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On the Asymptotic Sum Rate of Downlink Cellular

Systems with Random User Locations

Maksym A. Girnyk, Axel Müller, Mikko Vehkaperä, Lars K. Rasmussen, and Mérouane Debbah

Abstract—We consider a downlink of a cellular communication
system with a multi-antenna base station (BS). A regularized
zero forcing (RZF) precoder is employed at the BS to manage
the inter-user interference. Using methods from random matrix
theory, we derive an asymptotic approximation for the achievable
ergodic sum rate, taking into account the randomness from both
fading and random user locations. The obtained deterministic
approximation describes well the behavior of finite-sized systems
and enables computationally efficient optimization of the RZF
precoder matrix.

I. PRELUDE

Multiple-input multiple-output (MIMO) transmission can

significantly increase the performance of a communication

system [1] and is therefore seen as a potential building

block for future mobile communications. Nowadays, multiple

antennas are widely deployed at base stations (BSs) in current

cellular systems, which makes MIMO a particularly attrac-

tive solution. Multi-user multiple-input single-output (MISO)

broadcast setting, where a multi-antenna BS communicates

to a set of single-antenna mobile terminals (MTs) through

the downlink channel, provides an efficient means to deal

with such limiting factors as correlation and line-of-sight

components [2]. At the same time, such an approach suffers

from inter-user interference. It is the mitigation of the latter

that motivates the use of spatial precoding at the BS.

It is known that the sum capacity of Gaussian broadcast

vector channels can be achieved by the so-called dirty-paper

coding (DPC) scheme [3], [4]. This precoding scheme is, how-

ever, computationally infeasible in current real-world systems.

Regularized zero forcing (RZF) precoding serves as a more

plausible alternative with close to optimal performance [5].

Due to the particular structure of the corresponding precoder

matrix, this scheme turns out to be suitable for analysis using

methods from large-dimensional random matrix theory [6].

The setup has been extensively studied in [7], [6, Ch. 14].

The analysis is further generalizable, e.g., to the multi-cell

setting [8] and to broadcasting with confidential messages [9].

Usually, the analysis of MIMO channels is done based on

the assumption of deterministic user placement. This is, how-

ever, rarely the case in practice. The MTs are typically freely

moving, randomly changing the underlying network topology,

which, in turn, influences the performance of the system. To

account for random user locations in the uplink scenario, [10]

proposes to combine the random-matrix analysis with the

methods of stochastic geometry [11]. Namely, the positions of

the MTs are assumed to be sampled from an independent spa-

tial point process and the corresponding performance metric is
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Fig. 1. Downlink cellular communication system.

averaged over its distribution. The one-dimensional analysis of

the uplink multi-user MIMO system performed in [10] is later

extended to two- and three-dimensional cell planning in [12]

and non-Gaussian channel inputs in [13].

This letter aims at extending the aforementioned analysis

to the downlink scenario. For that we derive a large-system

approximation for the corresponding achievable sum rate,

taking into account both the fast fading and the random

user locations. The obtained results characterize the system

performance under a typical cell configuration. Moreover, the

obtained approximation allows the efficient optimization of the

RZF precoder matrix at low computational cost. Finally, the

results of numerical simulations corroborate our findings.

II. SYSTEM CONFIGURATION

The cellular scenario of interest, depicted in Fig. 1, consists

of a BS equipped with M antennas and a set of K mobile

terminals (MTs), randomly located within the cell. The latter

is described by the cumulative distribution function F (l) of
distances between an MT k and the BS (with bounded density

dF (l)). The received signal at MT k is of form

yk = hHkgksk+

K
∑

j=1
j ̸=k

hHkgjsj+nk, (1)

where sk is the symbol dedicated to MT k, gk is its corre-

sponding precoding vector at the BS, nk ∼ CN (0, 1) is the
additive noise and the channel vector between itself and the

BS is given by

hHk =
√
rkw

H

kT
1/2, (2)

with rk being the pathloss (given as a function of distances

r(l) = (1+l)−α, where α is the pathloss exponent),wk being

a CN (0M , ρ
M IM ) vector and 0 < ρ < ∞ being the signal-to-

noise ratio (SNR). Here T is a positive semidefinite matrix

accounting for the correlation between the antennas at the BS.

Note that the correlation matrix is assumed to be independent



of the direction from which the signal is observed, meaning,

e.g., that a uniform circular array [14] is employed at the BS.

The signal-to-interference-plus-noise ratio (SINR) of MT k

in the downlink is thus given by

γk =
|hHkgk|

2

∑K
j=1
j ̸=k

|hHkgj |
2+1

. (3)

To improve the achievable sum rate in the downlink, a precoder

G = [g1, . . . , gK ] ∈ CM×K is applied at the BS. In the

present letter, we concentrate on RZF precoding at the BS

defined by the precoder matrix

G =
1√
Ψ

(

HHH+ξIM

)−1

HH, (4)

where H ! [h1, . . . ,hK ]H ∈ CK×M . The scalar ξ > 0 here
is a so-called regularization parameter [15] which tunes the

precoder between conventional zero forcing (ZF) and matched

filter (MF) schemes. Furthermore, the normalization parameter

Ψ in (4) is chosen to satisfy the total power constraint

tr{GGH} ≤ M with equality. That is, for an RZF precoder

Ψ !
1

M
tr
{

Z2HHH
}

, (5)

with Z !

(

HHH+ξIM

)−1

. Note that the BS is assumed

to have full channel state information (CSI) of the downlink

channel with help of standard training methods [16].

Assuming individual minimum mean squared error

(MMSE) detection at the MTs and treating the inter-user

interference as Gaussian noise, the (normalized) ergodic sum

rate is obtained through

RΣ(ρ) =
1

M

K
∑

k=1

Ewk,rk ln(1+γk). (6)

Unfortunately, this expression requires averaging over the

channel coefficients wk by means of, e.g., Monte Carlo

simulations, which does not lead to analytic tractability. In

addition to that, one has to perform averaging over the random

positions of MTs (random pathloss values rk) in the cell.

Therefore, the main task of the present letter is to find a

deterministic equivalent for the above sum rate, which takes

care of both aforementioned types of randomness.

III. ASYMPTOTIC SUM RATE

In this section, we present an analytically tractable ap-

proximation for the sum rate (6), which neither depends on

the randomness of the channel, nor on the random positions

of the terminals within the cell. The approximation becomes

increasingly accurate with an increasing number of antennas at

the BS and an increasing number of MTs in the cell. Namely,

we define the large-system limit (LSL) as the regime where

K = βM → ∞ (7)

with β being a positive finite constant, and having an interpre-

tation of the system load. The main result is then summarized

in the theorem below.

Theorem 1. In the LSL, the following holds

RΣ(ρ)−R̄Σ(ρ)
a.s.−→ 0, (8)

where the deterministic equivalent, R̄Σ(ρ), is given by

R̄Σ(ρ) = β

∫

ln

[

1+
ρ2r2(l)χ2

Ῡρr(l)+Ψ̄ (1+ρr(l)χ)
2

]

dF (l), (9)

and the corresponding set of parameters is given by

Ψ̄ =
ψ1χ1

1−ψ2χ2
, Ῡ =

ψ1χ2

1−ψ2χ2
, (10)

where further

ψ1 = β

∫

ρr(l) dF (l)

(1+χρr(l))
2 , (11a)

ψ2 = β

∫

ρ2r2(l) dF (l)

(1+χρr(l))2
, (11b)

χ1 =
1

M
tr
{

T (ψT+ξIM )
−2

}

, (11c)

χ2 =
1

M
tr
{

T 2 (ψT+ξIM )−2
}

, (11d)

and tuple {ψ,χ} ∈ R2 is the unique non-negative solution to

the following fixed-point equation

ψ = β

∫

ρr(l) dF (l)

1+χρr(l)
, (12a)

χ =
1

M
tr
{

T (ψT+ξIM )−1
}

. (12b)

Proof: See Appendix for a sketch of the proof.

The above result states that the achievable rate (6) in the

LSL converges to its deterministic equivalent (9). The latter

requires solving a couple of fixed-point equations and several

one-dimensional numerical integration routines in (11a), (11b),

and (12a). Meanwhile, it does not involve averaging over

the channel realizations, serving as a computationally light

approximation for (6).

IV. OPTIMAL PRECODER DESIGN

The sum rate of the downlink transmission given in (6), can

be optimized by a proper choice of the precoder matrix. The

sum rate being an implicit function of the regularization pa-

rameter ξ and, hence, the RZF precoder optimization problem

ξ⋆ = max
ξ: ξ>0

RΣ(ξ). (13)

The difficulty of solving the above problem, apart from its

non-convexity, lies in the presence of the expectation operators

in the objective function RΣ(ξ) given by (6). This requires
numerical averaging with subsequent optimization of ξ, and

hence the approach is inefficient. Instead, one can optimize

the asymptotic approximation derived in Theorem 1, i.e.,

ξ̄⋆ = max
ξ: ξ>0

R̄Σ(ξ), (14)

which can now be solved using a one-dimensional bisection.

The latter has clearly less computational complexity than

the direct simulation-based solution of (13), which requires

averaging over the channels at each step of the bisection.
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Fig. 2. Achievable sum rate vs. SNR for a downlink cellular system withM =

36 antennas at the BS and K = 12 single-antenna MTs in the uncorrelated
scenario. The cell radius and the regularization parameter are set to D = 2

and ξ = 1, respectively.

V. SIMULATION RESULTS

Theorem 1 provides a deterministic equivalent for the

normalized sum rate of the downlink transmission with RZF

precoding, which describes the performance of the system

in the LSL. In the finite-sized setting, however, this value,

multiplied with the actual (finite) number of antennas, yields

an approximation of the actual achievable sum rate. To ex-

amine the accuracy of such approximation, we plot in Fig. 2

the sum rate of a cellular communication system, where the

corresponding cell has radius D = 2, and contains K = 12
users, as well as a BS equipped with M = 36 antennas. The
users are uniformly distributed within the cell. The pathloss

is set as α = 3.7, and the regularization parameter used by
the BS is set to ξ = 1. We plot the obtained asymptotic
expression (9) as a function of SNR, together with the results

of numerical averaging of (6) over 500 channel realizations in

the uncorrelated scenario (i.e., i.i.d. CN (0, ρ
M ) entries).

In the figure, solid curves denote the analytic results,

markers denote the simulated values averaged 500 independent

channel realizations. In line with the previous observations, the

asymptotic approximation is quite accurate for even for finite

antenna numbers (cf. (7)). In addition to the performance of

the RZF precoder, we also plot that of MF and ZF alternatives,

as well as the performance of DPC obtained following [4]. As

expected, it is seen that the RZF precoder always performs

better than both MF and ZF, whereas DPC provides an upper

bound for its performance. At the same time, expectedly, the

performance of RZF at low SNR tends to that of the MF,

whilst at high SNR it approaches the performance of the ZF

precoder (cf. Fig. 2 in [15]).

In Fig. 3, we study the effects of correlation and optimiza-

tion of the regularization parameter ξ. To capture the former

the antenna array is modeled as a uniform circular array [14].
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Fig. 3. Achievable sum rate vs. number of BS antennas for a downlink cellular
system withK = 10 single-antenna MTs with RZF precoding. The cell radius
and the SNR are set to D = 2 and ρ = 10 dB, respectively.

Hence, the correlation matrix T is generated as

T = C
(

ρ0, ρ1, . . . , ρ⌈M−1

2
⌉, ρ⌊M−1

2
⌋, . . . , ρ2, ρ1

)

, (15)

where C (·) is the circulant matrix, ⌈·⌉ and ⌊·⌋ are ceiling and
floor operators, respectively, while the spatial correlation co-

efficient ρm between an antenna element and its mth neighbor

is given by

ρm = J0

(

2πrλ sin
mπ

M

)

, (16)

with J0 (·) being the first-kind Bessel function of zeroth order
and rλ being the radius of the array (in wavelengths). For the

purpose of simulations we set rλ = 2. In the figure, we plot
the achievable sum rates vs. the number of antennas for fixed

rλ. That is, we increase the number of antennas, while limiting

the physical size of the array. The SNR is set to ρ = 10 dB,
and the number of MTs is set to K = 10. The rest of the
parameters remain unchanged from the setup of Fig. 2.

For the analytic curves optimal regularization parame-

ters, ξ⋆, have been obtained via a one-dimensional bisection

method, whereas for the simulation results similar bisection

have been performed over the original sum-rate expression (6).

From the figure one can observe a gain from optimization

of the regularization parameter, which becomes larger in the

correlated scenario. Meanwhile, one sees that the accuracy

of the large-system approximation worsens in the correlated

scenario. Furthermore, quite expectedly, correlation exhibits a

negative effect on the system performance.

VI. CONCLUSIONS

In this letter, we have derived a deterministic approximation

for the achievable ergodic sum rate of downlink cellular com-

munication with a multi-antenna base station. The obtained

approximation accounts for both ergodic fading and random

locations of the receivers. The results are in good match with

the numerical simulations and provide an efficient means for

design of the base-station precoder matrix.



APPENDIX

Firstly, we incorporate the RZF precoder into (3) and rewrite

the SINR of MT k as follows

γk =
|hHkZhk|2

hHkZHH

k̄H k̄Zhk+Ψ
, (17)

where H k̄ ! [h1, . . . ,hk−1,hk+1, . . . ,hK ]H ∈ C
M×(K−1).

Next, for fixed user positions, proceeding similarly to [6,

Ch. 14], we can ultimately show that in the LSL it holds that

• The power normalization term, Ψ, converges to (cf. [6,

(14.8), (14.10)])

Ψ̄ =

ρ
M2 tr

{

R (ρχR+IK)
−2

}

tr
{

T (ψT+ξIM )
−2

}

1− ρ2

M2 tr
{

R2 (ρχR+IK)−2
}

tr
{

T 2 (ψT+ξIM )−2
} ,

(18)

where

ψ =
ρ

M
tr
{

R (ρχR+IK)
−1

}

, (19a)

χ =
1

M
tr
{

T (ψT+ξIM )
−1

}

. (19b)

• The received signal power, Sk ! |hHkZhk|
2, converges

to (cf. [6, (14.13)])

S̄k =
ρrkχ

1+ρrkχ
. (20)

• The received interference power, Ik ! hHkZHH

k̄H k̄Zhk,

converges to (cf. [6, (14.19)])

Īk =
ρrkῩ

1+ρrkχ
, (21)

where

Ῡ =

ρ
M2 tr

{

R (ρχR+IK)
−2

}

tr
{

T 2 (ψT+ξIM )
−2

}

1− ρ2

M2 tr
{

R2 (ρχR+IK)
−2

}

tr
{

T 2 (ψT+ξIM )
−2

} .

(22)

At this point, define for convenience the following quantities

ψ1 !
ρ

M
tr
{

R (ρχR+IK)−2
}

, (23a)

ψ2 !
ρ2

M
tr
{

R2 (ρχR+IK)
−2

}

, (23b)

χ1 !
1

M
tr
{

T (ψT+ξIM )−2
}

, (23c)

χ2 !
1

M
tr
{

T 2 (ψT+ξIM )
−2

}

. (23d)

In this new notation Ψ̄ and Ῡ are given as

Ψ̄ =
ψ1χ1

1−ψ2χ2
, Ῡ =

ψ1χ2

1−ψ2χ2
, (24)

and for the normalized ergodic sum rate we have

RΣ(ρ)−
1

M

K
∑

k=1

ln

[

1+
ρ2r2kχ

2

Ῡρrk+Ψ̄ (1+ρrkχ)
2

]

a.s.−→ 0. (25)

Let now users distances to the BS be randomly distributed

over the cell according to distribution F (l). Extending previ-
ous results, from the strong law of large numbers one gets

1

M

K
∑

k

ρrk

1+ρχrk
−β

∫

ρr(l) dF (l)

1+ρχr(l)

a.s.−→ 0, (26a)

1

M

K
∑

k

ρrk

(1+ρχrk)
2 −β

∫

ρr(l) dF (l)

(1+ρχr(l))2
a.s.−→ 0, (26b)

1

M

K
∑

k

ρ2r2k

(1+ρχrk)
2 −β

∫

ρ2r2(l) dF (l)

(1+ρχr(l))2
a.s.−→ 0, (26c)

and, additionally, for the normalized sum rate one obtains

RΣ(ρ)−β

∫

ln

[

1+
ρ2r2(l)χ2

Ῡρr(l)+Ψ̄ (1+ρr(l)χ)
2

]

dF (l)
a.s.−→ 0.

(27)
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