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Abstract: The effect of kinematics, loading and centre of rotation

on the wear of an unconstrained total disc replacement have

been investigated using the ISO 18192-1 standard test as a base-

line. Mean volumetric wear rate and surface morphological

effects were reported. Changing the phasing of the flexions to cre-

ate a low (but finite) amount of crossing path motion at the bear-

ing surfaces resulted in a significant fall in wear volume.

However, the rate of wear was still much larger than previously

reported values under zero cross shear conditions. Reducing the

load did not result in a significant change in wear rate. Moving

the centre of rotation of the disc inferiorly did significantly

increase wear rate. A phenomenon of debris re-attachment on

the UHMWPE surface was observed and hypothesised to be due

to a relatively harsh tribological operating regime in which lubri-

cant replenishment and particle migration out of the bearing con-

tact zone were limited. VC 2015 The Authors Journal of Biomedical

Materials Research Part B: Applied Biomaterials Published by Wiley Peri-

odicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 46–52, 2017.
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INTRODUCTION

Articulating total disc replacement (TDR) for the natural
intervertebral disc (IVD) was first introduced in significant
numbers in the 1980s with the Link SB Charit�e disc (Wal-
demar Link Gmbh and Co., Hamburg, Germany), originally
developed at the Charit�e Hospital, Berlin.1 A relatively
recent version of this design (Charit�e, DePuy Spine, Rayn-
ham, MA) is the subject of this investigation (referred to
as “Charit�e” throughout this article). It is an unconstrained
design, meaning that the limits of motion are not mechani-
cally limited and a certain amount of displacement is per-
mitted in the lateral plane, facilitated by the use of a
mobile central core of ultra high molecular weight poly-
ethylene (UHMWPE). The Charit�e disc has now been
replaced by the “In Motion” artificial disc, but the design
has essentially remained the same while incorporating
minor modifications to the end plates to aid insertion
using instrumentation.

The bio-tribology of replacement joints has been reported
extensively and over several decades in the hip2–4 and knee,5–10

but there have been fewer studies of polyethylene wear in

TDR.11–16 The different biomechanical environment and designs
utilised in the spine in comparison to the hip and knee may
influence wear of the polyethylene, and potential for
osteolysis.17

The initial clinical opinion regarding articulating replace-
ment discs was that wear of the bearing surfaces would not be a
major cause of concern, because of much reduced kinematics of
operation in everyday activity.18 However, several recent clinical
research papers have highlighted adverse tissue reactions found
in samples taken from failed artificial TDR procedures.19–26 It
has been shown that TDRs may potentially suffer from a similar
failure mechanisms to other polyethylene based joint replace-
ments in the medium to long-term.27 The wear of Charit�e bear-
ings simulated in vitro has been shown to vary from 0.12 mm3

wear per million cycles under zero cross shear motion path kine-
matics11 (such as those stipulated by the ASTM guidance docu-
ment F2423-05) to 20.76 mm3 per million cycles16 when
anterior-poster shear is added to the standard ISO 18192–1 test
cycle. There is no data on the wear of UHMWPE TDRs under
very small, but non-zero, crossing path motions that could occur
under the wide range of patient-specific biomechanical
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conditions. Because of the wide variation in patient weight and
muscles forces acting across the functional spinal unit, the axial
loading on TDRs will probably vary accordingly between sub-
jects. Previously, Charite TDRs have always been positioned in
their test chambers with the CoR of the testing machine set to
coincide with the centre of the TDR at the centre of the polyeth-
ylene core (Christian Kaddick, personal communication, May 22,
2012; Andrew Dooris, personal communication, January 22,
2014). Since the CoR of the lumbar spinal unit is usually thought
to be below the centre of the natural disc,28 it may be more
appropriate to position the device in vitro so as to investigate the
influence of a more physiological CoR.

The aim of the study presented here was to compare
the wear characteristics of Charit�e TDRs under a range of
kinetic conditions, starting with the parameters used in the
ISO 18192-1 standard as the baseline study. Specific
research questions arising from the literature were:

1. What is the effect of reduced (rather than zero) cross
shear kinematics at the bearing surface when the ISO
18192-1 standard motions are used subject to a changed
phasing of the flexion and lateral bend motions?

2. What influence does a reduction in loading cycle have on
wear rate when the other ISO standard inputs remain
unchanged?

3. What effect does changing the position of the CoR from a
central position (previous tests) to one inferior to the
device (i.e., physiologically relevant) have on the wear rate?

METHODOLOGY

Four individual wear test regimes were applied to Charit�e TDR
components: standard ISO 18192-1, low cross shear (LXS), low-
ered axial loading (LL) and changed CoR position (DCoR). A six-
station Leeds SimSol spine simulator (Simulation Solutions Ltd,
Stockport, UK) was used throughout. A detailed methodology
has been described in detail elsewhere.14 A total of 10 commer-
cially available Charit�e (DePuy Spine, Reynham, MA) lumbar
disc (Figure 1, left) were used for wear testing. In the first four
experiments six TDRs were tested kinematically and one was
used as a dynamically loaded soak control. For the final ISO test
(ISO3) and following “changed CoR” study (DCoR) fresh discs
were used (n53). The samples used were “size 2” with core
heights of 7.5 mm and radius 13 mmwith matching cobalt chro-
mium molybdenum (CoCrMo) endplates. The manufacturer
states that the Charit�e UHMWPE bearing core is manufactured
from GUR1020 and is gamma sterilised at 2.5–4 MRads.

The kinematic and load cycles used in this study were
founded on the ISO standard 18192-1 (referred to as ISO, ISO2
or ISO3 which were all identical tests) and considered to be the
baseline test (Table I). Subsequent alterations to these baseline
parameters used to investigate effect on the rates of wear are
listed in Table I. At each 1 million cycle point the simulator test
cells were completely stripped and cleaned utilising an enhanced
protocol.14 The Charit�e components were then stored in a tem-
perature controlled measurements lab for stabilisation for 48 h.
At this point gravimetric measurements were completed (Met-
tler AT21 balance Leicester, UK, 0.001 mg resolution).

The low cross shear (LXS) experiment was designed to test
the effect on wear when there was a small, but finite, amount of
crossing path motion at the bearing surface. To do this the FE and
LB motions were changed from 908 out of phase to 08 in phase

FIGURE 1. Charit�e TDR showing CoCrMo endplates sandwiching the

mobile UHMWPE core (left) and schematic (right) showing the posi-

tion of the CoR used for the wear test studies.

TABLE I. Experimental Inputs Used for a Range of Testing Conditions on the Unconstrained Total Disc Replacement (paramet-

ric changes are highlighted)

Input Study

Length
(Millions
Cycles)

Sample
Number (n)

Input
Parameter

Input
Magnitude

Freq
(Hz)

Phase
wrt FE (8)

CoR
POSITION

(wrt Figure 1)

ISO, ISO2,
ISO3

Baseline ISO
input and repeats

4 6 AF 600–2000 N 2 N/A R1
2 6 AR 128/228 1 190
2 3 FE 168/238 1 0

LB 128/228 1 290
LXS Low cross shear 2 6 AF 600–2000 N 2 N/A R1

AR 128/228 1 190
FE 168/238 1 0
LB 128/228 1 0

LL Low load 4 6 AF 300–1000 N 2 N/A R1
AR 128/228 1 190
FE 168/238 1 0
LB 128/228 1 290

DCoR Changed centre of
rotation position

2 3 AF 600–2000 N 2 N/A R2
AR 128/228 1 190
FE 168/238 1 0
LB 128/228 1 290
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while leaving the axial rotation (AR) input 908 out of phase with
the other two articulations. This changed the open elliptical
motion path to a narrow elliptical path. Following this the ISO
standard was again used but this time with the AF input load
reduced by 50%. In the final study using n56 the ISO test was
repeated (ISO2) to check repeatability of the simulator. For the
final experiment three new discs were used and the ISO standard
again used as a baseline test (ISO3). Following this the CoR posi-
tion was changed to be inferior to the lower endplate (R2 in Fig-
ure 1), as is the case in vivo.29 The radius (R2) of the Charit�e
endplate bearing face was 13 mm, thus the CoR was chosen to be
13 mm below the upper endplate bearing rather than 3.75 mm as
has been used previously in the literature (R1 in Figure 1).

A contacting profilometer (Form Talysurf series, Taylor
Hobson, UK) was used to record changes in surface topogra-
phy after each study. Areas of interest on the UHMWPE core
were differentiated according to Figure 2. The CoCrMo end-
plate bearing surfaces were assessed using a single full trace
from edge to edge. Filtering was by Gaussian filter with cut-off
values of 0.8 and 0.25 mm for the UHMWPE core and CoCrMo
bearings respectively at a ratio 100:1. On the ISO, LXS, LL, and
ISO2 tests statistical analysis used one way ANOVA with post
hoc tests using repeated measures (Bonferroni, a 5 0.05). A
paired t test was used for the ISO3 and DCoR study.

Optical microscopy was completed using a stereo micro-
scope (Leitz Laborlux 12 ME ST) at 253 magnification and
images recorded using a digital camera (Olympus Camedia
C-5050). Scale bars on the images were calibrated using a
1 mm graticule. SEM images were taken using a Phillips
XL30 SEM used in secondary electron mode at 20 KV accel-
eration. UHMWPE cores were gold coated (�20 nm) and
mounted on aluminium stubs with carbon paint to help
ensure efficient discharging at the surface. Magnifications
between 203 and 50003 were obtained.

RESULTS

The baseline rate of wear derived using standard ISO condi-
tions was 14.46 2.1 mm3 (6 StD) per million cycles (Figure
3). Wear rate was reduced significantly (p< 0.01)% to 61%
of the baseline result when changed to a lower cross shear
(LXS) input (8.861.4 mm3). Wear rate was 92% of baseline
(13.3 63.5 mm3) when the AF input cycle was lowered to
50% of that indicated by the ISO standard, though this was
not a significant change (p51.00). The final study on these
test components was a repeatability test using the ISO
standard (ISO2) which returned a similar wear rate
(19.06 4.0 mm3) to the first ISO test (p5 0.09), although
larger variance was evident, perhaps due to the accumu-
lated wear damage on the bearing. The following experi-
ment utilised three new Charit�e samples and began with a
baseline ISO standard test (ISO3). Wear rate significantly
increased (p50.02) from 13.260.8 mm3 to 125% of base-
line (16.36 1.1 mm3) when the CoR position was moved
(DCoR) from the centre of the UHMWPE core to inferior to
the lower baseplate (Figure 4).

The visual appearance of the UHMWPE core of the
Charit�e bearing changed over the course of experimentation.
The unworn discs had an average roughness (Ra) value of
0.66 mm and periodic waveform which reflected the
machined nature of the surface. Throughout the wear stud-
ies the average Ra value for the full disc width (ALL, Figure
2) increased significantly over the baseline test but did not
change significantly between subsequent studies (Figure 5).
Qualitative visual inspection indicated that the wear scars
were isotropic in the radial direction from the pole to
perimeter. However, the perpendicular traces (RIM, Figure
2) indicated a smoothing of the surface in that direction
(RIM, Figure 5). The central areas (POLE, Figure 2) of the
UHMWPE cores were generally roughened more than the
surrounding surface and elevated above the mean surface
form (POLE, Figure 5). Although the ISO and LXS tested
discs did not show a significant change in pole area Ra

FIGURE 2. Surface profilometry trace positions over the UHMWPE

core component.

FIGURE 3. Rates of wear for a Charit�e TDR tested under ISO standard,

low cross shear (LXS) and low load (LL) with a final repeated ISO

standard test.

48 HYDE, FISHER, AND HALL IN VITRO SIMULATION OF TDR WEAR



compared to the rest of the disc surface, some roughening
at the pole area was still observed. The single soak control
disc was measured in the same way and also showed a
threefold reduction in Ra at the rim areas but no roughen-
ing at the pole (Figure 5). Over 13 million cycles the aver-
age Ra of the metallic cups did not change significantly.

High magnification micrographs showed that the surface
of the UHMWPE was covered in very fine curvilinear abra-
sive scratches (Figure 6). Magnification of the edge of the
roughened area on the pole region of the UHMWPE core
(Figure 6, left), shows the apparent reattachment of wear
debris.14

Secondary electron microscopy was used to further
enhance the micrograph detail. The SEM images presented
in Figure 7 show an increasing magnification of the debris

at the pole area. There appears to be a “transfer” effect,
where several layers of UHMWPE have adhered onto the
surface, consisting of approximately micron-sized particles
creating layers at the centre and island features
surrounding.

DISCUSSION

Charit�e TDRs were subject to four wear test regimes: ISO
standard 18192-1 (ISO, ISO2, ISO3: identical baselines), low
cross shear (LXS), lowered axial loading (LL) and changed
CoR position (DCoR). The ISO standard test produced a
level of wear similar to that reported in the literature.16

Using an input cycle with a small amount of cross shear
motion (LXS) did reduce wear rate significantly, however,
the amount of reduction was small compared to negligible
wear reported by Serhan et al.30 when purely curvilinear
input motions were used. Thus, wear rate of the Charit�e
disc increases rapidly when the cross shear ratio increases
from zero to a small but finite amount. A similar pattern of
rapidly increasing wear with increasing cross shear ratio
has been observed in UHMWPE pin-on-plate experiments by
Kang et al.31 There is no previous literature describing
unconstrained TDR bearing wear behaviour for kinematic
inputs that lie between fully curvilinear (negligible wear)
and ISO standard (highly crossing path motions and high
wear). Patient disc kinematics in vivo are likely to be widely
varied between possible extremes and this work has high-
lighted that even small amounts of crossing path motion
will produce non-trivial amounts of wear volume and hence
particulate debris with the associated risk of osteolysis,
which should be considered at the design stage of further
TDR evolution.

Although Charit�e wear was lower when using a 50%
reduced load cycle, this was not significantly different to the
baseline ISO test and therefore produced relatively high

FIGURE 4. ISO standard experiment (ISO3) followed by a repeated

test where the CoR of the bearing was shifted inferiorly.

FIGURE 5. Surface topography of the UHMWPE core separated into three trace areas (according to Figure 2).
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wear rates. This nonlinearity between rate of wear and load
applied complements the results of simple pin-on-plate test-
ing configurations where polyethylene bearing contact area

has been observed to be the main driver of wear factor
changes rather than the load or contact pressure
applied.32–34 It is therefore unlikely that a patient with a

FIGURE 6. Micrograph images of a UHMWPE core after the ISO standard test (left: edge of the roughened pole area of the core; right: mid 1/3rd

of the core).

FIGURE 7. Charit�e SEM images (top to bottom: increase in magnification) of roughened area around the UHMWPE pole region showing appear-

ance of built up surface layers (direction arrowed) and islands.
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substantially different body weight would have an appreci-
ably different wear rate for their TDR device.

Previous in vitro testing has been completed by using
CoR placed at the centre of the TDR construct, that is, at
the centre of the UHMWPE core.11,16 In vivo, the precise
CoR is difficult to determine, but in the natural interverte-
bral disc it is known to be inferior to the lower vertebral
endplate.35 To test the hypothesis that CoR position may
have an impact on wear behaviour of the Charit�e device, the
CoR was changed to be inferior to the bottom endplate, at a
distance of 13 mm below the upper endplate cup bearing
surface. The Charit�e device showed a significant but modest
increase in wear as a result of this change. Preclinical test-
ing of orthopaedic implants should aim to cover an enve-
lope of possible conditions and therefore go beyond
minimum compliance to enhance safety.36 Considering
patient spinal biomechanics vary considerably, CoR may be
a pertinent testing parameter to consider when designing in
vitro experiments for replacement discs.

The isotropic wear scars observed on the UHMWPE core
were most probably because of rotation of the uncon-
strained core during operation37 which gave even wear
characteristics in all directions. Lower Ra at the perimeter
rim was indicative of burnishing where edge-loading caused
by the metallic endplates polished the perimeter portions of
the core.15 There was no significant change in surface
topography or appearance during the changed CoR test. Rim
impingement observed in explanted devices38–41 was not
replicated under these conditions or when anterior shear
displacement was added in a study by Vicars et al.16

The appearance of the SEM images (magnification 323X,
Figure 7) shows similarity to an ex vivo UHMWPE compo-
nent (Prodisc-L) described by Choma et al.42 (page 293, Fig-
ure 8, right). This also displayed a similar “transfer effect,”
perhaps also because of the same biomechanical reasons of
small articulations and consequent debris reattachment.
Conversely, an SEM image by Anderson at al.39 (page 111,
Figure 1) of an UHMWPE explant did not indicate this phe-
nomenon, but did have other similar features to those
shown in the micrograph presented above (Figure 6, left)
such as abrasive linear scratching. A similar pattern of
raised roughening and “islands” of transferred debris was
observed by Liao et al.43 when examining UHMWPE hips
tested in 25% serum. The authors observed that the effect
diminished when the serum concentration was 90%. The
burnishing at the rim of the UHMWPE core was probably
caused by an edge-loading effect due to the adjacent CoCr
bearing.15 Wear debris reattached to the pole area of the
mobile bearing was indicative of a harsh tribological regime
in which lubricant replenishment was reduced at the centre
of the bearing couple lowering the rate of removal of the
particulate debris into the bulk lubricating medium, in part
due to smaller stroke lengths compared to similar diameter
hip replacements where rotation inputs are much larger.

During this study, over a wide envelope of testing inputs,
the Charit�e TDR rates of wear were approximately between
8 and 18 mm3/million cycles, which is a figure usually
deemed acceptable for hip and knee replacements. However,

the reaction to particulate wear debris in close proximity to
the spinal canal, in a smaller joint domain, remains uncer-
tain; reports of osteolysis have heightened the importance
of this issue.20,24–26 It remains to be seen if osteolysis will
be a rare mode of failure, or, if these effects are merely in
stasis at present. A recently published conference article on
TDR wear debris27 reported a similarity to hip and knee
particle morphology and is therefore a long-term concern.
Further work on biological reactivity of in vitro gathered
lumbar TDR wear debris has been reported separately.44
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