Hydration of water- and alkali-activated white Portland cement pastes and blends with low-calcium pulverized fuel ash

I.G. Richardson *, A.V. Girão 1, R. Taylor 2, S. Jia

School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom

A R T I C L E I N F O

Article history:
• Received 20 August 2015
• Accepted 22 January 2016
• Available online xxxx

Keywords: Calcium-silicate-hydrate (C-S-H)
• TEM
• Hydration
• Fly ash
• Retardation

A B S T R A C T

Pastes of white Portland cement (wPc) and wPc-pulverized fuel ash (pfa) blends were studied up to 13 years. The reaction of wPc with water was initially retarded in the presence of pfa particles but accelerated at intermediate ages. Reaction with KOH solution was rapid with or without pfa. A universal compositional relationship exists for the C-A-S-H in blends of P with aluminosilicate-rich SCMs. The average length of aluminosilicate anions increased with age and increasing Al/Ca and Si/Ca; greater lengthening in the blends was due to additional Al³⁺ at bridging sites. The morphology of outer product C-A-S-H was always foil-like with KOH solution, regardless of chemical composition, but with water it had fibrillar morphology at high Ca/(Si + Al) ratios and foil-like morphology started to appear at Ca/(Si + Al) ≈ 1.2–1.3, which from the literature appears to coincide with changes in the pore solution. Foil-like morphology cannot be associated with entirely T-based structure.

1. Introduction

The main silicate phases that are present in Portland cement are a tricalcium silicate (C₃S)° that is called alite, and an impure dicalcium silicate (β-C₂S)° that is called belite [1]. The products of the hydration of these two phases are the same: a calcium silicate hydrate of variable composition and calcium hydroxide (CH), as shown in Eqs. (1) and (2) [2].

\[
\begin{align*}
\text{C}_3\text{S} &+ (3 - x + y)\text{H} \rightarrow \text{C}_x\text{SH}_y + (3 - x)\text{CH} \\
\text{C}_2\text{S} &+ (2 - x + y)\text{H} \rightarrow \text{C}_x\text{SH}_y + (2 - x)\text{CH}
\end{align*}
\]

The values of x and y in Eqs. (1) and (2) can vary and the calcium silicate hydrate is commonly referred to as C-S-H, the dashes denoting non-stoichiometry. In neat C₃S pastes, the value of x – i.e. the molar Ca/Si ratio of the C-S-H – ranges between 1.3 and 2.1 [3] with a mean value of about 1.75 [4]. Substitution of this value for x into Eq. (1) and a value of 4.0 for y (which corresponds to a relative humidity (RH) of 90%) [2] shows that the mass % of calcium hydroxide in a fully reacted paste at 90% RH is 28.7%, or 40.6% when referred to the mass of the original C₃S (i.e. when expressed on the basis of the ‘ignited weight’). The equivalent values for β-C₂S are 7.4 and 10.8%.

In addition to alite and belite, Portland cement also contains tricalcium aluminate (C₃A) and a calcium aluminoferrite phase, which is often represented as C₃A_2F although in a clinker it typically includes about 10% substituent oxides [5]. Whilst hydration of these phases results in the formation of calcium aluminate hydrates (Aft, Afm, hydrogarnet), some Al is also accommodated in the C-S-H; the Al/Si ratio is typically about 0.08 [3,6]. In concrete, Portland cement is often partially replaced by material that is either latently hydraulic (ground granulated blast-furnace slag (ggbs)) or pozzolanic (e.g. silica fume (sf), pulverized fuel ash (pfa), or metakaolin (mk)). Such materials are referred to as mineral admixtures, cementitious replacement materials (CRMs) or supplementary cementitious materials (SCMs). SCMs are a source of Al (except for sf) and Si during hydration but have either little or no Ca (the pozzolans) or a much-reduced amount (ggbs) when compared with Portland cement. The use of SCMs therefore results in C-S-H that has a lower Ca/Si ratio than occurs with neat Portland cement and – with the obvious exception of silica fume – in higher Al/Si ratio; Al-substituted C-S-H is often called C-A-S-H. The extent of the change in composition depends on the amount of SCM in the cement and on its degree of reaction. The most extensive set of compositional data for C-A-S-H in cement pastes that is demonstrably free of intermixture with other phases is for neat ordinary Portland cement (oPc) pastes or blends of oPc with ggbs: Richardson & Groves [6] collated TEM-EDX data from a number of studies on such systems [3,7,8] and showed that there is a good linear relationship between the Si/Ca and Al/Ca ratios, Eq. (3).

\[
\frac{\text{Si}}{\text{Ca}} = 0.428 + 2.366 \left(\frac{\text{Al}}{\text{Ca}} \right)^2 = 0.98
\]

* Corresponding author. Tel.: +44 113 3432331.
E-mail address: i.g.richardson@leeds.ac.uk (I.G. Richardson).

1 Current address: Universidade de Aveiro, CICECO, 3810–193 Aveiro, Portugal.
2 Current address: Department of Civil and Environmental Engineering, 760 Davis Hall, University of California, Berkeley 94720–1710, USA.
3 C = CaO; S = SiO₂; A = Al₂O₃; H = H₂O.

URL: http://dx.doi.org/10.1016/j.cemconres.2016.01.008

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
This linear relationship was confirmed by later work on older samples [9]. The change in the composition of the C-A-S-H is accompanied by a decrease in the quantity of calcium hydroxide [6,9,10] and a change in morphology of the C-A-S-H from fibrillar at low Si/Ca and Al/Ca ratios to foil-like at higher values [4,7,9].

Studies using trimethylsilylolation-gel permeation chromatography (TMS-GPC; [11–14]) have indicated that the silicate anions that are present in the C-S-H that is formed in water-activated cements follow a 2, 5, 8, ... (3n−1) sequence, where n is integer [15,16] and there is strong evidence that when Al\(^{3+}\) substitutes for Si\(^{4+}\), the substitution only occurs in the central tetrahedron of pentameric linear chains, or in every third tetrahedron of longer chains [14,17–20]. These data support the view that the aluminosilicate anions that are present in C-A-S-H are linear chains that have the Dreierieinfachketten conformation [21] that is present in a number of natural calcium silicates, including 14 Å tobermorite [22], clinotobermorite 9 Å [23], pectolite [24–29], wollastonite [25,26,30–32], bustamite [30], hillebrandite [33], foshagite [34], and jennite [35]. The Dreierieinfachketten conformation involves infinite chains of tetrahedra that have a kinked pattern that has a 3-tetrahedron repeat sequence. In the tobermorite phases, pairs of silicate tetrahedra are clasped to a central Ca-O sheet (and so are other Si atoms, with bridging O tetrahedra and the shaded triangle represents an Al\(^{3+}\) ion) as shown in Fig. 1 (reproduced from [36]; the Al\(^{3+}\) notation is explained in Eq. (4) [45]).

Studies using trimethylsilylation-gel permeation chromatography (TMS-GPC; [11–14]) have indicated that the silicate anions that are present in C-A-S-H that is formed in water-activated cements follow a 2, 5, 8, ... (3n−1) sequence, where n is integer [15,16] and there is strong evidence that when Al\(^{3+}\) substitutes for Si\(^{4+}\), the substitution only occurs in the central tetrahedron of pentameric linear chains, or in every third tetrahedron of longer chains [14,17–20]. These data support the view that the aluminosilicate anions that are present in C-A-S-H are linear chains that have the Dreierieinfachketten conformation [21] that is present in a number of natural calcium silicates, including 14 Å tobermorite [22], clinotobermorite 9 Å [23], pectolite [24–29], wollastonite [25,26,30–32], bustamite [30], hillebrandite [33], foshagite [34], and jennite [35]. The Dreierieinfachketten conformation involves infinite chains of tetrahedra that have a kinked pattern that has a 3-tetrahedron repeat sequence. In the tobermorite phases, pairs of silicate tetrahedra are clasped to a central Ca-O sheet (and so are other Si atoms, with bridging O tetrahedra and the shaded triangle represents an Al\(^{3+}\) ion) as shown in Fig. 1 (reproduced from [36]; the Al\(^{3+}\) notation is explained in Eq. (4) [45]).

In this equation – and those that follow – Q\(^n\)(mAl) represents the relative intensity of a peak determined from the deconvolution of a \(^{29}\)Si single-pulse MAS NMR spectrum (assuming that the spectrum was collected using quantitative conditions); there are 15 possible Q\(^n\)(mAl) structural units where the silicate tetrahedron, Q, is connected via oxygen bridges to m Al and n-m other Si atoms, with n = 0 to 4 and m = 0 to n [46]. Andersen et al. [47] introduced a modified version of Eq. (4) that gives the mean length of just the silicate part of the chains, which can be written as Eq. (5):

\[
\text{MCL}_{\text{Al}} = \frac{2}{Q_1^4 + Q_2^4(1\text{Al}) + \frac{1}{2}Q_1^2(1\text{Al})} \tag{5}
\]

The most extensive sets of MCL-composition data for C-A-S-H in hardened cements that incorporate SCMs are reported by Taylor et al. [8,48] for 20-year-old ggbs/oPc blends with full range of slag replacement (i.e. from 0 to 100%) reacted at normal temperature, and by Girão and co-workers [49,50] for 70% white Portland cement (wPc)–30% pfa pastes hydrated at elevated temperatures (55 and 85 °C) and aged up to 1 year. Those data show that the MCL lengthsens with an increase in Si/Ca and Al/Ca ratios, with higher curing temperature, and with the age of the paste. The purpose of this paper is to supplement those data with additional data for blended cements that incorporate 30% pfa but reacted at 20–25 °C and aged for up to 13 years; for comparison, data are also included for pastes that contain 50% pfa aged for 9 and 13 years.

2. Experimental

Pastes of wPc and wPc blended with 30% low-calcia pfa were hand mixed with distilled water or with a 5 M KOH solution for 5 min in a plastic beaker. For the blended cement, the anhydrous wPc and pfa powders were first stirred together dry for 5 min and sieved to improve dispersion. All four systems were mixed at a liquid to solid ratio of 0.4 or 0.5 (mL g\(^{-1}\)) and were cast into 5 mL polystyrene specimen tubes, which were capped and heat sealed individually in polyethylene tubing; those at 0.4 were cured in a fog room at 20 ± 2 °C for 6, 10 and 15 h, 1, 3, 7, 14, 28 and 56 days; those at 0.5 were cured in a continuously stirred water bath at 25 ± 1 °C for 1 and 28 days, 1 and 4 years, and, in the case of the blended pastes, also for 9 and 13 years. Samples cured for 1 and 28 days were thus prepared using both liquid to solid ratios and curing conditions; the quantities of calcium hydroxide in the pastes at those ages were very similar (%CHL/S = 1.03 × %CH\(_{5}/S = 0.4\% = n = 8; r^2 = 0.97\) and so the data for the two liquid to solid ratios are as a consequence treated together and the CH data that are presented for these ages in §3 are average values. A water-activated blend with liquid to solid ratio of 0.5 was also made that contained 50% pfa, samples of which were examined after 9 and 13 years. Three batches of wPc and pfa were used in the work but they had very similar characteristics; the oxide composition for one of each obtained by X-ray fluorescence spectroscopy is given in Table 1. A small number of the blended samples were made with pfa from which magnetic particles had been removed using the following procedure: (i) the pfa was passed through a 75 μm sieve; (ii) the material was placed in a sealed plastic bag and a hand magnet (SEPOR Automagnet) used to isolate magnetic particles; (iii) the process was repeated until no more particles could be removed. The process had no impact on

![Fig. 1. Schematic diagram that illustrates the nature of the linear aluminosilicate chains that are present in C-S-H (reproduced from [36]). The Q\(^n\)(mAl) notation is explained in the text following Eq. (4).](image-url)
the content of the major oxides other than a 13% reduction in iron oxide. The procedure was effective in reducing the paramagnetic line broadening of the peaks on 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra. Comparison of thermal analysis data for samples prepared using pfa with and without magnetic particles indicated no significant differences and so the data are as a consequence treated together.

Most XRD measurements were performed using Panalytical XPert-PRO diffractometers (with X’Celerator real time multiple strip detector), operated with Cu Kα radiation at 40 mA and 40/45 kV. The samples were sliced using a slow-speed cut-off saw and mounted on a sample holder that was spun at 2 revolutions per second. XRD acquisition was carried out in continuous scan mode either over the range 6.03 to 54.95 °2θ with a step width of 0.01675° (i.e. 2921 steps) and a counting time of 34.29 s (corresponding to a total acquisition time of nearly 14 min), or 5.02 to 79.98 °2θ with a step size of 0.03342° (i.e. 2244 steps) and a counting time of 200.03 s (corresponding to a total acquisition time of nearly 61 min). XRD data were also collected using a Philips APD 1700 diffractometer (Cu Kα radiation; range 5 to 60 °2θ; scan speed of 0.025° s⁻¹; step size of 0.05°).

The quantity of calcium hydroxide in the pastes was determined by thermogravimetry (STA1500, Stanton Redcroft, London, UK) using the ‘tangent’ analysis method to account for the mass loss associated with the concurrent dehydration of other phases [51–53]. The hydration of early-age samples was quenched using propan-2-ol followed by vacuum outgassing; samples were crushed and ground to a powder in an agate mortar, and were heated under a constant vacuum outgassing; samples were crushed and ground to a powder in an agate mortar, and were heated under a constant flow of nitrogen to 1000 °C at 20 °C/min; values for % calcium hydroxide are given in the concurrent dehydration of other phases [51–53].

The XRD showed that the crystalline phases present in the water-activated neat cement paste included unreacted alite and belite, CH and AFT; the blended cement pastes contained the same phases together with some mullite and quartz from the pfa. Residual cement phases were present at all ages, although only belite in the older samples. AFT was not present in the KOH-activated pastes and the CH peaks were broad, indicating a small average crystal size; a trace amount of hydrogarnet appeared at later age in the KOH-activated blend. These data are consistent with work on synthetic cements (blends of C₃S, C₃A and gypsum) where the preferred phases for hydration in water were C-S-H, CH and ettringite but only C-S-H and CH for hydration in KOH solution, with the C-S-H containing sulphate and aluminate ions [59]. Whilst AFm-type phases were not detected by XRD in any of the systems studied in this work, a peak assigned to Al[6] in AFm is present on the ²⁷Al NMR spectra for the water- and KOH-activated pastes, as illustrated in Fig. 2 for the 9-year-old pastes (i.e. the peak at a chemical shift of ∼9 ppm; [60,61]); presumably there was either too little AFm in the pastes or the crystals were not sufficiently large or ordered to be detected by XRD. Peaks are also present on the ²⁷Al NMR spectra for both methods of activation at ∼5 ppm, ∼35 ppm and ∼62 ppm. The peak at ∼5 ppm is assigned to the ‘third aluminate hydrate’ (TAH) [61]; Andersen et al. [61] proposed that TAH is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, formed as a separate phase, possibly as a surface precipitate on the C-S-H. The peak at ∼35 ppm is assigned to Al in fivefold coordination that has been attributed to AlO₃ sites in the interlayer of the C-A-S-H [20,61,62]. The peak at ∼62 ppm is assigned to Al in fourfold
coordination that is possibly due to the presence of an aluminosilicate anion in the interlayer of the AFm phase. This is supported by recent results for metakaolin-wPc pastes in which a peak at 61 ppm was attributed to a very small amount of strätlingite, 27Al NMR being more sensitive to the detection of strätlingite than powder XRD. The peak at \approx 13 ppm on the spectra for water-activated pastes is assigned to AFt.

3.2. Evolution of Ca(OH)$_2$ content

The filled circle symbols on the lower part of Fig. 3(a) show the quantity of CH in the water-activated paste that contains 30% pfa expressed as a percentage of ignited mass. For comparison, the unfilled circles indicate the values that were measured for the neat cement paste multiplied by 0.7; the unfilled circles therefore represent the quantities of CH that might be expected in the blend on the basis of simple dilution. The top half of the figure shows the result of dividing the values measured for the blend by those for the neat cement multiplied by 0.7, referred to here as $\text{CH}_{\text{actual}}/\text{CH}_{\text{expected}}$, a value $<$ 1 means that there was less CH than expected on the basis of simple dilution and a value $>$ 1 means that there was more than expected. Fig. 3(b) shows the same information as (a) but for the KOH-activated pastes.

The top part of Fig. 3(a) shows that for the first few days of hydration the ‘expected’ quantity of CH in the water-activated blend is greater than the observed quantity (i.e. $\text{CH}_{\text{actual}}/\text{CH}_{\text{expected}} < 1$), and this observation is supported by the fact that the cumulative heat evolution curve for the blend is lower than the curve for the neat cement multiplied by 0.7 i.e. less heat was evolved in the blend than expected on the basis of dilution; the cumulative heat evolution curves are presented in Fig. 4(a) (bottom part, left-hand axis) together with CH data (top, right-hand axis). The CH and heat evolution data both indicate that the hydration of the cement was initially retarded in the presence of the pfa particles. This is the opposite of a view that seems to be becoming widely held (e.g. [63,64]) that the hydration of the Portland cement in blends that contain pfa is always initially accelerated i.e. that the hydration is consistent with the so-called ‘filler effect’ (the ‘filler effect’ has been studied and discussed extensively e.g. [63,65–70]). This view has perhaps emerged because the earliest age at which the quantity of CH was determined in a lot of studies is 1 day or later (e.g. [53,71–82]), when the value of $\text{CH}_{\text{actual}}/\text{CH}_{\text{expected}}$ is generally greater than 1, thus indicating that there is more CH than expected. However, it has long been recognized that the effect of pfa particles on the early hydration of the Portland cement is variable and complex (e.g. [83,84]). As an example, this variability is starkly evident when comparing just a few studies that were published in the early 1980s: the aluminate reaction in Portland cement was considered by Plowman and Cabrera [85,86] to be retarded, but accelerated by Uchikawa & Uchida [87]; the silicate reaction was considered by Ogawa et al. [88] to be accelerated, but retarded by Jawed & Skalny.
and Halse et al.; and Ghose & Pratt considered the silicate and aluminate reactions to both be retarded. These apparently contradictory results are due to the fact that the rates at which the various phases react in pfa-cement blends depend on many factors, which include: the chemical composition and physical characteristics of both the pfa and Portland cement (and if the cement fraction consists of synthesized phases instead of Portland cement); the pfa:cement ratio; the compositional heterogeneity of the glassy phase in the pfa; the temperature of hydration; and the water:solids ratio.

Conduction calorimetry and %CH data from two other studies ([83, 92]) that also demonstrate early-age retardation are compared directly with the data from this work in Fig. 4. It is evident that in all three studies the heat evolved from the blend was initially less than ‘expected’ and that the relative positions of the heat evolution curves are mirrored in all cases by the plots for %CH. The values of CHactual/CHexpected are thus < 1 at early ages, consistent with the initial retardation of the hydration of the cement fraction; this is illustrated in Fig. 5, which is a compilation of some relevant data from the literature together with the data from this work (the sources of the data are given in the figure caption). Nevertheless, it is also clear from this figure that the value of CHactual/CHexpected does rise above 1 in most studies at intermediate ages, which must be due to acceleration of the cement hydration (i.e. consistent with the ‘filler effect’), and then subsequently falls below 1 because of the consumption of CH by the pozzolanic reaction of the glassy phase in the pfa. In this study, the value of CHactual/CHexpected peaked at 14 days, and then dropped steadily with continued hydration. Comparison with the other studies shows that there is considerable variation in the age at which the measured value of CH dropped below the ‘expected’ value, which is indicative of variations in the behaviour of different ashes and cements. As examples, it occurred between 3 and 7 days in [93], at 1 week in [96], 1–2 weeks in [53,92], at about 2 months in [77], and at about 3 months in [80]. The value measured in this work at 4 years is much lower than the ‘expected’ value and the reducing trend for the measured value of CH continues at 9 and 13 years (see lower part of Fig. 3(a)), which shows that the glassy part of pfa continues to react over extended periods of time.

The lower part of Fig. 3(b) shows the variation in CH content with age for pastes activated with the 5 M KOH solution. The filled symbols again represent the data for the blend (i.e. with 30% pfa) and the open symbols represent the data for the neat alkali-activated cement paste multiplied by 0.7, i.e. again, the values that might be expected on the basis of simple dilution. Comparison of the two values at early age with those on Fig. 3(a) for water activation shows very clearly the acceleratory effect of the very high concentration of hydroxyl ions in the alkali-activated paste: more than twice the amount of CH was present at 6 h hydration with alkali activation than with water. In contrast to

Fig. 4. (a) Variation in the cumulative heat evolved (lines) and % CH formed (circles) over the first 2 days hydration for the water-activated pastes. The cumulative heat evolution curves refer to the left-hand axis and the % CH (ig. wt.) refer to the right-hand axis. Data for the neat wPc are represented by the full line and half-filled circles; the values for neat wPc × 0.7 are represented by the short-dashed line and unfilled circles; and those for the 70% wPc–30% pfa paste by the long-dashed line and filled circles. Equivalent data from [92] (48 h) and [83] (24 h) are shown in (b) and (c) respectively. It should be noted that the absolute values of %CH shown in the three parts of this figure cannot be compared directly with one another because [83,92] do not appear to have allowed for the concurrent dehydration of other phases; the values from [92] are expressed in terms of the residual mass at 500 °C rather than 1000 °C, and Fajun et al. [83] do not state the basis of their values.

Fig. 5. CHactual/CHexpected data for both the water-activated pastes (filled circle) and KOH-activated (large open circles) replotted from Fig. 3 with data from the literature (small filled circles; individual data sets joined by dotted lines; data from [53,72,74,75,79,81,92–95].
the water-activated pastes, the values measured for the KOH-activated blend were very similar at early ages to those that might be ‘expected’ on the basis of dilution, indicating that the reaction of the cement fraction was not affected by the presence of the pfa particles (it was rapid with or without pfa). Reaction of the glassy part of the pfa is evident at intermediate and extended ages by the reduction in the quantity of CH.

3.3. Chemical composition of C-A-S-H

It is noted in §1 that both XRD and TEM-SAED indicate that KOH-activation results in CH that is microcrystalline, and that imaging in the TEM reveals microcrystals of CH that are intimately mixed on a nanometre scale with layers of semi-crystalline C-S-H(I) [6,58]. This fine-scale intermixture means that the maximum Ca/Si ratio of the C-A-S-H is quite difficult to establish because a number of layers of CH-like structure could be interstratified with those of the C-A-S-H before rings for CH would be evident on the electron diffraction pattern; a possible topotactic relationship between CH and C-S-H(I) has been demonstrated recently that could explain how this fine-scale intermixture occurs [36]. It follows from this that for alkali-activated systems it is perhaps best to consider that high Ca/Si analyses from regions ostensibly of C-A-S-H and lacking CH diffraction rings are due to a low (≤ 1.5) Ca/Si ratio C-A-S-H that is interstratified with CH i.e. as envisaged in Richardson & Groves’ T/CH structural viewpoint [16], which is discussed further below.

Fig. 6(a) and (b) shows the variation with age from 28 days of the mean Ca/Si and Al/Si atom ratios of the C-A-S-H (both Op and Ip) in the neat (open circle) and blended (30% pfa) cements for activation with water (Fig. 6(a)) and KOH solution (Fig. 6(b)). The mean Ca/Si of the C-A-S-H in the neat Portland cement pastes was higher with activation with water than with KOH solution, which is consistent with the greater quantity of CH measured in the latter (see Fig. 3). The Ca/Si ratio of the C-A-S-H was lower in the water-activated blend (filled circles) than in the neat paste (unfilled circles) (lower part, left-hand axis of Fig. 6(a)) and the Al/Si ratio was higher (upper part, right-hand axis of Fig. 6(a)), both of which are consistent with the reaction of some of the glassy pfa. Partially reacted pfa particles were observed at all ages examined by TEM, including at 28 days (the youngest sample examined by TEM-EDX): as examples, partially reacted pfa particles are shown in Figs. 7 and 8, which are respectively bright-field TEM images of regions in the water-activated pastes with 30% pfa hydrated for 4 years and with 50% pfa hydrated for 9 years. The conclusion must be that a quite significant fraction of the pfa had reacted by 28 days and that the presence of the pfa had also resulted in accelerated reaction of the cement fraction by this age (as discussed in §3.2), which is supported by the CH data in Fig. 3 and also by semi-quantitative analysis of the XRD patterns: comparison of the integrated intensity of the alite peak at around 51.5° 2θ (Cu Kα radiation) for the blend with that for the neat cement paste indicates that the quantity of alite that would be expected on the basis of simple dilution is present in the blend at 1 day but the quantity at 28 days was less than expected (the

![Fig. 6.](image-url) (a) Variation with age of the mean Ca/Si (bottom) and Al/Si atom ratios of C-A-S-H (both Op and Ip) in neat water-activated wPc (open circle) and 70% wPc-30% pfa pastes determined by TEM-EDX. Error bars = 1 standard deviation. (b) The same but for the KOH-activated pastes.

![Fig. 7.](image-url) TEM micrograph of Ip C-A-S-H and residual glassy phase in a partially reacted pfa particle in the water-activated wPc-30% pfa paste reacted for 4 years.
ratio of actual: ‘expected’ alite = 1.0 at 1 day but 0.5 at 28 days). As noted above, reaction of the glassy part of the pfa is evident at intermediate and extended ages in the KOH-activated blends by the reduction in the quantity of CH, and this is supported by imaging in the TEM (e.g., the large micrograph in Fig. 9 shows a reacted pfa particle in the KOH-activated paste with 30% pfa hydrated for 4 years), and by the decrease in the mean Ca/Si ratio of the C-A-S-H and increase in its mean Al/Si ratio (Fig. 6(b)). The anomalous Ca/Si values for the C-A-S-H in the 28-day-old pastes is possibly due to the difficulty in excluding calcium hydroxide from the TEM-EDX analyses, as noted above.

Fig. 10 is a plot of mean Al/Ca ratio against Si/Ca ratio for outer product C-A-S-H that is present in water-activated neat cement pastes or pastes with 30 or 50% of the cement replaced by pfa, hydrated at 25 °C (filled circles; data from this work and [97]), 55 °C (half-filled circles; data from [50,98]), or 85 °C (unfilled circles; [49]). There is a good linear relationship between the two ratios with the linear regression equation:

$$\text{Si/Ca} = 0.451 + 2.220 \left(\frac{\text{Al}}{\text{Ca}} \right)^2, \quad R^2 = 0.90 \tag{6}$$

Eq. (6) is very similar to the equation reported in [6] that was established using data from a number of studies on cement pastes that incorporate ground granulated blast furnace slag (ggbs; [8,16,17]), i.e., Eq. (3). The similarity between these equations suggests strongly that this compositional relationship is universal for the C-A-S-H that is present in cement blends that incorporate aluminosilicate-rich supplementary cementitious materials. Comparison with data for synthetic preparations of C-A-S-H(I) (a semi-crystalline tobermorite-like phase that is often used as a model for the C-A-S-H that forms in cements) indicates that the amount of Al that is incorporated into the C-A-S-H in cements is likely to be a practical maximum, and that the synthetic preparations of most studies cannot be taken to represent the C-A-S-H in real cements because the compositions are generally not similar [36], a conclusion that also applies to a recent study [99].

3.4. Assignment of the peak on 29Si MAS NMR spectra at $\approx −82$ ppm to $Q^2(1Al)$

29Si MAS NMR has for many years been used to probe the structure of the C-A-S-H that is present in hardened cements and it can provide quantitative information on the fractions of silicon present in different tetrahedral environments, $Q^2(1Al)$, as noted in §1. Increased polymerization of the Q^2 tetrahedra causes characteristic up-field chemical shifts [46], and early studies on C3S pastes showed that peaks at about $−79$
and −85 ppm were due respectively to end- (Q1) and middle-chain (Q2) groups in linear silicate chains present in C-S-H [100–105]. In aluminosilicates the shifts are further influenced by the replacement of Si by Al in tetrahedra adjacent to a given Si site, generally producing down-field shifts of ≈3 to 5 ppm per [Al] [46]. The nature of the aluminosilicate chains that are present in C-A-S-H are illustrated in Fig. 1. Consistent with the above, Richardson et al. [18] assigned the peaks at around −79, −82 and −85 ppm on the SP MAS 29Si NMR spectrum for an alkali-activated synthetic slag-glass paste to Q1, Q2(1Al) and Q2(0Al) in C-A-S-H. The Al/Si ratio of the C-A-S-H was calculated from the NMR data using Eq. (7) [45] and the result was in excellent agreement with the value measured directly by analytical TEM.

$$\text{Al/Si} = \frac{\frac{1}{3}Q^1(1\text{Al})}{Q^1 + Q^2(0\text{Al}) + Q^2(1\text{Al})}$$

Richardson et al. [18] concluded that the Al atoms in the C-A-S-H must have substituted for Si only in the central tetrahedron of pentameric linear chains – i.e. in the bridging tetrahedron – because no peak that corresponded to Q1(1Al) units was observed on the 1H-29Si cross polarization (CP) MAS NMR spectrum. If, assuming the absence of chain-terminating Al, Al substituted for Si at tetrahedral sites other than in bridging tetrahedra, then Q1(1Al) units would be expected to be present; a significant number of chain terminating Al could not have been present because that would have resulted in a higher Al/Si ratio calculated by NMR than that derived from TEM-EDX analysis, which was not observed. The same situation was later shown to exist for a range of slag-containing cements [14] and it is also the case for the neat cement and pfa blends studied in this work. This is evident from Fig. 11, which is a plot of the Al/Si ratio of the C-A-S-H measured directly in the TEM compared with the value calculated from the results of the deconvolution of the single-pulse 29Si NMR spectra using Eq. (7), with the peak at ≈−82 ppm assigned entirely to Q2(1Al). As an example of the results of the deconvolution of the 29Si NMR spectra, the spectrum for the paste with 50% pfa aged for 9 years is shown in Fig. 12; the Al/Si ratio of the C-A-S-H in that paste – calculated from the results of the deconvolution of the spectrum using Eq. (7) – is 0.22, which is in excellent agreement with the mean value determined directly by TEM-EDX i.e. 0.22 ± 0.02 (n = 36).

Fig. 11 and the regression analysis equation, Eq. (8), show that in general the two techniques give very similar values, which provides confidence in the deconvolution procedure and the assignment of the peak at ≈−82 ppm to Q2(1Al).

$$\left(\frac{\text{Al}}{\text{Si}}\right)_{\text{TEM}} = 0.004 + 1.001\left(\frac{\text{Al}}{\text{Si}}\right)_{\text{NMR}} \quad r^2 = 0.96$$

3.5. 29Si MAS NMR

The results from the deconvolution of the 29Si MAS NMR spectra are shown in Figs. 13 to 17. Fig. 13 shows how the extent of hydration of the silicate phases (alite + belite) in neat white Portland cement pastes varied with age for activation by water (open circles) or KOH solution (filled circles). The % hydration was much greater at 1 day with KOH than with water (about 47% compared with 36%; indicated by the bold arrow), which is consistent with the much higher % CH (Fig. 3). Acceleration of the reaction by KOH solution has been reported previously for C_S pastes [107]. The extent of reaction at later ages was essentially the same regardless of the method of activation and it is notable that the data for the water-activated paste are very similar to those reported by Andersen et al. [47] and Sáez del Bosque et al. [106]; i.e. the reaction kinetics are very similar in the three studies.

Fig. 14 shows the % Si present as Q0 (alite plus belite; diamond), Q1 (circle), Q2(1Al) (triangle) and Q2(0Al) (square) plotted against age for activation with water (open symbols) and KOH solution (filled symbols). The data for the hydrate peaks are normalized in Fig. 15(a), thus indicating more clearly how the proportions of the different silicate species in the C-A-S-H varied with age. It is evident that the early-age
MCL as shown in Figs. 16 and 17(a). The lengthening of MCL occurred with both methods of activation, although KOH generally resulted in slightly shorter chains for a given degree of reaction (Fig. 16), which is perhaps associated with the fact that the initial reaction with alkali activation was quicker than with water activation (Fig. 13). This increase in MCL with age (Fig. 17(a)) has been observed in many previous studies of the hydration of C3S or Portland cement (e.g. [47,101,104–106, 108–112]). Figs. 16 and 22(a) also include points that represent the average length of just the silicate part of the chains (MCLsi, calculated using Eq. (5) [47]). For comparison, Andersen et al.’s [47] data are also included on Fig. 16 (symbol ×, upper data set MCL and lower MCLsi).

The general trends for the data from this work are similar to those from Andersen et al. [47] although the MCL are somewhat longer at high degrees of reaction. It is notable that the values for MCLsi are similar to the values for MCL of Al-free C-S-H in neat C3S pastes e.g. [112].

Fig. 15(b) shows the normalized fraction of Si that is present in Q0(mAl) tetrahedra in the water-activated blend that contains 30% pfa. Comparison with Fig. 15(a) shows that the fractions of Si in Q1, Q2(1Al) and Q2(0Al) tetrahedra were very similar in the neat and blended paste up to 28 days hydration, resulting in essentially the same MCL (Fig. 17(a)), which is not entirely consistent with the TEM-EDX data discussed in §3.3 that show clear evidence for the reaction of some of the glassy pfa by 28 days. The fraction of Q2(0Al) was very similar at all ages, the difference between the two systems after 28 days being in the fraction of Si present in end-chain tetrahedra (Q1) or in paired tetrahedra that are adjacent to bridging tetrahedra that are occupied by Al3+ ions (Q2(1Al)). Essentially, the fraction of Q2(1Al) in the neat cement paste remained approximately constant (about 1 in 7) throughout the period of hydration, whereas in the blend it increased rapidly from about 1 in 7 at 28 days to just over 1 in 3 at extended ages, accompanied by a decreased fraction of Q1; the Q2(0Al) remained approximately constant after 1 year. These data indicate that the difference between the chain shortening that occurred in the two systems was due to the incorporation of additional Al3+ at bridging sites in the C-A-S-H of the blend. This is evident upon inspection of the top part of Fig. 17(a), which is a plot of the site occupancy factor for the ‘bridging’ site (SOFBT, calculated using Eq. 10 in [36]) for the water-activated neat PC (large open circle) and the blend with 30% pfa (large filled circle); the medium-sized symbols represent occupancy by Al3+(SOFBT(Al)) and the small symbols occupancy by Si4+(SOFBT(Si)).

Fig. 15(c) and (d) show the same information as Fig. 15(a) and (b) but for the alkali-activated pastes. At 1 day, the fractions of Q0(mAl) tetrahedra in the C-A-S-H were very similar in the neat and blended pastes, which is the same situation as occurred with water activation. However, in contrast to water activation, at 28 days the C-A-S-H in the neat cement paste and blend were not similar: whilst the fractions of Q0(0Al) were similar, the C-A-S-H in the blend contained much more Q0(1Al) and a correspondingly smaller amount of Q1, which must be due to earlier reaction of the glassy pfa in the alkali-activated system as a consequence of the very high concentration of hydroxyl ions. The situation regarding the Q0(0Al) in the KOH-activated pastes is essentially the same as in the water activated; i.e. the fraction of Q0(0Al) was similar in the blend and the neat cement paste throughout the period of study. After 1-year hydration, the steady decrease in the fraction of Q1 in the blend ceased and the fraction of Q2(1Al) decreased rather than continuing to increase, which was the case with water activation. This corresponds to a drop in the intensity of the peak at −71.2 ppm and so is due to the reaction of belite to produce Q1 tetrahedra, which results in slightly shorter MCL with KOH activation than with water, which has been observed previously for C-A-S-H in KOH-activated C3S [107] and white Portland cement [4] pastes. For the blends, the MCL was longer at 28 days with KOH activation than with water due to the incorporation of Al3+ ions at bridging sites in the aluminosilicate chains; the MCL is long for both at 1 year.
The 29Si NMR data for the blends are consistent with the following scheme:

At 1-day, the C-A-S-H in the water-activated blend was quite similar to that in the neat paste; the slightly higher fraction of $Q_2(1Al)$ in the alkali-activated blend is consistent with some reaction of the glassy pfa i.e. at 1 day hydration the data indicate that some pfa had reacted with alkali but not with water. Between 1 day and 1 year, the increase in the fraction of $Q_2(1Al)$ with both methods of activation is consistent with reaction of pfa in both systems. At ages greater than 1 year, the changes in the distribution of $Q_n^{(mAl)}$ units is consistent with continued slow reaction of pfa with water activation. Whilst this may well have also occurred with alkali activation, the decrease in the fraction of $Q_2(1Al)$ was most likely due to additional dimer formed from the hydration of belite. This is reflected in a decrease in the MCL for the alkali-activated paste after 1 year (Fig. 17(b)) but a continued increase with water activation (Fig. 17(a)). It should be emphasized that these changes do not correspond to a big change in the Al/Si ratio of the C-A-S-H, which at extended ages is ≈ 0.2 with both methods of activation, as measured by TEM-EDX (Fig. 6). This is because although the increase in MCL might seem to be quite dramatic with water activation, in fact such increases in MCL are achieved by very modest increases in the occupation of bridging sites when the occupation of those sites is already at a high level, as shown in the top part of Fig. 17(a).

The MCL of the aluminosilicate anions in the C-A-S-H for the various cement pastes is also represented on Fig. 10, the plot of mean Al/Ca against Si/Ca ratio, where the size of the symbol is proportional to the MCL. It is evident that in general the MCL increases with age and temperature of hydration and as both the Al/Ca and Si/Ca increase.

Fig. 15. The normalized fractions of Q_1 (dark shading), $Q_2(0Al)$ (medium shading) and $Q_2(1Al)$ (light shading) in the C-A-S-H at different ages for hardened pastes of (a) water-activated neat wPc, (b) water-activated 30% pfa-70% wPc, (c) KOH-activated neat wPc, and (d) KOH-activated 30% pfa-70% wPc.

It was noted in §1 that the morphology of Op C-A-S-H in ggbs/PC blends changes from fibrous at low Si/Ca and Al/Ca ratios to foil-like at higher values, with the fineness and aspect ratio of the fibres affected by space constraints; the foil-like morphology starts to appear at a Ca/(Si + Al) ratio of about 1.2–1.3. The same composition-morphology relationship is observed in pfa/PC blends, whether reacted at elevated temperature \[50\] or at 25 °C (this work). Examples of fibrous Op C-A-S-H in water-activated pastes of neat and blended cement are shown respectively in Fig. 18 (top right) and Fig. 19, which are bright field TEM images. The fibrous morphology tends to become finer with age (it is very fine in Fig. 18), which can make it quite difficult to distinguish between Op and Ip C-A-S-H in older pastes \[9\].

The situation is different in alkali hydroxide-activated pastes, in which: (i) the Op C-A-S-H always has foil-like morphology (an example

Fig. 16. Variation in MCL and MCL\textsubscript{Si} with % hydration for neat white Portland cement activated by water (open circles) or KOH solution (filled circles). In both cases, the upper data are MCL and the bottom data are MCL\textsubscript{Si}. The dashed lines are guides for the eye. For comparison, equivalent data are included for water-activated neat white Portland cement from \[47\] (×; w/c = 0.5; 20 °C) and from \[106\] (+; w/c = 0.425; 25 °C).

Fig. 17. (a) Variation with age of the mean aluminosilicate chain length of C-A-S-H (MCL; bottom) and the site occupancy factor for the ‘bridging’ site (top) in water-activated wPc (large open circle) and 70% wPc-30% pfa pastes (large filled circle). The small symbols on the MCL plot show the mean length of the silicate portions of the linear chains i.e. MCL\textsubscript{Si}; the medium symbols on the SOFBT plot are for SOFBT(Al) and the small symbols are for SOFBT(Si). (b) The same but for the KOH-activated pastes.

Fig. 18. TEM micrograph that shows both Ip and Op C-A-S-H in a water-activated neat wPc paste hydrated for 2 years. The interface between the two regions runs from the top left-hand corner to the bottom right. A relict of Af\textsubscript{t} is close to the bottom right hand corner; the hexagonal shape of the cross-section of the original crystal is still sharply defined, which supports the view that the surrounding C-A-S-H has been little affected by drying during specimen preparation or under the electron beam. The fine-scale morphology is typical of alite Ip C-A-S-H.
is shown in Fig. 20, right-hand side), regardless of the Ca/(Al + Si) ratio; (ii) the SAED patterns often have rings for C-S-H(I), which is related to tobermorite; and (iii) the distribution of analyses on Al/Ca-Si/Ca plots tend towards the origin. These observations are consistent with the view that higher Ca/Si ratios in alkali hydroxide-activated pastes are achieved by the interstratification of layers of CH-like structure with those of the C-A-S-H. Point (iii) is illustrated on Fig. 21 (a) and (b), which are Al/Ca-Si/Ca plots of TEM-EDX analyses of Ip (□) and Op (○) C-S-H present in (a) the water-activated and (b) the KOH-activated neat cement pastes hydrated for 28 days at 25 °C. The other symbols represent the compositions of tobermorite- (T) or jennite-based (J) structural units with different levels of protonation of the silicate chains: the minimum level (◊; w/n = 0), an intermediate level (+; w/n = 1), and the maximum level (×; w/n = 2). Points are included on the figures that represent tobermorite-based units with chain lengths of 2, 5, 8, 11, 14, 17 and ∞. Most of the units are saturated with Al (i.e. all the occupied bridging sites are occupied by Al rather than Si). The only exceptions are units with 11 tetrahedra, which in addition to those saturated with Al (i.e. Al/(Al + Si) = 3/11, which are labelled simply as T11), are also represented with one or two of the three bridging sites occupied by Al (i.e. Al/(Al + Si) = 1/11or 2/11); units with one or two Al ions are labelled as T11(1Al) and T11(2Al) respectively. T11 units with the same degree of protonation but different content of Al are joined by dotted lines. In (a) the dashed tie lines join points for T11 structural units with points on the Si/Ca axis that represent jennite-based dimer (with different degrees of protonation), and in (b) the dashed tie lines join points for structural units of the same length but different degrees of protonation with CH (i.e. at the origin); in fact, for this particular paste, the tie line is most likely between CH and a mixture of T2 and T5 since from NMR the mean length of the aluminosilicate anions is only 3.4.

Since TEM-EDX data for C-A-S-H in water-activated pastes – such as those shown in Fig. 21(a) – are consistent with the T/J nanostructural approach, it is tempting to associate foil-like Op morphology in water-activated pastes with tobermorite-based structure and fibrillar Op morphology with jennite-based [58]. However, it is important to note that other morphologies also occur in these systems. Bright-field imaging in the TEM has shown that Ip C-A-S-H that is formed from the reaction of larger alite grains typically has a rather homogenous fine-scale morphology; whether in pastes of neat Portland cement [3], ggbs/PC blends [7], or in pfa/PC blends reacted at 55 °C [98]. Unsurprisingly, this morphology was also observed in the pfa/PC blends studied in this work, hydrated at 25 °C, whether activated with water (e.g. see Fig. 18 for neat cement and Fig. 22 for a blend) or alkali hydroxide (e.g. see Fig. 20, left-hand side). Ip C-A-S-H that is present in small, fully reacted particles typically has foil-like morphology (e.g. see [50, 113]), although it often has a linear, spoke-wheel appearance when formed from pfa particles, whether activated using water or alkali hydroxide, which is illustrated in Fig. 9 (large micrograph for KOH activation and inset micrograph for water activation). The partially reacted pfa particle shown in Fig. 7 is a good example of Ip C-A-S-H that has mixed morphology: foil-like in the centre and fibrillar around the edges, the latter being consistent with examples of less well-reacted particles observed by other workers [114–116]. As noted above, such a mixture of fibrillar and foil-like morphologies is also a commonly observed characteristic of Op C-A-S-H in water-activated pastes when the mean Ca/(Si + Al) ratio is less than about 1.2–1.3. The main exception to this observation is the Op C-A-S-H that is formed in neat ggbs pastes, which is entirely foil-like. This is evident from inspection of Fig. 23(a), which is a plot of mean Ca/(Si + Al) ratio (Op and Ip) against the reciprocal MCL for the C-A-S-H that is present in blends that contain pfa (circles), metakaolin (diamond), or ggbs (triangles); open symbol = entirely fibrillar morphology; half-filled symbol = mixed fibrillar/foil-like morphology; filled symbol = entirely foil-like morphology. The lines on the figure represent the possible combinations of composition and aluminosilicate chain length for jennite-based (the quadrilateral C–E–W–U) and tobermorite-based (F–H–Z–X (or –X′)) nanostructural models; see [16,17,58] for a detailed explanation of the figure and the nanostructural models, which have recently been used to help improve the structural consistency of thermodynamic models for C-(A)-S-H [117,118]. It is evident that points for mixed morphology occur in the region for purely tobermorite-based structure, which as a consequence cannot be associated with Op C-A-S-H that has exclusively foil-like morphology and an alternative explanation must be sought for the transition to foils that occurs as the Ca/(Si + Al) ratio drops. The equivalent plot for the KOH-activated pastes is shown in Fig. 23(b); the symbols are all filled because the Op C-A-S-H in such systems is always foil-like, regardless of composition, although it is also evident that there are no points in the region for exclusively jennite-based structure. A number of the points fall essentially along the line H–Z, which corresponds to tobermorite-based structural units that are totally protonated, although it is plausible that some of the charge compensation is provided by K⁺ ions.
The Ca/(Si + Al) ratios from Fig. 23(a) are replotted in Fig. 24 against the %CH present in the pastes. Whilst there is some scatter in the data—which is to be expected given the range of cement compositions involved—it is nevertheless clear that in general the Ca/(Si + Al) ratio decreases with decreasing %CH; from \(\approx 1.75 \) when the CH content is high (\(\approx 30\% \)) to \(\approx 0.9 \) when there is no CH. It is evident from the positions of the symbols that are half-filled that the transition from purely fibrillar Op morphology to a mixture of fibrillar and foil-like morphology occurs when the quantity of CH in a paste is between 8 and 13%, if the percentage is expressed on the basis of ignited weight and when calculated using the ‘tangent’ analysis method that accounts for the mass loss associated with the concurrent dehydration of other phases [51–53].

Rodriguez et al. [119] attempted recently to establish the relationship between the chemical composition, silicate anion structure and morphology of C-S-H by studying preparations that had been synthesized either via silica-lime reactions or by the hydration of C3S under controlled lime concentrations. In their synthesis procedures, Rodriguez et al. [119] used filtered lime solutions for concentrations up to 20 mmol L\(^{-1}\) and used filtered solutions obtained from suspensions of hydrating C3S for concentrations of 22, 25 and 27 mmol L\(^{-1}\). This is because the solubility of CH is about 20 mmol L\(^{-1}\), although it varies somewhat with temperature, decreasing linearly with increasing temperature: regression analysis of data from [120] gives Eq. (9), where the solubility, \(S \), is in mmol L\(^{-1}\) CaO and temperature, \(T \), is in °C.

\[
S = 23.65573 - 0.14507(T)(r^2 = 0.998)
\]

(9)

The solubility of CH at 25 °C calculated using Eq. (9) is 20.03 mmol L\(^{-1}\). The values from [120] that were used for Eq. (9) were measured using large crystals—and are consistent with measurements by other workers (e.g. [121,122])—but higher apparent solubilities were observed when very fine crystals were used, up to at least 25 and 22 mmol L\(^{-1}\) at 5 °C and 25 °C respectively [120]. Duchesne & Reardon [123] presumed this to be due to a high surface energy of CH crystals in water, with the surface energy of fine particles contributing to an overall increase in the Gibbs free energy of formation and thus to an enhancement in its solubility. As a consequence, the apparent solubility of CH in hardened cement pastes is likely to be enhanced when the crystals are very small. Rodriguez et al. [119] found that all of their samples prepared via silica-lime reactions with bulk Ca/Si up to 1.5 had foil-like morphology; a sample with Ca/Si \(\approx 1.58 \) prepared at [CaO] = 22 mmol L\(^{-1}\) had mixed fibrillar/foil morphology; and samples with Ca/Si \(\approx 1.61 \) and \(\approx 1.63 \) prepared respectively at [CaO] = 25 and 27 mmol L\(^{-1}\) had entirely fibrillar morphology. Since Rodriguez et al. [119] observed a link between morphology and the concentration of CaO in solution, it is instructive to compare the values for [CaO] used in their procedures with those present in the pore solutions of hardened cement pastes, which can be extracted using a high pressure device, first used by Longuet et al. [124]. Whilst there has been some debate about the validity of the technique (e.g. [125–129]), it is the only practical method for accessing the aqueous phase of hardened cements and has therefore been adopted widely (e.g. 92.94.124–150). In water-activated neat Portland cement pastes, whilst the concentration of Ca in extracted pore solutions has been observed to reduce from \(>20 \) mmol L\(^{-1}\) at early age to \(<2 \) mmol L\(^{-1}\) at extended ages (because of the release of alkalis [92,145,149,151,152]), the solutions nevertheless remain oversaturated with respect to CH to extended times [92,145,151,153]. It is relevant that TEM studies have consistently shown the Op C-A-S-H in such systems to have fibrillar morphology [3,4,9,14,48,58,154] and C-S-H with fibrillar morphology has also been observed by transmission soft X-ray microscopy to form when particles of C\(_3\)S or

![Figure 21](image1.png)

Fig. 21. Al/Ca against Si/Ca atom ratio plots of TEM-EDX analyses of Ip (Q) and Op (O) C-A-S-H present in (a) the water-activated and (b) the KOH-activated neat cement pastes hydrated for 28 days at 25 °C.

![Figure 22](image2.png)

Fig. 22. TEM micrograph of a region in the 1-month-old wPc-30% pfa paste that shows the fine-scale morphology that is typical of alite Ip C-S-H.
silica react in solutions saturated or supersaturated with respect to CH\[155–157\] (the morphology sometimes described as ‘sheaf-of-wheat’).

Pore solutions have also been extracted from hardened cement pastes that contain pfa\[92,126,128,138–141,144,148\]. In particular, Deschner et al.\[92\] expressed pore solutions from 50% oPc-50% pfa pastes and calculated ‘effective’ saturation indices (defined in\[129\]) for various hydration products. Whilst the solutions from early-age samples were slightly oversaturated with respect to CH, the saturation index started to decrease after 7 days hydration and became undersaturated between 28 and 90 days, which they associated with the consumption of CH by the pozzolanic reaction, in agreement with Goñi et al.\[139\]. This association is illustrated on Fig. 25(a), which is a plot of CH\textsubscript{act.}/CH\textsubscript{exp.} against the ‘effective’ saturation index for CH using data from\[81,92\] for the peak and subsequent values of CH\textsubscript{act.}/CH\textsubscript{exp.} An ‘effective’ saturation index of 0 indicates that there is equilibrium between the solid and liquid, a positive value indicates that the solution is oversaturated, and a negative value indicates that it is undersaturated\[129\]. It is evident that the ‘effective’ saturation index for CH started to fall after the peak value in CH\textsubscript{act.}/CH\textsubscript{exp.} had been reached and turned negative – i.e. the solution became undersaturated with respect to CH – when the value of CH\textsubscript{act.}/CH\textsubscript{exp.} subsequently dropped below 0.85, which coincided with the concentration of Si in solution increasing above 0.35 mmol L−1, Fig. 25(b). Since the TEM results from the present study indicate that in such systems the Op C-A-S-H would have mixed fibrillar/foil-like morphology, this indicates that the appearance of foil-like morphology in water-activated pastes is associated with a pore solution that is undersaturated with respect to CH – in agreement with the results of Rodriguez et al.\[119\] for synthetic C-S-H – and that has a concentration of Si in solution above about 0.35 mmol L−1 and Ca/(Si + Al) ratio in solution that is less than about 2.5\[81,92\], which is about twice the value for the C-A-S-H. This appearance of foil-like morphology and the decrease in the %CH below 8–13% also coincides with a reduction in the pH of the extracted pore solution, as shown in Fig. 26 (data from\[81,92,94\]), which is a plot of the pH of pore solutions extracted from water-activated oPc and pfa-oPc pastes against %CH; crosses are placed over the data for the pfa-oPc pastes that are older than 7 days, thus representing pastes where the glassy pfa had probably started to react. Pore-solution extraction is of course a bulk technique, which at best gives an average composition for the pore solution that is present in a paste\[125,126\]. It is therefore possible that in addition to the changes in the average pore-solution composition that occur with age, the solution composition might vary with microstructural location, which could plausibly also contribute to the development of mixed C-A-S-H morphologies\[119\], as well as the effect that space constraints have upon growth\[3,7\]. This would seem to be supported by the results of a 29Si MAS NMR study of a mixture of C\textsubscript{3}S and silica in which the reactants were selectively enriched with 29Si\[158\]. It was found that the Si atoms from the two components were not equilibrated throughout the hydration products but rather
were preferentially located in distinct species. In particular, it was concluded that the part of the C-S-H that formed from the silica had longer MCL and a slightly better ordered structure than the remainder. It would appear that Op C-A-S-H with foil-like morphology forms in water-activated pfa oPc pastes when the glassy pfa has reacted to such an extent that the quantity of CH has decreased significantly and the average composition of the pore solution has changed, with a drop in pH, undersaturation with respect to CH, and much higher concentration of Si (above about 0.35 mmol L\(^{-1}\)). It seems plausible that the change in composition of the pore solution results in a transition from essentially one-dimensional growth of the C-S-H particles to two-dimensional; i.e., long thin particles (aggregations of which form fibrils) to foils [58].

4. Summary and conclusions

This article reports the results of a multi-technique study focussed on the evolution of the two main hydration products in water- and alkali-activated white Portland cement pastes (wPc) and blends of wPc with low-calcium pulverized fuel ash (pfa) reacted at 20–25 °C for up to 13 years. In summary:

(i) The main products in the wPc and 70% wPc-30% pfa pastes were C-S-H, CH and ettringite for hydration with water, and C-A-S-H and microcrystalline CH for hydration with KOH solution. AFm-type phases were not detected by XRD in any of the systems but a peak assigned to Al\(^{6+}\) in AFm is present on all 27Al NMR spectra indicating that there was either too little AFm in the pastes or the crystals were not sufficiently large or ordered to be detected by XRD. Peaks are also present on the 27Al NMR spectra for both methods of activation that are assigned to the 'third aluminate hydrate'.

(ii) The reaction of wPc with water was initially retarded in the presence of pfa particles but accelerated at intermediate ages, the latter being consistent with the so-called 'filler effect'. Reaction with KOH solution was rapid with or without pfa.

(iii) The quantity of CH in wPc-pfa pastes was still reducing at 13 years hydration, indicating that glassy pfa continues to react over extended ages.

(iv) The chemical composition of C-A-S-H was measured free of intermixture with other phases using TEM-EDX. For reaction with water, the mean Ca/Si at extended ages was \(\approx 1.9\) for neat wPc and \(\approx 1.35\) for the 70% wPc-30% pfa blend; the values were lower with KOH solution. The mean Al/Si at extended ages was \(\approx 0.05\) for neat wPc and \(\approx 0.20\) for the 70% wPc-30% pfa blend; the values were similar with water or KOH solution. A significant amount of glassy pfa had reacted by 28 days.
Data associated with this work are available under a CC-BY license from the Research Data Leeds Repository at http://dx.doi.org/10.5518/28.

Acknowledgements

Thanks are due to the Nuclear Decommissioning Authority for financial support; to the Engineering and Physical Sciences Research Council for funding under Grant Nos. GR/S45874/01 and GR/R07073/01 and for a studentship (RT); to Dr. M. Zhang-Williams, Dr. C.A. Love, Dr. H.M. Dyson and Mr. J. Boomer for some of the experimental work; to a number of industrial collaborators for additional financial and technical support (Castle Cement, Lafarge, and W.R. Grace); and to Dr. D.C. Apperley at Durham University's EPSRC-funded NMR service for collection of the 27Al NMR spectra.

References

I.G. Richardson et al. / Cement and Concrete Research 83 (2016) 1–18

