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Abstract 

Crop models are imperfect approximations to real world interactions between biotic and 

abiotic factors. In some situations, the uncertainties associated with choices in model 

structure, model inputs and parameters can exceed the spatiotemporal variability of simulated 

yields, thus limiting predictability. For Indian groundnut, we used the General Large Area 

Model for annual crops (GLAM) with an existing framework to decompose uncertainty, to 

first understand how skill changes with added model complexity, and then to determine the 

relevant uncertainty sources in yield and other prognostic variables (total biomass, leaf area 

index and harvest index). We developed an ensemble of simulations by perturbing GLAM 

parameters using two different input meteorology datasets, and two model versions that differ 

in the complexity with which they account for assimilation. We found that added complexity 

improved model skill, as measured by changes in the root mean squared error (RMSE), by 5-

10 % in specific pockets of western, central and southern India, but that 85 % of the 

groundnut growing area either did not show improved skill or showed decreased skill from 

such added complexity. Thus, adding complexity or using overly complex models at regional 

or global scales should be exercised with caution. Uncertainty analysis indicated that, in 

situations where soil and air moisture dynamics are the major determinants of productivity, 

predictability in yield is high. Where uncertainty for yield is high, the choice of weather input 

data was found critical for reducing uncertainty. However, for other prognostic variables 

(including leaf area index, total biomass and the harvest index) parametric uncertainty was 

generally the most important source, with a contribution of up to 90 % in some cases, 

suggesting that regional-scale data additional to yield to constrain model parameters is 

needed. Our study provides further evidence that regional-scale studies should explicitly 

quantify multiple uncertainty sources. 

Keywords: GLAM, parametric uncertainty, groundnut, India, model structure, predictability 
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1. Introduction 

Crop models are imperfect approximations to real world interactions between biotic and 

abiotic factors, mainly designed as tools that provide information that is useful for farmers, 

researchers and policy makers (Affholder et al., 2012; Sinclair and Seligman, 1996). Such 

information allows making decisions regarding changes in cropping systems at different 

spatio-temporal scales, with varied degrees of confidence (Challinor et al., 2014). As 

confidence in crop modelling outcomes depends on the errors and uncertainties associated 

with the simulation of the system in question, adequately sampling the model and parameter 

spaces and adequately addressing issues related to data quality and scaling are critical for the 

delivery of robust information (Kennedy and O’Hagan, 2001; Ramirez-Villegas et al., 2015). 

 

As with environmental models in general, uncertainty in crop modelling arises from the 

impossibility to model the system (i.e. the cropping system) with complete determinism 

(Walker et al., 2003). As a result of the ad-hoc nature of crop model development, where 

models are developed to fit a specific purpose (Affholder et al., 2012), large diversity exists 

in model structure and complexity (Rivington and Koo, 2011) and hence model structure is a 

key source of uncertainty (Asseng et al., 2014; Challinor et al., 2014). Lack of precision in 

parameter values is also an important uncertainty source in crop models. In many modelling 

applications, calibrated parameters are rarely sufficiently constrained by the available 

observational data, which is in most cases limited to crop yield and/or phenology (Iizumi et 

al., 2009), and this results in crop model parameterisations that are incomplete and uncertain 

(Angulo et al., 2013a). In some cases, parameters are inherited from other models or crops, 

are assigned values using expert judgment (Tubiello et al., 2007), or are left ‘as default’ [e.g. 

Jalota et al. (2013) and Lobell et al. (2013)]. 
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Under a variety of situations, the errors and uncertainties associated with choices of crop 

model structure, parameters, and data sources can exceed the spatiotemporal variability of the 

system modelled, thus limiting its predictability, particularly when models are used beyond 

their calibration ranges (Koehler et al., 2013; Li et al., 2015; Montesino-San Martin et al., 

2015). For example, variation in simulation dynamics due to varying model structure has 

been shown to increase as environmental conditions differ more from the observational 

record (Asseng et al., 2013; Bassu et al., 2014). Similarly, model parameters and model 

meteorological inputs have been shown to affect the accuracy of simulated yield across a 

range of conditions (Tao and Zhang, 2013; van Bussel et al., 2011b). Choices in crop model 

structure or model configuration can also greatly affect the modelling outcomes that underpin 

decisions (Vermeulen et al., 2013; Weaver et al., 2013). 

 

Remarkably, in spite of the emphasis on error and uncertainty quantification that has 

accompanied most recent developments in crop modelling (including the increased use of 

models outside their calibration ranges, e.g. as in climate change impact studies), still only a 

handful of studies assess multiple uncertainty sources and about one third appropriately 

address model error by conducting model evaluation [see Ramirez-Villegas et al. (2015) for a 

review on the topic]. Importantly, with the increased generation of spatially-explicit gridded 

crop model simulations, not accounting for parametric uncertainty and input data scaling may 

lead to systematic bias in estimated crop yield responses to temperature and precipitation 

(Challinor et al., 2015). Thereby, studies comparatively assessing uncertainties arising from 

model structure, model parameters and input data are warranted. 

 

This work focuses on Indian groundnut and uses the General Large Area Model for annual 

crops (GLAM, Challinor et al. 2004) in combination with observed yield and weather data to 
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investigate two key aspects of prediction: complexity and uncertainty. Specifically, we 

develop a parameter ensemble by perturbing 30 GLAM model parameters using two different 

input meteorology datasets, and two model versions that differ in the way they account for 

assimilation. We first analyse yield observations and simulations to determine whether and 

how skill improves across different regions depending on the different model structures 

(warranted complexity), and then decompose the variance of simulated historical yield and 

other model prognostic variables (LAI, biomass, harvest index) to determine the dominant 

uncertainty sources across the analysis domain. The results of this work contribute insights to 

enhance understanding of uncertainty in crop simulation at regional scales. 

 

2. Materials and methods 

2.1. Study region 

The study area consisted of all 1x1 degree pixels (ca. 100 x 100 km at the Equator) of India 

where the average cultivated area of groundnut in the period 1966-1990 was greater than 0.2 

% (Challinor et al., 2003; Mehrotra, 2011). Following Talawar (2004), we classified all 1x1º 

pixels into one of five groundnut growing zones, which are known to reflect the variation in 

germplasm grown across India (Fig. 1). These regions receive different amounts of 

precipitation during the monsoon season (June to September, when groundnut is primarily 

grown) and have different prevalent soil types. 

 

2.2. Input data 

2.2.1. Weather data 
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Daily meteorological inputs required for GLAM are precipitation, downwards shortwave 

radiation flux and minimum and maximum temperatures. In this study, two sets of these four 

inputs were used to reflect uncertainty in the choice of input meteorology, as described 

below. 

 

The first set (referred to as WTH-A) follows the original GLAM formulation of Challinor et 

al. (2004) and consists of observed daily precipitation data from the Centre for Climate 

Change Research (CCCR) of the Indian Institute for Tropical Meteorology (IITM) (Rajeevan 

et al., 2005). We downloaded precipitation data from the CCCR portal 

(http://cccr.tropmet.res.in/cccr/home/index.jsp, accessed 1st Sept. 2011) at the native 1x1 

degree resolution for the period 1961-2008 (IMD dataset, hereafter). The IMD dataset is 

based on the interpolation of daily rainfall data from 1,803 rain gauges across India 

(Rajeevan et al., 2006, 2005). We obtained maximum and minimum monthly temperatures 

from the Climatic Research Unit (CRU) dataset at 0.5 degree (CRU-TS3.0 at 

http://www.cru.uea.ac.uk/cru/data/hrga, accessed 1st Sept. 2011) (Mitchell and Jones, 2005). 

We first scaled the CRU data onto the 1x1º grid using area-weighted averages and then 

linearly interpolated to daily values using middle days of the months. Finally, we gathered 

daily total downwards shortwave solar radiation data from the open-access version of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) 40+ Reanalysis (ERA-40) 

(Uppala et al., 2005), available at http://data-portal.ecmwf.int/data/d/era40_daily/ (accessed 

1st Sept. 2011) and then scaled it onto the 1x1º grid using nearest-neighbour interpolation.  

  

The second set (referred to as WTH-B) is the Water and Global Change (WATCH) Forcing 

Dataset (WFD), fully described by Weedon et al. (2011). The WFD is a global sub-daily 

time-step gridded dataset at half-degree resolution for the period 1958-2001, developed by 
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means of bias correction of the ERA-40 reanalysis. The dataset is of comparable quality to 

that of Sheffield et al. (2006), and is amongst the gridded datasets used in global and regional 

crop modelling frameworks (Elliott et al., 2014; Ruane et al., 2015). For a complete 

description and analysis of the dataset the reader is referred to Weedon et al. (2011, 2010). 

We downloaded daily data for total precipitation, downward shortwave radiation, and 

maximum and minimum temperatures from the WFD website 

(https://gateway.ceh.ac.uk/home, accessed 15th June 2013) and aggregated them to the study 

resolution (1x1 degree). 

 

2.2.2. Soil data 

Spatially variable values of permanent wilting point (θll), field capacity (θul) and saturation 

(θsat) moisture contents were derived from the 30 arc-sec Harmonized World Soil Database 

(HWSD) (Batjes, 2009; FAO, 2012). The spatially explicit properties in the soil classes 

occurring within the analysis domain were calculated as the area-weighted-average of each 

soil profile in each 1x1 grid cell of the analysis grid (see Fig. 1). This resulted in three (one 

for each soil moisture limit) spatially explicit continuous 1x1 degree datasets that covered the 

analysis domain. In each grid cell, a GLAM simulation was always associated with its three 

respective soil moisture content values. 

 

2.2.3. Planting dates 

Planting windows used here were those of the global study of Sacks et al. (2010). The dataset 

of Sacks et al. (2010) is the first global dataset with georeferenced crop planting and 

harvesting information. The data were aggregated onto the 1x1 degree analysis grid using 

area-weighted averages and carefully checked for inconsistencies to ensure planting windows 

followed the monsoon dynamics. 
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Figure 1 Study area and agro-ecological classification for model calibration. Growing zone 

classification was done following Talawar (2004). Only grid cells where GLAM simulations were 

conducted are shown. 

 

2.2.4. Crop data 

We sourced time series of groundnut crop yields, production and harvested area at the district 

level for the period 1966-1990 from a previous GLAM study (Challinor et al., 2004). The 

data were first scaled onto the 1x1º analysis grid and then carefully checked for reliability 

both automatically and visually. Whenever a grid cell was composed by fractions of various 

districts, the yield, production or harvested area of the grid cell was calculated as the 

weighted-area average of all districts. Values of zero were removed and marked as missing 

data where it was obvious that missing data had been wrongly treated as zero (for example 

when both production and harvested area had been reported as missing). Next, grid cells with 

more than 20 % missing data or with obvious errors (e.g. all values were equal) in the time 

series were discarded. A total of 177 grid cells were finally selected for all further analyses, 

with varying representation of all growing zones (Fig. 1). Out of these 177 grid cells, 27 (15.3 
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%) were located in the northern zone, 27 (15.3 %) in the western zone, 37 (20.9 %) in the 

central zone, 25 (14.1 %) in the eastern zone, and 61 (34.4 %) in the southern zone. A more 

thorough description of these data is provided by Challinor et al. (2004, 2003). 

 

2.3. Crop model description 

The General Large Area Model for annual crops (GLAM) is a regional-scale process-based 

crop model designed to capitalise on the large-scale relationships between climate and crop 

yields (Challinor et al., 2004). GLAM is a model in which some varietal-level detail is 

skipped but enough detail is retained to ensure that the weather-yield relationships are 

captured. GLAM explicitly models the controls of soil water availability, temperature and 

solar radiation on crop growth, but accounts for nutrition, pests and diseases through a yield 

gap parameter (CYG), which is constant over time. To some extent, GLAM’s CYG can also 

account for errors in input data (Challinor et al., 2004).  

 

Being less complex than field-scale models, GLAM reduces the risk of over-

parameterisation, while at the same time providing simulations at a variety of spatio-temporal 

scales. The model is mathematically one-dimensional and simulations can thus be performed 

at any resolution, provided that crop-climate relationships exist. Some of the drawbacks in 

GLAM include the difficulty to simulate non-climatic processes which vary over time and 

that influence crop yields, as well as the risk of input data aggregation error (Challinor et al., 

2015; Van Wart et al., 2013). Here, two versions of GLAM were used to understand the 

importance and impact of added complexity and to quantify structural uncertainty: (1) the 

original release 2 of the groundnut GLAM model (Challinor, 2009) (referred to as GLAM-

TE); and (2) a modified groundnut model version whereby assimilation is computed using a 
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combination of GLAM-TE with a radiation-use-efficiency (RUE) approach (Osborne et al., 

2013) (referred to as GLAM-RUE). Details on both model versions are provided below. 

  

A full description of GLAM is provided elsewhere (Challinor et al., 2004), and therefore the 

present study only summarises GLAM structure and describes the way both model versions 

used account for assimilation. Figure 2 shows the structure of the original GLAM model (i.e. 

GLAM-TE). In GLAM-TE, total crop biomass (∂W/∂t) is estimated on a daily basis using the 

product of the daily total plant transpiration (TT) and the normalised transpiration efficiency 

(ETN) (Eq. 1).  

 

!∀

!#
= �& ∗ �&)        [Eq. 1] 

 

Actual transpiration (TT) is the minimum of three values: (1) the energy-limited transpiration 

computed via the Priestley-Taylor equation (Priestley and Taylor, 1972), (2) the water-

limited transpiration computed after the potential uptake profile model of Passioura (1983); 

and (3) the physiologically limited transpiration which depends on the leaf area index (LAI). 

LAI growth is prescribed by a constant (∂L/∂tmax) and reduced by water stress and the CYG. 

The normalised transpiration efficiency (ETN) is the minimum between the parameterised 

transpiration efficiency (ET) normalised by the day’s vapour pressure deficit (VPD) and a 

maximum parameterised value of the normalised transpiration efficiency (ETN, max) (Eq. 2).  

 

�&) = min 
./

012
, �&),456        [Eq. 2] 
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Figure 2 Structure of the model used in the present study. SLA is specific leaf area, HI is harvest 

index, ∂HI/∂t is the rate of change in the harvest index, and YGP is the yield gap parameter (CYG). 

Blue boxes indicate model constants, grey boxes are model prognostics (except yield, which is shown 

in green), and light orange box indicates intermediate variables. Weather inputs are in hollow 

rectangles outside the model box. Arrows show flow of information. Adapted from Challinor and 

Wheeler (2008). 

 

Grain yield (Y) is estimated from total time-integrated biomass (W) and the time-integrated 

rate of change of harvest index (∂HI/∂t) (Eq. 3). 

 

� =
!89

!#
��

#<

#9
∗

!∀

!#
��

#<

#9
= �> ∗ �      [Eq. 3] 

 

For the GLAM-RUE model, we added an energetic constraint to assimilation such that the 

biomass production of each day was the minimum between a transpiration-limited and a 

radiation-limited value (Eq. 4). This modification is based on the fact that well-watered areas 

often show limited simulation skill if radiation-use constraints to assimilation are not taken 

into account [see e.g. Keating et al. (2003), and Holzworth et al. (2014)]. More specifically 

for Indian groundnut, a number of previous studies have shown that rainfall amount and 

distribution is critical for groundnut production in the north, northwest and west (Bhatia et 
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al., 2009, 2006; Challinor et al., 2003). In these areas, it has been shown that correlations 

between solar radiation and crop yield are negative, suggesting that higher solar radiation 

increases transpirative demand, thus enhancing water stress and lowering yields (Challinor et 

al., 2005; Ramirez-Villegas, 2014). By contrast, in the states of Andhra Pradesh (south) and 

Orissa (east), the relationship between crop yields and solar radiation tends to be positive and 

stronger than that of rainfall; this suggests that these environments can be potentially more 

limited by radiation availability (as opposed to water). Challinor et al. (2004) showed that 

GLAM skill in these areas is limited in spite of a strong correlation (>0.8) between simulated 

biomass and absorbed radiation, implying that energetic constraints to assimilation as 

opposed to transpiration alone could be limiting model skill. Based on these earlier findings, 

we hypothesised that introducing a radiation response function to assimilation in GLAM 

would improve simulation skill where the radiation-yield relationship was positive and 

stronger than that of precipitation, whilst maintaining model skill in regions where the 

converse is true [see discussion section in Challinor et al. (2004)]. 

 

In GLAM-RUE, the transpiration-limited component is that of Eq. 1, whereas the radiation-

limited one is the product of the parameterised radiation-use efficiency (RUE) and the daily 

photosynthetically active radiation (PAR). PAR is computed after Jones et al. (1986), as half 

the daily intercepted downwards shortwave radiation flux (RSDS) (Eq. 5). 

 

!∀

!#
= min  �& ∗ �&) , �Α. ∗ ���       [Eq. 4] 

 

��� = 0.5 ∗ ��2Η ∗ 1 − �ΛΜ∗ΝΟ>       [Eq. 5] 
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where k is the canopy extinction coefficient, parameterised as a constant. This modification 

resulted in the addition of one equation (Eq. 5) and one parameter (RUE), thus adding 

complexity to the original model. 

 

2.4. Crop model calibration and evaluation 

In order to calibrate GLAM-TE (GLAM-RUE), the optimal values of 30 (31) `global` 

parameters and 1 `local` parameter need to be estimated. The term `global parameter` is used 

to refer to model parameters that are constant across large and relatively uniform areas (e.g. 

where duration requirements are known not to vary significantly). The only local parameter 

in both GLAM-TE and GLAM-RUE is the yield gap parameter (CYG), which is defined 

separately for each grid cell. Here, calibration of the global parameters was done per 

groundnut growing zone (Fig. 1) by reducing the model error as measured by the root mean 

squared error (RMSE, Eq. 6) between observed and simulated yield.  

 

���� =
Θ9Λ19

Ρ<
9ΣΤ

Υ
       [Eq. 6] 

 

where O and P refer to observed and predicted quantities of a series of n elements (here, n = 

25 years). We used RMSE as it provides a complete measure of the model errors (Taylor, 

2001). Calibration of model parameters was done for each combination of GLAM version 

(GLAM-TE, GLAM-RUE) and input meteorology (WTH-A, WTH-B), as follows: 

 

(1)!First, in order to minimise the interactions between CYG and all other parameters, we 

selected the single grid cell with the highest yield per growing zone for the global 

parameter calibration. This choice assumes that the chosen grid cell reflects potential on-



14 

 

farm yields for a large and relatively homogeneous region. Following this assumption, 

this grid cell was assigned a value of CYG=1 throughout all following steps. Choosing a 

single grid cell also provided the opportunity to evaluate the skill of the models and their 

global parameters in areas not used for the global calibration. 

(2)!We then developed a parameter ensemble for each growing zone by performing a total of 

100 parallel calibration chains, each starting at a different point of the parameter space 

and with a different order for parameter calibration. Both the starting point and the order 

of parameter calibration are chosen at random for each chain. In each chain, parameters 

were calibrated by iteratively testing values within known parameter ranges [see 

Supplementary Table S1 for ranges]. As we ran 10 iterations of each chain, this resulted 

in a total of 30,000 (31,000) calibration runs being performed per growing zone for 

GLAM-TE (GLAM-RUE). This method is akin to a random sampling of the parameter 

space [e.g. Beven and Freer (2001); Freer et al. (1996)], but with the difference that it 

allows a more systematic exploration of the neighbourhood around the starting point of 

each chain. This process also accounts for co-variation and compensation in model 

parameter values. 

(3)!Next, from all calibration runs we selected all unique global parameter sets below the 25th 

percentile of RMSE. This value is chosen as a compromise between a number of 

parameter sets (often ~1,000) that is computationally feasible but sufficiently large so as 

to realistically represent both variation in parameter values and model skill. Similar 

approaches are employed in other methods for parameter estimation, where arbitrary cut-

off values are used to select or reproduce parameter sets (Beven and Freer, 2001; Iizumi 

et al., 2009). 

(4)!Finally, for each global parameter set, we performed per grid cell calibration of CYG by 

estimating a value in the range 0–1 (at steps of 0.02) that minimised the RMSE. 
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We finally assessed the skill of parameter sets to reproduce observed mean yield and yield 

variability using a Taylor diagram (Taylor, 2001). In a Taylor diagram, RMSE is decomposed 

in its three components: mean bias, ratio of standard deviations, and Pearson correlation 

coefficient (R), thus providing a complete analysis of strengths and flaws in model 

predictions. Finally, we mapped out the RMSE to show spatial variation in model skill. 

 

2.5. Model complexity and uncertainty analysis 

In order to understand whether added complexity in assimilation in GLAM-RUE resulted in a 

comparative advantage with respect to GLAM-TE, we calculated gains in model skill for 

each grid cell. To that aim, we first calculated one RMSE value per grid cell and model 

version as the mean RMSE across all parameter sets and weather inputs, subtracted the mean 

RMSE of GLAM-RUE from that of GLAM-TE, and then normalised it by the mean RMSE of 

GLAM-TE (Eq. 7).  

 

����2>ςς =
WΞΗ./ΨΛWΞΗ.Ζ[Ψ

WΞΗ./Ψ
      [Eq. 7] 

 

A positive value in this fractional difference for RMSE indicates that GLAM-RUE had 

greater model skill compared to GLAM-TE. A bootstrapped t-test with 10,000 replicates was 

conducted to identify where gains in skill were statistically significant (at α=0.05 and 

α=0.10). More specifically, the bootstrapped t-test sampled both parameter sets and weather 

inputs (the dimensions over which RMSE values in Eq. 7 are averaged) and reported a p-

value computed as the ratio of statistically significant bootstrap samples to the total number 

of replicates. This analysis intended to reveal areas where the additional complexity was 

indeed warranted. 
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We define uncertainty as the total variance of a simulated prognostic variable among many 

model configurations, i.e. combinations of parameter sets, weather input, and GLAM 

structure. To understand uncertainty and its sources we decomposed total uncertainty of 

simulated yield, leaf area index, total crop biomass and harvest index into each of its sources 

following the methods of Hawkins and Sutton (2009) and Vermeulen et al. (2013). 

Specifically, uncertainty sources were: (1) parameters, (2) weather inputs, (3) GLAM 

structure, and (4) natural variability. Each individual model prediction was fit to a one-degree 

polynomial loess regression with one degree of smoothing for the entire analysis period 

(1966-1990). Natural variability was assumed to correspond to the time trend of 5-year 

running mean residuals of this fit, averaged across all individual model predictions. Using a 

longer (10-year) running mean produced the same qualitative results. Parametric uncertainty 

was calculated as the variance of the mean predictions of each parameter set. Similarly, 

structural uncertainty was the variance of the mean predictions of each model (GLAM-TE 

and GLAM-RUE). Weather input uncertainty was assumed to be the variance of the mean 

predictions of WTH-A and WTH-B. Total uncertainty was then calculated as the sum of all 

sources of uncertainty. The fractional contribution of each source to total uncertainty and its 

temporal variation was finally calculated. Uncertainty decomposition was performed on the 

harvested area-weighted mean yield of each growing zone. For a detailed description, 

analysis and discussion over the assumptions and equations used in our framework to 

decompose uncertainty, the reader is referred to Hawkins and Sutton (2009). 

 

3. Results 

3.1. Crop model skill and warranted complexity 
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In general, both GLAM versions captured well the spatio-temporal variations of crop yields 

(Fig. 3, Supplementary Fig. S1). Model skill, however, varied across different growing zones 

and, for some growing zones (e.g. eastern India), also across parameter sets. The southern 

region (in orange, Fig. 3) showed the highest overall correlations, primarily due to its 

sufficient water supply leading to low interannual yield variability (see Supplementary Fig. 

S1). Skill in this region, as derived from the closeness of each coloured circle to the `perfect` 

model (hollow circle marked at position 1.0 along the x-axis, Fig. 3) in the Taylor diagram 

was consistent across model versions and input weather datasets. Similarly, the overall skill 

of the western (in blue), northern (in red) and central (in green) zones was consistent across 

weather inputs and GLAM versions. The eastern region (in purple), conversely, showed 

much larger variation across weather input types and GLAM versions, with WTH-B (i.e. 

ERA-40 daily bias-corrected data) showing better performance, and small differences 

between the two model versions for each weather input. More specifically, we note that this 

is the only region where differences in mean RMSE are large (36.6 % for GLAM-TE and 39.7 

% for GLAM-RUE). The remainder of regions showed differences in skill between the two 

datasets below 10 % (see Supplementary Table S3). 

 

Figure 3 already provides some insight as to the potential effect of the different GLAM 

versions and, therefore, the potential gains in model skill from the added complexity of 

GLAM-RUE. For example, in the western zone, GLAM-RUE parameter ensemble members 

showed less variation in model skill than those of GLAM-TE. In the southern zone, we note a 

displacement of all parameter sets towards a slightly lower RMSE. A more detailed 

investigation of variation in skill across model versions showed that it is mostly these two 

regions that show gains in skill (Fig. 4). Although gains are relatively low (5-10 %), most of 

them are statistically significant. In particular, the areas of the western region that border with  
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Figure 3 Taylor diagrams showing the skill of all parameter sets for each of the growing zones. 

Standard deviations are normalised to the observations (hence “perfect” standard deviation is the 

continuous black arc at 1.0 concentric to the origin). Grey arcs concentric to 1.0 in the x-axis represent 

the RMSE normalised by the standard deviation of the observations. The skill metrics of each GLAM 

version, input meteorology, and parameter set are computed using all grid cells and years of the 

corresponding growing zone. All correlation coefficients are significant at p≤0.001. Color-coding 

follows Fig. 1. 

the central region and some areas in the central region show statistically significant 

reductions in RMSE from added complexity. Similar gains in model skill were seen along the 

eastern coast of the southern region (state of Andhra Pradesh and Tamil Nadu). In the vast 

majority of India (85 % of the study area), however, the added complexity of GLAM-RUE is 
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not warranted as either skill gain is not significant or GLAM-RUE causes an increase, 

sometimes significant, in RMSE with respect to GLAM-TE. Thus, representing assimilation 

in a more detailed and/or complex manner in an attempt to improve simulation realism did 

not result in improved groundnut yield simulation skill across most areas of India. 

 

Figure 4 Spatial variation in model skill as measured by the RMSE (in kg ha-1) and in gains in model 

skill (RMSEDIFF, dimensionless, Eq. 7) from using the more complex GLAM-RUE model. (A) RMSE 

for GLAM-TE, (B) RMSE for GLAM-RUE, (C) fractional difference between the RMSE of GLAM-

TE and GLAM-RUE (RMSEDIFF), (D) RMSE normalised by observed mean yield for GLAM-TE, and 

(E) RMSE normalised by observed mean yield for GLAM-RUE. For panel (C): positive values 

indicate a gain in model skill; black hollow dots indicate significant changes in RMSE at p≤0.1, 

whereas black filled dots indicate significant gains at p≤0.05 as derived from a bootstrapped t-test.  

 

3.2. Uncertainties at the regional scale 

For yield, Fig. 5 shows the fractional uncertainty partitioned by source, whereas Fig. 6 shows 

the absolute uncertainty values for each source. In general total absolute uncertainty in yield 
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was the lowest in central and southern India, as interannual variability was low, and 

agreement between simulations of different input types was greater than for all other zones 

(also see Supplementary Fig. S2). Across all growing zones, the choice of weather input 

types (blue areas in Fig. 5) was the most important uncertainty source for yield, albeit with 

varying importance in time and space. We note three different patterns of variation in the 

contribution of weather input types to total uncertainty. First, a monotonic reduction during 

the analysis period was observed in northern India, mostly as a result of growing agreement 

between yield simulations (see Supplementary Fig. S2). Second, a sharp reduction followed 

by an equally sharp increase and then a plateauing was seen in western, eastern and southern 

India, although the time at which the local minimum is reached is different for each region 

(early in the analysis period for the west and south, and late for the east). And third, in central 

India, a monotonic increase until a local maximum and then a monotonic decrease was 

observed, primarily as a result of increasing absolute differences between simulations with 

different input types, but also due to a concomitant decrease in the difference between 

different GLAM versions (see Supplementary Fig. S2C). 

 

For yield, parametric uncertainty was generally not a major uncertainty source, particularly 

when compared with natural variability and uncertainty from weather inputs. Nevertheless, 

for biomass, harvest index and LAI, the total uncertainty was larger than for yield. Parameter 

uncertainty was the largest contributor to total uncertainty, with 50-80 % of total variation 

(Supplementary Figs. S3-S5). This larger contribution is a result of optimising and calibrating 

the model to correctly simulate yield, and leaving all other model outputs unconstrained. That 

is, parameters directly affecting LAI such as the prescribed rate of leaf growth (∂L/∂tmax) and 

the yield gap parameter (CYG) would have large variation across the parameter ensemble and 

hence cause large variations in simulated LAI. Similarly for total biomass, which is primarily  
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Figure 5 Fractional uncertainty in regional yield during the period 1966-1990, decomposed by source. 

Shown is the contribution of four different sources to total yield variance, namely, weather inputs 

(blue), GLAM structure (dark green), parameter sets (light green), and natural variability (orange). 

 

(though not solely) affected by the transpiration efficiency, the maximum transpiration 

efficiency, the radiation-use efficiency (only in GLAM-RUE), and the crop duration; and the 

harvest index, which is mainly defined by the prescribed rate of increase in the harvest index 

(∂HI/∂t) and the duration from start of pod filling to physiological maturity. Values for all 

these parameters showed large variation, often spanning the full range along which the  
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Figure 6 Absolute uncertainty (standard deviation) in regional yield during the period 1966-1990, 

decomposed by source. Shown is the uncertainty in yield stemming from four different sources, 

namely, weather inputs (blue), GLAM structure (dark green), parameter sets (light green), and natural 

variability (orange). Note the differences in y-axis scale across panels, deliberately chosen to highlight 

differences between absolute uncertainties from all sources within each zone. 

 

parameter was allowed to vary (Table S1). Additionally, although with exceptions in specific 

zones and prognostic variables (e.g. all variables in northern India, and yield in southern 

India), parametric uncertainty was higher for GLAM-RUE as compared to GLAM-TE, 
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suggesting increased parameter interactions in GLAM-RUE and hence highlighting the 

compensatory nature of parameters in process-based models (see Supplementary Fig. S6). 

 

A further analysis of correlation with the full ensemble of parameters for both weather input 

types separately for each GLAM version confirmed the compensatory nature of model 

parameters and their errors. Specifically, those parameters directly related to assimilation, 

that is, the maximum transpiration efficiency (ETN, max), the normalised transpiration 

efficiency (TE), the rate of change in the harvest index (∂HI/∂t), the maximum rate of 

transpiration (TTmax) and the duration of the grain filling stage are negatively, albeit not 

strongly (i.e. correlation between -0.2 and -0.35, p≤0.001), associated with the prescribed rate 

of leaf growth (∂L/∂tmax). The maximum rate of transpiration was also negatively associated 

with the remainder of growth parameters, but particularly so with the maximum transpiration 

efficiency (R=-0.47), the crop and soil albedo (R=-0.42) and the rate of root growth (R=-

0.62). These relationships were consistent for the two GLAM versions. 

 

4. Discussion 

4.1. Limits to GLAM ensemble skill in simulating groundnut yields 

GLAM reproduced mean yields and (to a lesser extent) interannual yield variability (Figs. 3-

4, Supplementary Fig. S1). In western India, however, there was a remarkably good 

simulation of extreme yield values from the parameter ensemble, with only three out of the 

25 years being outside the ensemble predicted ranges (Supplementary Fig. S1). However, 

even with a thorough sampling of the parameter space, fully capturing observations was not 

possible. This result is in broad agreement with previous studies, which show that yield 

observations sometimes fall outside parameter ensemble simulations (Iizumi et al., 2011; Tao 

et al., 2009). Errors in the observed yield data and its scaling to the analysis grid, errors of the 
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assumed planting calendars and soil types, errors from assuming constant pest and disease 

pressures and nitrogen limitations by assuming CYG to be constant over time, or errors in 

model structure beyond the modifications introduced here are the most likely causes for these 

limitations. Previous work with GLAM has shown that errors in yield measurements can have 

a comparable impact to that of errors in input meteorology (Watson and Challinor, 2013).  

 

GLAM has been previously reported to simulate interannual variability with limitations in 

some areas (Challinor et al., 2007), with varying factors being potential causes. Here, we note 

that the limited GLAM skill in northern Gujarat (western India) was related to a very low 

harvested area, mostly nearby the wetter zones of southern Gujarat, which by contrast shows 

much higher harvested area and yield. The larger scale of the observed yield data compared 

to the scale of the GLAM simulations in these areas led to associating very low rainfall grid 

cells (towards the Rajasthan desert) to relatively high yields. Limited skill in regions with low 

harvested area has also been reported elsewhere (Watson et al., 2015). In fact, at the regional 

scale, yield simulations showed better performance in the largest producing regions (western, 

southern) as compared to for example the north or the centre, where harvested area is lower 

(see Supplementary Fig. S1). Grid cells with a significant share of ocean also suffered from 

scaling-related errors (see western coasts in Fig. 4). Similar behaviour would be expected 

where large variations in harvested area occur over relatively short geographical distances –

which we did not assess here (but see Watson et al., 2014).  

 

Missing processes related to soil nutrient availability and pests and diseases which might 

change over time depending on farmer’s management strategies, all of which are 

simplistically accounted for by a non-time-varying CYG, may have also constrained the 

simulation skill. However, including non-climatic processes in regional-scale simulations 
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remains a topic meriting more research, as it is not clear whether or how complexity of biotic 

and abiotic stress interactions changes across scale and time. Importantly, as was shown here, 

adding complexity to the crop model is not always warranted, and should therefore be 

exercised with caution (see below). 

 

4.2. Added complexity no guarantee of greater model skill 

Our results indicate that only a small part (ca. 15 %) of the study area showed statistically 

significant improvements (5-10 %) in model skill as a result of added complexity in 

simulating assimilation. However, we also found significant skill loss in a number of 

situations (53 % of grid cells, p ≤ 0.1). Importantly, skill gains and losses were not restricted 

to water-limited areas (e.g. western and northern India), indicating that model skill changes 

are the product of interactions at the process level between various factors and model 

parameters, or that the modifications introduced to GLAM-RUE do not capture well the main 

limiting factors of crop productivity. Our analysis demonstrates that the thorough testing of 

changes in process-based model structure against available observations should become 

standard practice in crop modelling [e.g. van Oort et al. (2015)]. 

 

The fact that skill gains in the range of 5-10 % occurred is encouraging, however, the fact 

that such gains occurred only in specific areas or that there was skill loss suggests that careful 

assessments of model structure are required when structural changes to the model are being 

done. This result is consistent with previous research where increased simulation detail did 

not necessarily improve model skill (Adam et al., 2011). Importantly, our results, in line with 

those of Challinor et al. (2014), open up an interesting debate on the unwarranted complexity 

in crop models for both regional- and field-scale applications. More specifically, regardless of 

the spatial scale they have been designed for, models have been found to hold more 
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complexity than can be constrained by using available observations (Asseng et al., 2013; 

Challinor et al., 2014). This may, at least in part, explain why large uncertainties occur in 

relatively un-calibrated global crop model simulations (Rosenzweig et al., 2014). 

Methodologies that aid in building appropriate modelling solutions for specific problems may 

provide ways to define optimal model structures across scales (Adam et al., 2012, 2010; 

Affholder et al., 2012). However, at the regional scale, the only available data is often crop 

yield (but see Iizumi et al. 2009), which would preclude the assessment of individual (e.g. 

leaf area, soil water dynamics) crop model components. 

 

We note that while the use of a radiation-use efficiency approach may still be an over-

simplification of assimilation (Adam et al., 2011), the combination of water and radiation 

constraints to assimilation even in the simplistic fashion described here is considered realistic 

(Holzworth et al., 2014; Keating et al., 2003). Furthermore, the way GLAM-RUE accounts 

for assimilation is arguably both more complex and realistic than that of GLAM-TE, which 

computes assimilation using only water limitations. Hence, the expectation is that GLAM-

RUE would perform better, particularly where radiation limitations dominate over water 

limitations. Our comparison between the two model versions thus provides a clear 

quantitative assessment of the effects of the hypothesised effects of increased model 

complexity. 

 

4.3. Uncertainties in regional-scale simulations  

We used a previously established framework (Hawkins and Sutton, 2009) to partition 

uncertainty in an ensemble of regional groundnut crop simulations based on two versions of 

the GLAM model, two different input weather datasets previously used for crop simulations 

(Challinor et al., 2004; Ruane et al., 2015), and a parameter ensemble. We found that 
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uncertainties in simulated regional yield were different in both extent and fractional 

contributions to the uncertainties in other model outputs such as leaf area index, harvest index 

and total crop biomass. Thus, low yield uncertainty occurs at the expense of high uncertainty 

in the remainder of model outputs, which was further confirmed by the large variation in 

parameter values as well as, for example, the associations between assimilation and leaf 

dynamics parameters (see Sect. 3.2). Additional observational constraints, therefore, will be 

essential to reduce uncertainty in both yield and in other model prognostic variables, as well 

as to be able to appropriately tie the model processes to the sites and scales of analysis (also 

see Challinor et al. 2014; Ramirez-Villegas et al. 2015). 

 

The estimates of yield uncertainty provided here in general point to large spatio-temporal 

differences in the uncertainty stemming from the different sources, as well as to particular 

situations where predictability increases due to decreasing total uncertainty and, more 

specifically, meteorological input uncertainty. For western India, we found this greater 

predictability (occurring during 1970-1975) to be associated with water dynamics (seasonal 

mean precipitation, evapotranspiration and water uptake), and to a lesser extent similarity in 

simulated crop duration. For eastern India, greater predictability occurred during 1980-1985, 

and was associated with seasonal mean precipitation, soil water dynamics and high similarity 

in VPD. In southern India, high predictability (1965-1975) was primarily associated with 

similarity in soil water dynamics simulation across the ensemble of runs even if seasonal 

mean precipitation and crop duration differed across input weather datasets and GLAM 

versions (data not shown). Although our simulations were based only on GLAM, and would 

hence tend to underestimate structural uncertainty, this result heightens the importance of 

using meteorological forcing datasets that are observation-based and reflect well the real 
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values of the variables that influence the system, which can vary geographically (van Bussel 

et al., 2011a, 2011b; Watson and Challinor, 2013).  

 

Moreover, particularly for regional- and global-scale crop simulations, where fully 

observational data sources at daily scale for performing crop simulations are lacking, this 

results stresses the importance of quantifying the uncertainty stemming from the use of 

different freely available data sources (Angulo et al., 2013b; Ruane et al., 2015). Future 

efforts should also concentrate on improving methods for bias correction of modelled climate 

data, as a key input for regional studies in areas with limited availability of observational 

data.  

 

Parameter uncertainty, similar to other types of environmental modelling approaches (Beven, 

2006; Stainforth et al., 2005), was found to be an important aspect of groundnut growth 

prediction. Particularly for predictions of LAI, biomass and the harvest index, parameter 

uncertainty is by far the most important uncertainty source, with a contribution of up to 90 % 

in some cases. Parametric uncertainty is also a relevant topic for climate change impact 

assessments (Iizumi et al., 2014a, 2011). In this study, the construction of a parameter 

ensemble allowed to better capture variability, mainly through the ensemble mean and its 

variance (Supplementary Fig. S1). We argue that a substantial part of these uncertainties can 

be reduced, particularly as models improve their predictive ability through extensive testing 

and improvement against observational data (Asseng et al., 2014, 2013; Challinor et al., 

2014), as regional-scale understanding of processes improves (Challinor et al., 2015; Iizumi 

et al., 2014a), and as improved regional and global-scale crop and meteorological datasets 

become available (Iizumi et al., 2014b; Van Wart et al., 2015). Extending the work presented 

here to include other crop models and input yield and meteorology datasets could further 
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provide insights as additional entry points for uncertainty reduction for the simulation of 

groundnut productivity at the regional scale. 

 

5. Conclusions 

In the present study, we assessed two important aspects of crop growth and yield prediction. 

Firstly, we assessed the benefit from adding complexity to the crop model. Our relatively 

minor modification to the way the GLAM model accounts for assimilation (from only water-

limited to both radiation- and water-limited) resulted in improvements in model error in the 

range 5-10 % (as measured by changes in the RMSE). These improvements, however, were 

restricted to specific regions and occurred in only ca. 15 % of the study area. Such 

improvements, as would be expected, occurred in radiation-limited environments (southern 

India). However, skill improvements were also seen in highly water-limited areas (north-

western), and decreases in skill were found in other parts where we would have expected 

either no change in skill or an improvement in skill. Based on these results, we suggest that 

process-based model improvement efforts thoroughly assess the impacts of changes in model 

structure on model skill, simulation realism and uncertainty. More broadly, our results also 

imply that the use of overly complex site-based crop models at the regional or global scale 

may not be warranted, or even be misleading. Whilst only further work will help determining 

whether the findings herein presented apply to other regions and crops, the methodology 

presented here can provide a basis to test effects of increased complexity on model skill. 

Future studies may extend the methods used here to test the effect of changes in entire sub-

modules (e.g. water or nutrient dynamics) on the skill of multiple output variables, for 

example. 
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Secondly, we assessed uncertainties in an ensemble of crop simulations. Our findings indicate 

that for reducing simulated yield uncertainty, the choice of input weather data is critical. 

Despite uncertainty, low total uncertainty and hence high predictability occurred when yield 

was primarily limited by either air or soil moisture. In contrast to what was found for yield, 

we found that reducing uncertainty in other prognostic variables such as LAI, biomass and 

the harvest index may require a more crop-observation-intensive approach, as parameter 

uncertainty was found to be the most important uncertainty source. Although we used a 

single model (GLAM) as well as a modified version of it, the fact that this finding is 

consistent across the prognostic variables and growing zones analysed suggests that targeted 

reduction in parameter uncertainty, and, in particular, of those parameters that have large 

influence in yield and are related to one another (leaf area growth rate, harvest index rate of 

increase, transpiration efficiencies, and grain filling duration) is needed. In the absence of 

observations to constrain model parameters, we argue that future regional-scale studies 

should consider this uncertainty source explicitly in their simulations. Additionally, the 

analysis framework used here may provide a basis for not only quantifying but understanding 

uncertainty and its main sources. 

 

Appendix (list of symbols and acronyms, also see Supplementary Tables S1-S2) 

∂L/∂tmax: Maximum rate of change in leaf area index (LAI) (day-1) 
∂HI/∂t: Rate of change in the harvest index (day-1) 

: Soil volumetric moisture content at permanent wilting point (fraction) 

: Soil volumetric moisture content at field capacity (fraction) 

: Soil volumetric moisture content at saturation (fraction) 

CYG: Yield gap parameter (fraction of LAI) 

ETN, max: Maximum normalised transpiration efficiency (g kg-1) 

HI: Harvest index (dimensionless) 

LAI: Leaf area index (m2 m-2) 

R: Correlation coefficient (dimensionless) 

ll
θ

ul
θ

sat
θ
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RMSE: Root mean square error (units of variable being assessed, e.g. crop yield: kg ha-1) 

TE: Transpiration efficiency (Pa) 

TT: Total daily transpiration (cm day-1) 

TTmax: Maximum rate of transpiration (cm day-1) 

VPD: Vapour pressure deficit (kPa) 
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