ltd). Cell viability following SPIO uptake by macrophages was also measured
by flow cytometry and compared with cells that were not incubated with SPIOs
using the DNA dye propidium iodide (Sigma). Comparisons made using an
unpaired Student’s t-test revealed no statistically significant difference between the
two groups P¼ 0.4 (Fig. 1b) N¼ 3.

In vitro transendothelial flow assay. The TEM chamber was assembled as shown
in Fig. 1a. SPIO-loaded MDM (1.5� 105 cells per ml in PBSþ 2% FCS) was flowed
over the human umbilical vein endothelial cell monolayer at typical venous flow
rates (1.1885 ml min� 1) at a sheer stress of 1.4 dyn cm� 2, this is equivalent to
blood flow through post-capillary venules. The TEM chamber was positioned
directly in the isocentre at B5-mm distal of a 7 T magnet (Bruker BioSpecA-
VANCEII, 310-mm bore, MRI system B/C 70/30). The flow in the chamber was in
the –z direction (in and out of the magnet bore). We used pulsed gradients 2-ms on
and 7-ms off as described by Reigler et al.4. To steer SPIOs into the chamber
containing tumour spheroids, we applied a pulsed –y gradient at 50% strength
to avoid over-heating (B300 mT m� 1) for 30 min. Post MRT, a 1H volume
resonator (Bruker, 300 MHz, 1 kW max, outer diameter 118 mm per inner
diameter 72 mm) allowed the capture of Fast low angle shot (FLASH) and RARE
MRI images.

Spheroid infiltration by MDMs was then assessed using a fluorescent
microscope to detect the GFP-positive cells and flow cytometry using enzymatically
dispersed spheroids. To determine the iron content within SPIO-loaded
macrophages, cell pellets were solubilized in 70% nitric acid for 7–14 days
before analysis. Iron concentrations were quantified against a calibration standard
iron solution (Fischer Scientific) by atomic emission spectroscopy using Varian
Vista-M PX.

Flow cytometric analysis. Single-cell suspensions were obtained by trypsinizing
MDMs (including co-transduced MDMs). Cells were then incubated with for
30 min at 4 �C with mouse anti-CD14, 1:100 in PBS containing 1% bovine serum
albumin (Sigma) to prevent nonspecific antibody binding. Alternatively, spheroids
were digested using 0.25% trypsin/EDTA to separate the tumour cells and
infiltrated macrophages and cell death was analysed by flow cytometry by adding
propidium iodide (Sigma) to the cells immediately before running on the flow
cytometer.

Orthotopic prostate xenograft model. All mouse procedures were conducted in
accordance with the UK Home Office Regulations under the Animals (Scientific
Procedures) Act 1986 and the awarded project licence number under which these
protocols were performed is PPL:40/3424. In addition, the University of Sheffield
Animal Welfare and Ethical Review Body approved all the in vivo experiments used
in this study. Male CD1 athymic mice (aged 7–8 weeks, stock number 000711)
were used in these studies (Charles Rivers, UK). Animals were randomized
before beginning the treatment schedule and were kept in ventilated cages with

food and water provided ad libitum. Animal group sizes were calculated by power
analysis. In general, a maximum of five animals per group were used unless
otherwise stated. One million LNCaP:LUC:GFP cells (a gift from Professor Magnus
Essand, Uppsala Sweden) were mixed 1:1 in Matrigel and injected into the dor-
solateral prostate. Tumour size was determined by administering luciferin (Mole-
cular Probes) followed by bioluminescent IVIS imaging and measuring the daily
weights of the mice. Tumour uptake was monitored by bioluminescence imaging
using the IVIS Lumina II imaging system (Caliper Life Sciences). This detects live
luciferase-labelled tumour cells, enabling real-time monitoring of tumour growth
and spread in the mice. The mice were injected intraperitoneally with 90 mg kg� 1

D-luciferin (Caliper Life Sciences) dissolved in sterile water and anaesthetized using
2.5% isoflurane (Abbott Scandinavia AB) in 100% oxygen at 3.5 l min� 1

(for induction) in the anaesthesia chamber of the imaging system. Mice were
transferred to the dark box and isoflurane was lowered to 1.5%. Images were taken
every 3 min as a sequence of 10 images for every group of mice, once a week.
Automatic contour regions of interest were created, and the tumour sizes
(or tumour radiance) were quantified as photons per second per square centimetre
per steradian. Progression and spread of tumours were evaluated by calculating the
tumour radiance values from inoculated mice in each group. Tumour-bearing mice
were used in experiments B14 days following implantation or 21 days in the
metastases model when the pulmonary tumours develop following orthotopic
implantation of the tumour cells into the prostate17. Mice not developing tumours
were excluded from the experiments (o5%). All mice were closely monitored

and any displaying signs of rapid weight loss, excessively large tumours
(41010 photons per second, or 15 mm in diameter) or any pain/suffering/distress
sufficient to impede natural behaviour were culled.

Use of the MRI scanner to direct cell movement. Three million MDMs with or
without SPIOs were administered via tail vein in 100 ml volume of PBS (n¼ 5),
control groups received 100 ml PBS (n¼ 5) or 100 ml PBS containing 3� 106

macrophages without SPIOs (n¼ 5). Immediately after MDM administration,
mice were anaesthetized with gaseous isoflurane (Abbott, UK) and then secured
within a magnet-compatible holding capsule and MRT was carried out immedi-
ately using a 7 T small bore magnet with a 660 mT m� 1 gradient insert (Bruker
BGA 12-S).

Mice were split into two groups of n¼ 5. Group 1 was a time-matched control
without MRT and group 2 underwent 1 h of MRT with gradients pulsed 2-ms on,
7-ms off at 50% total strength (300 mT m� 1); and applied direction selected for
coarse steering to the tumour site for the prostate (� z and � y) (Fig. 2a). For
steering to the lungs (þ z and � y gradients), the absence of an x gradient should
ensure even distribution of magnetic particles in each lung.

The force on magnetically labelled cells is dependent on whether the SPIOs
have become magnetically saturated. When unsaturated, the force is dependent on
the magnetic susceptibility of the SPIOs, the magnetic field and also the magnetic
field gradient31. However, once the SPIOs reach saturation, the force is no longer
dependent on the magnetic susceptibility of the particle but the saturation
magnetization and as such only the magnetic field gradient will affect the force
applied to the cells7. SPIOs typically reach magnetic saturation well below 1 T, for
example, in Riegler et al.6, where the SPIOs become saturated at around 300 mT,
therefore, MRT is feasible on clinical MRI systems provided the same magnetic
field gradient is used B300 mT m� 1.

Following MRI steering, high-resolution RARE (retention time (TR)¼ 4.2 s,
TE¼ 12 ms, RARE factor 8, 512� 192, no averaging, 9 slices 1-mm thick) and
gated FLASH (TR¼ 8.9 ms, TE¼ 1.2 ms, 24 reps, 128� 128, flip angle (FA) 15�)
images of the tumour (prostate only) were captured using a 1H volume resonator
(Bruker, 300 MHz, 1 kW max, outer diameter 118 mm/inner diameter 72 mm).
Once complete, relaxometry using multi-slice multi-echo (TE 10 ms, echo spacing
10 ms, 16 echoes, TR 2 s, matrix size 256� 256) and multiple gradient echo
(TE 2.5 ms, echo spacing 3.7 ms, 12 echoes, TR 10 s, matrix size 128� 128, FA 90�)
was performed to assess the transverse relaxation rates. After treatment, animals
were killed and tissues, including tumours, kidney, liver, lungs and spleen, were
either paraffin wax embedded and fixed for immunohistochemistry or analysed
by flow cytometry to determine macrophage uptake (see Supplementary Files
for details).

Vascular permeability. A further study was performed to assess vascular
permeability in mice. Mice were administered with 3 million SPIO-loaded MDM
one group underwent MRT and the other remained in the scanner as described
above. Immediately after targeting mice were injected i.v. with a 100 ml mixture of
FITC-conjugated Lycopersicon esculentum (tomato) lectin (1 mg ml� 1; Vector
Laboratories) and Ricinus communis agglutinin I (2.5 mg ml� 1; Vector Labora-
tories). Perfusion-fixation with 4% paraformaldehyde was performed 10 min
following lectin administration. Harvested tissue was post-fixed in 4% paraf-
ormaldehyde, processed through graded sucrose and embedded in OCT medium
(Tissue-Tek). Sections at B40 mm were counterstained with 40 ,6-diamidino-2-
phenylindole (0.05 mg ml� 1, Invitrogen) and confocal image stacks were acquired
by confocal microscopy (Nikon). Measurement of vascular volumes was performed
on images from tumour-bearing mice with and without MRT targeting (n¼ 3 mice
per group and 5–10 fields of view).

In addition, vasculature leakage was also assessed using the contrast agent
Gd-DPTA31,32. Mice receiving SPIO-loaded MDM with and without MRT were
removed from the scanner and injected (via tail vein) with a 0.1 mmol Kg� 1 dose
of Gd-DPTA (Magnevist) (N¼ 3 mice per group). Mice were then returned to the
scanner and T1-weighted imaging (TR¼ 100 ms, TE¼ 3.7 ms, FA¼ 30 degs,
matrix size¼ 256� 256) was performed for 15 min (50 repetitions) post injection.
Data were used to assess pooling of the contrast agent over time as an indicator of a
leaky, damaged vasculature. Experiments were repeated with Gd-DPTA alone
(no iron-labelled macrophages or MRT). Uptake of Gd-DTPA was monitored in
tumour tissue over the 15-min period; any pooling would result in increased signal
over this time period. We also monitored GD-DTPA uptake in the muscle
surrounding the spinal cord (vertically away from the –y gradient targeted tumour
region) as a control region where we expect no vascular disruption due to MRT.
Direct comparisons in changes in signal intensity were made between these two
regions to investigate any vascular damage in the targeted region. Finally, if there is
no vascular damage, Gd-DTPA should enter the renal system; to confirm this in
our groups, we imaged the kidneys.

Therapeutic studies. HSV1716 in vitro studies are described in the accompanying
Supplementary Files. In vivo studies were performed as follows. Tumour-bearing
mice received tail-vein injections of either 3 million MDM alone or armed with
Seprehvir at MOI 50, 1� 107 Seprehvir only or PBS (n¼ 5 mice per group). Of
note, three groups of mice were administered with MDMþOV, one group
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underwent MRT for 1 h, one sat in the MRI scanner but had no MRT (MDMþOV
no MRT) and another group did not enter the MRI scanner (MDMþOV).
Tumour size was monitored by IVIS Lumina II imaging (IVIS, Caliper Life Sci-
ences). Animals were killed once tumours reached the maximum volume (41010

photons per second) permitted by UK Home Office Regulations. Excised tissues
including tumours, kidney, liver, lungs and spleen were embedded in OCT or
paraffin wax for immunocytochemical/histological labelling studies.

Tissue analysis. Tissues were divided into two; one part was formalin fixed for
immunohistological analysis and the other was dissected free of adherent fibrous
and fatty tissue and treated with collagenase. Flow cytometry. Cell viability was
determined using LIVE/DEAD Fixable Violet Dead Cell Stain Kit (Invitrogen). All
FACS data were analysed on an LSR II flow cytometer (BD Biosciences) using
FlowJo software (Tree Star). Histology. Five-micron sections of all organs were
incubated with specific antibodies for target antigens; for the vasculature we used
CD31 (1:100; AbD Serotec) and for macrophages human CD68 (Dako, Ely, UK)
at 1:100. A biotinylated secondary antibody system was used in conjunction with a
streptavidin-conjugated horseradish peroxidase. Peroxidase activity was localized
with diaminobenzidine (Vectastain Elite ABC kit, Vector Labs). To detect iron in
the tumours (where cell densitites were high), sections were stained with
Perls Prussian blue and counterstained with eosin for improved contrast. To
detect cancer cells in the lungs, all lung sections were stained with epithelial
cell adhesion molecule or haematoxylin and eosin. All immune-localization
experiments were repeated on multiple tissue sections and included isotype-
matched controls for determination of background staining. To assess necrosis, the
area of necrosis within the whole-tumour section was determined visually, and the
proportion of necrotic nonviable tumour areas over the whole section was
calculated using ImageJ software (National Institute of Health). For each group, the
mean percentage of necrosis and standard error were calculated. The results are
presented as the mean tumour necrosis (%) for all tumours (five slices per each
tumour) in each treatment group. Immunofluorescence. harvested tissue was
post-fixed in 4% paraformaldehyde, processed through graded sucrose and
embedded in OCT medium (Tissue-Tek) and stored at � 80 �C. Frozen sections
were dried for 10 min at room temperature and blocked in 5% horse serumþ 0.5%
saponin in PBS for 30 min. Sections at B40mm were stained with anti-GFP 1:200
(ab290 abcam, UK) and CD68 (1:100) for 1 h and then secondary antibodies
donkey anti-rabbit alexa fluor 488 and goat anti-mouse 540 at 1:100 dilution
(Invitrogen, Paisley, UK) and finally counterstained with prolong gold-antifade
mountant with 40 ,6-diamidino-2-phenylindole (0.05 mg ml� 1, Invitrogen). Images
of macrophage infiltration into primary and pulmonary LNCaP tumours were
captured using a spinning disc confocal microscope (Olympus IX81, PerkinElmer,
UK). Confocal image Z-stacks of tumours were captured at 1-mm increments
at � 20 magnification.

Statistical analysis. Data are means±s.e.m. (Prism 5; GraphPad Software).
Two-tailed Student’s t-test was used to analyse the statistical significance of
the data unless otherwise stated. Differences were termed significant with a
P value of o0.05.
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