This is a repository copy of *On the Asymptotic Sum Rate of Downlink Cellular Systems With Random User Locations*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95091/

Version: Accepted Version

Article:

https://doi.org/10.1109/LWC.2015.2415796

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
On the Asymptotic Sum Rate of Downlink Cellular Systems with Random User Locations

Maksym A. Girnyk, Axel Müller, Mikko Vehkaperä, Lars K. Rasmussen, and Mérouane Debbah

Abstract—We consider a downlink of a cellular communication system with a multi-antenna base station (BS). A regularized zero forcing (RZF) precoder is employed at the BS to manage the inter-user interference. Using methods from random matrix theory, we derive an asymptotic approximation for the achievable ergodic sum rate, taking into account the randomness from both fading and random user locations. The obtained deterministic approximation describes well the behavior of finite-sized systems and enables computationally efficient optimization of the RZF precoder matrix.

I. PRELUDE

Multiple-input multiple-output (MIMO) transmission can significantly increase the performance of a communication system [1] and is therefore seen as a potential building block for future mobile communications. Nowadays, multiple antennas are widely deployed at base stations (BSs) in current cellular systems, which makes MIMO a particularly attractive solution. Multi-user multiple-input single-output (MISO) broadcast setting, where a multi-antenna BS communicates to a set of single-antenna mobile terminals (MTs) through the downlink channel, provides an efficient means to deal with such limiting factors as correlation and line-of-sight components [2]. At the same time, such an approach suffers from inter-user interference. It is the mitigation of the latter that motivates the use of spatial precoding at the BS.

It is known that the sum capacity of Gaussian broadcast vector channels can be achieved by the so-called dirty-paper coding (DPC) scheme [3], [4]. This precoding scheme is, however, computationally infeasible in current real-world systems. Regularized zero forcing (RZF) precoding serves as a more plausible alternative with close to optimal performance [5]. Due to the particular structure of the corresponding precoder matrix, this scheme turns out to be suitable for analysis using methods from large-dimensional random matrix theory [6]. The setup has been extensively studied in [7], [6, Ch. 14]. The analysis is further generalizable, e.g., to the multi-cell setting [8] and to broadcasting with confidential messages [9].

Usually, the analysis of MIMO channels is done based on the assumption of deterministic user placement. This is, however, rarely the case in practice. The MTs are typically freely moving, randomly changing the underlying network topology, which, in turn, influences the performance of the system. To account for random user locations in the uplink scenario, [10] proposes to combine the random-matrix analysis with the methods of stochastic geometry [11]. Namely, the positions of the MTs are assumed to be sampled from an independent spatial point process and the corresponding performance metric is averaged over its distribution. The one-dimensional analysis of the uplink multi-user MIMO system performed in [10] is later extended to two- and three-dimensional cell planning in [12] and non-Gaussian channel inputs in [13].

This letter aims at extending the aforementioned analysis to the downlink scenario. For that we derive a large-system approximation for the corresponding achievable sum rate, taking into account both the fast fading and the random user locations. The obtained results characterize the system performance under a typical cell configuration. Moreover, the obtained approximation allows the efficient optimization of the RZF precoder matrix at low computational cost. Finally, the results of numerical simulations corroborate our findings.

II. SYSTEM CONFIGURATION

The cellular scenario of interest, depicted in Fig. 1, consists of a BS equipped with M antennas and a set of K mobile terminals (MTs), randomly located within the cell. The latter is described by the cumulative distribution function $F(l)$ of distances between an MT k and the BS (with bounded density $dF(l)$). The received signal at MT k is of form

$$y_k = h_k^H g_k s_k + \sum_{j=1}^{K} h_j^H g_j s_j + n_k,$$

where s_k is the symbol dedicated to MT k, g_k is its corresponding precoding vector at the BS, $n_k \sim \mathcal{CN}(0, 1)$ is the additive noise and the channel vector between itself and the BS is given by

$$h_k^H = \sqrt{r_k} w_k^H T^{1/2},$$

with r_k being the pathloss (given as a function of distances $r(l) = (1+l)^{-\alpha}$, where α is the pathloss exponent), w_k being a $\mathcal{CN}(0_M, \rho \bar{\sigma} I_M)$ vector and $0 < \rho < \infty$ being the signal-to-noise ratio (SNR). Here T is a positive semidefinite matrix accounting for the correlation between the antennas at the BS. Note that the correlation matrix is assumed to be independent.
of the direction from which the signal is observed, meaning, e.g., that a uniform circular array [14] is employed at the BS.

The signal-to-interference-plus-noise ratio (SINR) of MT k in the downlink is thus given by

$$\gamma_k = \frac{|h_k^H g_k|^2}{\sum_{j\neq k} |h_k^H g_j|^2 + 1},$$

(3)

To improve the achievable sum rate in the downlink, a precoder $G = [g_1, \ldots, g_K] \in \mathbb{C}^{M \times K}$ is applied at the BS. In the present letter, we concentrate on RZF precoding at the BS defined by the precoder matrix

$$G = \frac{1}{\sqrt{\Psi}} \left(H^H H + \xi I_M \right)^{-1} H^H,$$

(4)

where $H \triangleq [h_1, \ldots, h_K]^H \in \mathbb{C}^{K \times M}$. The scalar $\xi > 0$ here is a so-called regularization parameter [15] which tunes the precoder between conventional zero forcing (ZF) and matched filter (MF) schemes. Furthermore, the normalization parameter Ψ in (4) is chosen to satisfy the total power constraint $\text{tr}(GG^H) \leq M$ with equality. That is, for an RZF precoder

$$\Psi = \frac{1}{M} \text{tr} \left\{ Z^H H^H H \right\},$$

(5)

with $Z \triangleq \left(H^H H + \xi I_M \right)^{-1}$. Note that the BS is assumed to have full channel state information (CSI) of the downlink channel with help of standard training methods [16].

Assuming individual minimum mean squared error (MMSE) detection at the MTs and treating the inter-user interference as Gaussian noise, the (normalized) ergodic sum rate is obtained through

$$R_{\Sigma}(\rho) = \frac{1}{M} \sum_{k=1}^K E_{w_k, r_k} \ln(1 + \gamma_k).$$

(6)

Unfortunately, this expression requires averaging over the channel coefficients w_k by means of, e.g., Monte Carlo simulations, which does not lead to analytic tractability. In addition to that, one has to perform averaging over the random positions of MTs (random pathloss values r_k) in the cell. Therefore, the main task of the present letter is to determine a deterministic equivalent for the above sum rate, which takes care of both aforementioned types of randomness.

III. Asymptotic Sum Rate

In this section, we present an analytically tractable approximation for the sum rate (6), which neither depends on the randomness of the channel, nor on the random positions of the terminals within the cell. The approximation becomes increasingly accurate with an increasing number of antennas at the BS and an increasing number of MTs in the cell. Namely, we define the large-system limit (LSL) as the regime where

$$K = \beta M \rightarrow \infty,$$

(7)

with β being a positive finite constant, and having an interpretation of the system load. The main result is then summarized in the theorem below.

Theorem 1. In the LSL, the following holds

$$R_{\Sigma}(\rho) - R_{\Sigma}(\rho) \xrightarrow{a.s.} 0,$$

(8)

where the deterministic equivalent, $\bar{R}_{\Sigma}(\rho)$, is given by

$$\bar{R}_{\Sigma}(\rho) = \beta \int \ln \left[1 + \frac{\rho^2 (\mu + \xi)^2}{(1 + \chi \rho(\mu + \xi))^2} \right] dF(\mu),$$

(9)

and the corresponding set of parameters is given by

$$\Psi = \frac{\psi_1 \chi_1}{1 - \psi_1 \chi_2}, \quad \bar{\Psi} = \frac{\psi_1 \chi_2}{1 - \psi_1 \chi_2},$$

(10)

where further

$$\Psi = \frac{1}{M} \text{tr} \left\{ Z^H H^H H \right\},$$

(11a)

$$\psi_1 = \beta \int \frac{\rho \mu \gamma(\mu)}{1 + \chi \rho(\mu)} dF(\mu),$$

(11b)

$$\chi_1 = \frac{1}{M} \text{tr} \left\{ (\psi T + \xi I_M)^{-2} \right\},$$

(11c)

$$\chi_2 = \frac{1}{M} \text{tr} \left\{ (\bar{T}^2 (\psi T + \xi I_M)^{-2} \right\},$$

(11d)

and tuple $(\psi, \chi) \in \mathbb{R}^2$ is the unique non-negative solution to the following fixed-point equation

$$\psi = \frac{\rho \mu \gamma(\mu)}{1 + \chi \rho(\mu)},$$

(12a)

$$\chi = \frac{1}{M} \text{tr} \left\{ (\psi T + \xi I_M)^{-2} \right\}.$$

(12b)

Proof: See Appendix for a sketch of the proof. \hfill \blacksquare

The above result states that the achievable rate (6) in the LSL converges to its deterministic equivalent (9). The latter requires solving a couple of fixed-point equations and several one-dimensional numerical integration routines in (11a), (11b), and (12a). Meanwhile, it does not involve averaging over the channel realizations, serving as a computationally light approximation for (6).

IV. Optimal Precoder Design

The sum rate of the downlink transmission given in (6), can be optimized by a proper choice of the precoder matrix. The sum rate being an implicit function of the regularization parameter ξ, and, hence, the RZF precoder optimization problem

$$\xi^* = \max_{\xi \geq 0} R_{\Sigma}(\xi),$$

(13)

The difficulty of solving the above problem, apart from its non-convexity, lies in the presence of the expectation operators in the objective function $R_{\Sigma}(\xi)$ given by (6). This requires numerical averaging with subsequent optimization of ξ, and hence the approach is inefficient. Instead, one can optimize the asymptotic approximation derived in Theorem 1, i.e.,

$$\xi^* = \max_{\xi \geq 0} \bar{R}_{\Sigma}(\xi),$$

(14)

which can now be solved using a one-dimensional bisection. The latter has clearly less computational complexity than the direct simulation-based solution of (13), which requires averaging over the channels at each step of the bisection.
Theorem 1 provides a deterministic equivalent for the normalized sum rate of the downlink transmission with RZF precoding, which describes the performance of the system in the LSL. In the finite-sized setting, however, this value, multiplied with the actual (finite) number of antennas, yields an approximation of the actual achievable sum rate. To examine the accuracy of such approximation, we plot in Fig. 2 the sum rate of a cellular communication system, where the corresponding cell has radius \(D = 2 \) and \(\xi = 1 \), respectively.

V. SIMULATION RESULTS

Hence, the correlation matrix \(T \) is generated as

\[
T = C \left(\rho_3, \rho_1, \ldots, \rho_1, \rho_2, \rho_1, \ldots, \rho_1 \right),
\]

where \(C (\cdot) \) is the circulant matrix, \(\lceil \cdot \rceil \) and \(\lfloor \cdot \rfloor \) are ceiling and floor operators, respectively, while the spatial correlation coefficient \(\rho_m \) between an antenna element and its \(m \)th neighbor is given by

\[
\rho_m = J_0 \left(2\pi r_\lambda \sin \frac{m\pi}{M} \right),
\]

with \(J_0 (\cdot) \) being the first-kind Bessel function of zeroth order and \(r_\lambda \) being the radius of the array (in wavelengths). For the purpose of simulations we set \(r_\lambda = 2 \). In the figure, we plot the achievable sum rates vs. the number of antennas for fixed \(r_\lambda \). That is, we increase the number of antennas, while limiting the physical size of the array. The SNR is set to \(\rho = 10 \, \text{dB} \), and the number of MTs is set to \(K = 10 \). The rest of the parameters remain unchanged from the setup of Fig. 2.

For the analytic curves optimal regularization parameters, \(\xi^* \), have been obtained via a one-dimensional bisection method, whereas for the simulation results similar bisection have been performed over the original sum-rate expression (6). From the figure one can observe a gain from optimization of the regularization parameter, which becomes larger in the correlated scenario. Meanwhile, one sees that the accuracy of the large-system approximation worsens in the correlated scenario. Furthermore, quite expectedly, correlation exhibits a negative effect on the system performance.

VI. CONCLUSIONS

In this letter, we have derived a deterministic approximation for the achievable ergodic sum rate of downlink cellular communication with a multi-antenna base station. The obtained approximation accounts for both ergodic fading and random locations of the receivers. The results are in good match with the numerical simulations and provide an efficient means for design of the base-station precoder.
where \(H_k \triangleq [h_1, \ldots, h_{k-1}, h_{k+1}, \ldots, h_K] \in \mathbb{C}^{M \times (K-1)} \).

Next, for fixed user positions, proceeding similarly to [6, Ch. 14], we can ultimately show that in the LSL it holds that

\[
R(\rho| \Psi, \Upsilon, R) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

where

\[
\Psi = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right]
\]

and, additionally, for the normalized sum rate one obtains

\[
R(\rho| \Psi, \Upsilon, R) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

and alternatively, for the normalized sum rate one obtains

\[
R(\rho| \Psi, \Upsilon, R) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

and for the normalized ergodic sum rate we have

\[
R_\Sigma(\rho) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

where

\[
\Psi = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right]
\]

and for the normalized ergodic sum rate we have

\[
R_\Sigma(\rho) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

and for the normalized ergodic sum rate we have

\[
R_\Sigma(\rho) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

and for the normalized ergodic sum rate we have

\[
R_\Sigma(\rho) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]

and for the normalized ergodic sum rate we have

\[
R_\Sigma(\rho) = \frac{1}{M} \sum_{k=1}^{K} \frac{\rho r_k^2}{1 + \rho r_k^2} \Psi(1 + \rho r_k^2) \chi^2 \mathbb{E} \left[\frac{\rho r_k^2}{1 + \rho r_k^2} \right] \]