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Abstract—Service-Oriented Computing (SOC) provides a flexible 

framework in which applications may be built up from services, 

often distributed across a network. One of the promises of SOC is 

that of Dynamic Binding where abstract consumer requests are 

bound to concrete service instances at runtime, thereby offering a 

high level of flexibility and adaptability. Existing research has so 

far focused mostly on the design and implementation of dynamic 

binding operations and there is little research into a 

comprehensive evaluation of dynamic binding systems, especially 

in terms of system failure and dependability. In this paper, we 

present a novel, extensible evaluation framework that allows for 

the testing and assessment of a Dynamic Binding System (DBS). 

Based on a fault model specially built for DBS’s, we are able to 

insert selectively the types of fault that would affect a DBS and 

observe its behavior. By treating the DBS as a black box and 

distributing the components of the evaluation framework we are 

not restricted to the implementing technologies of the DBS, nor 

do we need to be co-located in the same environment as the DBS 

under test. We present the results of a series of experiments, with 

a focus on the interactions between a real-life DBS and the 

services it employs. The results on the NECTISE Software 

Demonstrator (NSD) system show that our proposed method and 

testing framework is able to trigger abnormal behavior of the 

NSD due to interaction faults and generate important 

information for improving both dependability and performance 

of the system under test. 

Keywords—Dependability evaluation, dynamic binding, 

Service-Oriented Architectures, testing, Web services 

I. INTRODUCTION 

Service-Oriented Computing (SOC) provides a framework 
that allows for the flexible integration of distributed, networked 
services [1]. Through loose coupling of service instances, and 
by utilizing standardized intercommunication methods and 
well-defined interfaces, one or more of these services can be 
aggregated into more complex applications. Service-Oriented 
Architectures (SOA) provides a logical architecture for 
constructing these service-based applications [2]. Furthermore, 
SOC and SOA facilitate the agile choice of services according 
to the needs of the service consumer, such that services can be 
swapped out for those that are functionally equivalent [3]. 

One of the promises of SOC is that of Dynamic Binding of 
services where abstract consumer requests are bound to 
concrete service instances at runtime. Existing work involving 

dynamic binding investigates certain aspects of the design and 
implementation challenges, such as dynamic service 
composition [4, 5], how to best match requests to services [6, 
7], dynamic service discovery [8], and dynamic reconfiguring 
of services [9]. Other existing research proposes frameworks 
for the implementation of context-aware dynamic binding such 
as in ubiquitous computing environments [1]. What is clear 
from the current work is that there exist several components 
that help to provide the necessary behavior for dynamic 
binding. 

With existing work, the focus has been on the evaluation of 
the methodology employed to enable dynamic binding, such as 
in the case of [4]. However, a dependability evaluation of their 
respective Dynamic Binding Systems (DBS) is not considered. 
Indeed, this represents a gap in the literature as the binding 
system itself could be subject to faults, and the behavior of the 
dynamic binding system could be non-deterministic [10]. 
Because dynamic binding is one of the key enabling 
mechanisms to realize the promises of SOC, there is an urgent 
need for a good understanding of the dynamic behavior of a 
DBS and how different types of fault would affect its 
operations. Unfortunately, to the best of our knowledge, the 
known fault models developed for SOC, such as those 
proposed by [11, 12], do not cover the kinds of failure modes 
specific to a DBS. 

The contributions of this paper are two-fold. First, we 
design and implement a Dynamic Binding System Evaluation 
Framework (DBS-EF) tool that employs the system and fault 
models to generate the types of fault that may affect a DBS at 
runtime. These faults are then injected at real time as the 
system is running in order to evaluate the behavior of the DBS. 
Secondly, we apply the DBS-EF framework and tool to a real-
life system in order to demonstrate the effectiveness of the 
proposed framework. 

The rest of this paper is organized as follows: Section II 
describes dynamic binding and discusses the related challenges 
and issues with a DBS. Section III examines the dependability 
concerns for dynamic binding in SOC and introduces a fault 
model specially developed for service-oriented dynamic 
binding. Section IV describes the DBS-EF framework and its 
implementation. Section V presents a case study; by 
introducing the NECTISE Software Demonstrator (NSD) 
which is used to illustrate the effectiveness of the DBS-EF. We 



include in this section results and analysis of experimentation 
on the NSD. Section VI concludes the paper and points to 
future work. 

II. DYNAMIC BINDING IN SOC 

Dynamic Binding in Service-Oriented Computing (SOC) is 
the binding of a client request, to a concrete service instance at 
runtime. This is typically done with a brokering service who 
will, on behalf of the client, select the ‘best’ service to serve 
the client’s request. For our work, the term ‘best service’ is 
used to refer to a service that will meet with the highest rank, 
both the functional and non-functional requirements of the 
client's request [4, 5]. (Ultra-late) binding is possible and may 
take place at the point in time when the service is needed so as 
to maximize the flexibility and the opportunity of acquiring the 
best service. Furthermore, functional requirements refer to the 
parts of the request that is concerned with the interface of a 
service, e.g. the method name, number of parameters, 
parameter types and expected response. Non-functional 
requirements refer to the Quality of Service (QoS) [12]. 
Typical examples of QoS attributes used in SOC include 
reliability, availability, response time and cost [4, 5, 13]. 

Dynamic Binding operations in a DBS normally give rise to 
the following abstract workflow: 

1. The client sends an abstract request to the DBS, which 

acts as a broker between the consumer and provider(s). 

2. The request is received and processed to ascertain the 

aims of the consumer’s request. 
3. Once processed, the request is passed to the service 

discovery mechanism to discover functionally-equivalent 

candidate service or services that will meet the client’s 
request. 

4. Once the candidate services have been obtained, the 

service selection mechanism will use the consumer’s 
nonfunctional requirements to rank the services in order 

to find the best service. Either the top ranked candidate 

service is chosen to be the concrete service instance or a 

service is chosen from a pool of services that meet or 

exceed the request’s minimum nonfunctional 

requirements [4, 14]. 

5. The integration mechanism ensures that the consumer’s 
abstract request is interoperable with the concrete service 

interface. 

6. Following the integration phase, the request is then passed 

to the concrete service instance. 

7. The response from the service instance is passed back to 

the integration mechanism so that the response can be 

formatted in such a way that is understood by the 

consumer.  

8. A context monitor is also included so that the current 

context of the consumer’s request is maintained. If there 
is a change, then the monitor can ensure that the system 

adapts as necessary. 

 
The workflow indicates several components that would be 

required in order to provide the necessary functionality. 

Consequently, we have developed the following system model 
for Dynamic Binding in SOC, as shown in Figure 1. 

 

Figure 1.  System Model of Dynamic Binding in SOC. 

The system components are described below: 

 Request Processor - Here is where a DBS will 
analyze a client’s request for functional and non-
functional requirements. The information out of the 
analysis process is used to determine the best service to 
meet a client request [8]. 

 Service Discovery - The functional requirements of 
the request (i.e. the method signature) are used to find 
candidate services. Discovering a service then is a 
simple case of searching through a repository of 
registered services. 

 Service Selection - The non-functional requirements 
of the request (i.e. the QoS attributes) are used to 
determine which of the candidate services meet, or 
exceed the minimum nonfunctional requirements. The 
‘best’ service is then chosen from those services using 
a predetermined algorithm. (Note that when there are 
two or more top-ranked services the selection may be 
made randomly or using additional information.) 

 Service Integration - If the interface of the chosen 
service differs from that of the request and/or the 
response differs from what the client expects, then the 
integrator should mediate those differences [7]. 

 Context Monitoring - If the context in which the 
original request was sent changes, then this might 
affect the decision of which service to bind to. 
Therefore, it is necessary to monitor for any changes in 
context and to allow the selection of the most 
appropriate service to meet the request, given the 
context change [14]. 

III. DEPENDABILITY OF DYNAMIC BINDING 

From the system model above, we are able to derive a fault 
model to aid the assessment of the dependability of a DBS.  



A. Fault Model 

In order to establish an appropriate fault model for the 
evaluation framework to employ, we must first consider the 
previous work in the area by Avizienis et al. [15], Jhumka [12], 
Brüning [11] and Chan [16]. Avizienis et al. provided basic 
concepts and taxonomy for dependability in software systems. 
Their work provides the foundation from which our fault 
model is derived. Jhumka and Brüning were able to apply these 
concepts to the area of Service-Oriented Computing. Their 
research gave a more specific model which Chen was able to 
then apply to Web Services. These models are hierarchical in 
nature as each subsequent model seeks to encapsulate the types 
of fault that can affect specific areas of SOC. 

To the best of our knowledge, existing work in the area of 
dependability does not consider the types of fault that can 
affect a DBS, something that we have addressed in our 
previous work [17]. We present our fault model in the table 
below, by giving the fault categories and specific examples of 
the representative types of fault affecting a DBS and also how a 
DBS is expected to behave in the presence of these faults. 

TABLE I.  FAULT CATEGORIES 

Fault Category Fault Description DBS Behavior 

Communication 

Fault 

 Crash of a service 

instance 

 Crash of hosting 

environment 

 Service hang 

 Duplication of 
messages 

 Omission of 
messages 

 Delay of messages 

DBS should detect fault 

using time-out values, or 
DBS should rebind to 

another service, or DBS 

should return an 
exception/fault message 

and not attempt a 

rebinding. 

Interaction 

Fault at the 

service side 
(Interface Fault) 

 Too few parameters 

 Too many 

parameters 

 Invalid method 

name 

 Invalid parameter 

types 

 Parameter value  

out-of-range 

DBS should detect via 

fault message from 
service, or rebind to a 

service that provides the 

correct interface, or 
mediate differences 

between interfaces, or 

DBS should return an 
exception/fault message 

and not attempt a 

rebinding. 

Interaction 

Fault at the 

client side 

(Invalid 
Request) 

 Missing token(s) 

 Invalid parameter 
types 

 Parameter values 

out-of-range 

 Invalid method 

name 

 Empty method call 

 Zero parameters 

 Empty parameters 

DBS should return a 
meaningful error 

message/exception 

notifying the client that the 
request cannot be 

processed or no service(s) 

are available to service the 
request. 

 

We note that whilst value faults are still something that 
would need to be handled by the system as a whole, it is out-of-
scope for this work as the DBS is only responsible for 
forwarding responses from the chosen service to the client, and 
not for the correct content of that message. Any other value 
fault in the context of the working of the DBS, i.e. invalid 

SOAP message can be considered a value fault as it is the 
contents of the payload itself, would be picked up by the error 
handling mechanism of the middleware such as a 

SOAPException in Java [18]. As a result, we assume that 
the values sent by the services are fault-free. 

Interaction faults fall into two sub-categories: Invalid 
Request i.e. any outgoing interaction from the client to the 
DBS, and Interface Fault i.e. any fault that arises from a 
mismatch between the concrete request, and the interface of the 
chosen service. 

We acknowledge that it is impossible to ascertain every 
possible fault that could manifest in a system, however, it is our 
intention that this model is extensible, and consequently we 
have developed our evaluation framework to also be extensible 
as new test cases arise.  

IV. AN EVALUATION FRAMEWORK FOR DYNAMIC BINDING 

SYSTEMS 

In order to evaluate the dependability of a DBS, it is 
necessary to develop a simple but effective testing framework. 
In this section, we introduce our Dynamic Binding System 
Evaluation Framework (DBS-EF) for such a task. 

A. Dynamic Binding System Evaluation Framework 

The DBS-EF consists of a wrapper system, which encloses 
the DBS itself. Due to the distributed nature of SOC, it is 
desirable that the DBS under test does not need to be co-
located in the same operating environment as the DBS-EF. 

To combat the challenge, we provide a system that utilizes 
handlers to intercept messages to and from the DBS, and we 
treat the DBS itself as a black box system. Where this approach 
has its strength, is that it does not require any knowledge of the 
system under test – the system behavior is observed as a 
function of its input and output [19]. This approach, however, 
is not without limitations. Without knowledge of the 
underlying code, it is not possible to locate where a failure may 
manifest itself, or indeed which parts of the system are being 
affected by the fault [20]. In the case that the system’s internal 
structure is available and therefore white-box testing is 
applicable, the structure information can be used to guide the 
development of test cases within the DBS-EF. 

To achieve our aim of ‘wrapping’ the DBS within the test 
environment, in the DBS-EF the client and candidate services 
are under the control of the framework in order to provide 
assessment at both client-side and service-side execution. 
Under this scheme, Interaction Faults are introduced as client-
side Invalid Requests, whereas Interface Faults occur at the 
service-side. Communication Faults can take place during 
either client-side or service-side execution, or at both sides in 
the case of network loss at the DBS. For the purposes of this 
paper, we will concentrate on Interaction Faults occurring 
between client and DBS, and between DBS and the chosen 
candidate service.  

The DBS-EF contains a series of test cases that are based 
on the domain context of the DBS under test, and test 
campaigns are administered by the Dynamic Binding Fault 
Coordinator Service (DBFCS). This service is contacted by the 



candidate services in order to ascertain the type of fault that is 
to be injected into the messages returned to the DBS. 

Our evaluation framework, as illustrated in Figure 2, works 
as follows: 

 A client is created that will be used to send test requests to 
the DBS under test. 

 Test cases are created that will be used to assess the 
dependability based on the domain context of the DBS 
under test. 

 The client alerts the DBFCS as to which test campaign to 
use (e.g., Invalid Request, Communication Fault or 
Interface Fault). 

 The client sends the request to the DBS. 

 The DBS finds and selects the ‘best’ service from a list of 
candidate services and forwards the request to the chosen 
service. 

 The service processes the request and passes the response 
to the service's handler. 

 The handler then contacts the DBFCS and requests a fault 
to inject. 

 The instrumented message is then returned to the DBS to 
be forwarded back to the client. 

 

Figure 2.  Dynamic Binding System Evaluation Framework 

B. DBS-EF Implementation 

As with the previous implementations by Looker et al [21] 
(method 1), and by Farj et al [22] (method 2), our 
implementation uses Web services as it is a commonly used 
example of SOC. In developing our DBS-EF, we have adopted 
similar approaches to that of their work that SOAP messages 
are intercepted and instrumented prior to being returned to the 
DBS, but after being processed by the service. 

Methods 1 and 2 both concerned themselves with the 
testing of services themselves. Looker et al first developed a 
technique that allowed the interception of SOAP messages and 
instrumented them based on a test campaign for a single Web 
service. The main drawback to this approach is that their 

system relies on deploying the services under test on an 
instrumented Axis web container. 

Method 2 extended this work, by making the fault injection 
mechanism distributed.  This method employed proxies that sat 
in front of each Web service. This afforded the authors a 
distributed fault injection framework which no longer required 
the service under test to be co-located on an instrumented 
server. 

Our framework consists of elements of both methods in 
order to test a DBS. However, unlike methods 1 and 2, the aim 
of the DBS-EF is not to test a service but to test the 
dependability of the DBS itself. Due to the nature of those test 
frameworks, they would not be suitable for the testing of a 
DBS as they focus only on interactions between a client and a 
service. However, it is important to be able to test both client-
DBS and DBS-service interactions. As a result, the DBS-EF 
has been designed to assess such interactions as part of the 
evaluation process. 

We have developed our framework using Java 5.0 and 
JAX-WS from the Glassfish 2.1.1 platform. The fault injection 
mechanism has been developed using the inbuilt JAX-WS 
handler framework, with the aforementioned distributed 
DBFCS coordinating the test campaign. Similar to method 2, 
our system is fully distributed and consequently does not 
require the DBS to be co-located in the same operating 
environment as the evaluation framework.  

V. CASE STUDY: DBS-EF APPLICATION 

To demonstrate the effectiveness of the DBS-EF, we have 
taken an existing DBS – the NECTISE Software Demonstrator 
developed for the UK’s EPSRC NECTISE project – and we 
have used it as a case study for the application of the evaluation 
framework. 

A. NECTISE Software Demonstrator (NSD) 

The NECTISE Software Demonstrator (NSD) was created 
as part of the Network Enabled Capability Through Innovative 
Systems Engineering (NECTISE) program which investigated 
how loosely-coupled services can be used to describe the 
functions and Quality of Service for heterogeneous systems 
and networks [23]. The NECTISE program studied issues 
related to a larger UK Ministry of Defence (MoD) initiative to 
enhance military effect through the networking of existing and 
future military capabilities, under the banner of Network 
Enabled Capability (NEC). 

The scenario aim of the NSD was to model a real-time 
Region Surveillance capability using dynamic service 
integration of sensor networks in the NEC battlefield - this 
allowed a comprehensive ‘picture’ to be formed of the 
geographical region based on data communicated to a 
controller from deployed mobile sensors [13].  

The basic application workflow is shown in Figure 3, and 
can be described as follows: 

 A client may submit (real time) requests to the system for 
information of Point of Interests (POI) for a specified 
region of interest. In this case study, the QoS parameters 
employed are sensor availability and sensor response time 



in milliseconds. These parameters are specified alongside 
the region of interest in the request. 

 The system will return the related information about the 
POIs within that region, e.g. current locations of those 
POIs. This is done by requesting POI information from 
only those sensors that can 'see' the region of interest. 

 

 

Figure 3.  NECTISE workflow from [23] 

 The system then pools the information together and filters 
out any duplicate POIs (as multiple sensors may see the 
same POI), then encapsulates the information into a single 
service response which is returned to the client. 

The system model for the NSD is illustrated in Figure 4 and 
shows how the components of the NSD relate to the system 
model for dynamic binding in SOC. A screenshot of a mapping 
client is shown in Figure 5 and illustrates the region of interest 
(the blue box) and shows sensors and POI within the region of 
interest.  

 

Figure 4.  NECTISE System Model in context of Dynamic Binding 

In this model, the Service Discovery and Selection 
components are combined into a single component. 

Additionally, there is a single gateway service (SensorWS) 
that accesses all sensors within the region of interest. Sensor 
information is modeled in an SQL database, and the integration 

mechanism is responsible for the data fusion by removing 
duplicate sensor information. 

The interface of the NSD, consists of a single method: 

GetFeatures(MonitorLocation2 ml2). This object 
consists of four floats representing the region of interest 

((x1,y1), x2,y2)) and a ServiceAvailability object that 
representing the minimum requested QoS for each sensor. 
Once processed by the NSD, the method returns a 
MonitorLocationInformation2 object to the client which 
contains the details of the points of interest contained in the 
region of interest. 

 

Figure 5.  Screenshot of the NECTISE Software Demonstrator 

The advantage of using the NSD is that we have knowledge 
of how the system has been implemented. This information is 
valuable as it allows us to verify that the evaluation framework 
is affecting the behavior of the NSD. It is worth noting 
however, that from the perspective of the DBS-EF, the NSD is 
still considered a black box as it is only concerned with the 
inputs and outputs from the NSD. 

B. NECTISE Test Cases 

To demonstrate the DBS-EF in action, we have focused on 
Interaction Faults in the form of Invalid Requests between the 
client and the NSD, and also Interface Faults between the 
chosen concrete service and the DBS. Using these faults, we 
are able to see a clear difference in performance of the NSD in 
the presence of these types of fault.  

To simulate invalid requests, we consider the makeup of the 
request as being two separate parts; the region of interest, and 

the ServiceAvailability object. As such, we have split 
the test cases into two different sub-cases – Invalid Request – 
i.e. the region of interest (ROI), and QoS faults – the 
ServiceAvailability object. 

For the ROI test cases we partitioned the request 
parameters into the following instances: minimum value, 
maximum value, NaN (Not a Number), +/- Infinity. These 
instances refer to the values attached to the float parameters the 
NSD expects. Similarly, for the QoS fault, we applied a similar 
approach. This gave us a total of 41 different test cases with 
which to apply to the NSD. 



To apply these faults, requests were formed and sent to the 
NSD to ascertain what behavior the NSD would exhibit in the 
presence of requests that were not valid. 

To inject Interface Faults, we simulate a change of interface 

at the SensorWS to demonstrate the effectiveness of the DBS- 
to modify the behavior of a DBS under test. We do this by 
introducing a simulated change of method name for the 
SensorWS by simply replacing one character in the method 
name. We used SoapUI 4.5.0 to verify that if a request sent to a 
service does not conform to the interface, we receive a 

SOAPFault back from the service. In this instance, we found 
that, the request would not be recognized by the service. The 
response returned from the NSD when supplied an invalid 
method name is given in Figure 6. 

<?xml version="1.0" encoding="UTF-8"?> 
<S:Envelope 
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"> 
<S:Body> 
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-
envelope"> 
  <faultcode>S:Client</faultcode> 
  <faultstring> 
    Cannot find dispatch method for 
{http://sensor.nectise.comp.leeds.ac.uk/}#etFeatures 

  </faultstring> 
 </S:Fault> 
</S:Body> 
</S:Envelope> 

Figure 6.  Example SOAP Fault (Interface Fault) response from the 

NECTISE Software Demonstrator with the key change in bold text. 

The next stage was to develop a handler that would 
simulate this type of fault by replacing the regular response 

from the service, with a SOAPFault stating that the dispatch 
method was not recognized. 

C. Results and Analysis 

To illustrate the effectiveness of our approach, we made 
1000 requests to the NSD without any simulated faults in order 
to get a baseline for our experiments. 

Table II shows values that are representative of those 
within the domain of valid values for the context of the NSD. 
The aim of these baseline runs was to see the typical output of 
the system without the presence of any faults and to 
demonstrate the dynamic nature of the NSD. Our experiments 
were run on an Apple MacBook Air, 1.8 GHz Core i7 
processor with 4GB RAM. Each run of 1000 experiments was 
performed five times in order to demonstrate the repeatability 
of the experiments, and also to illustrate the dynamic nature of 
the NSD. 

TABLE II.  REQUEST PARAMETERS 

MonitorLocation2 ServiceAvailability 

x1 0.0 
maxResponseTime 5.0 

y1 50.0 

x2 50.0 
availability 99.0 

y2 0.0 

The results of these runs are shown in Figures 7, 8(i) and 9. 
What these results show is that for the specified region of 

interest, the NSD returned between one and five Points of 
Interest (POI) for each request, per run. In particular, for the 
five runs, the NSD returns the number of POI with a variability 
of 18.2724% between each run. What was particularly 
insteresting was that when we considered the distribution of 
POI returned, we noticed that on average, the majority 
(51.36%) of requests returned only one POI. 

Whilst this data demonstrates that the NSD provides 
dynamic behavior between each batch of requests, we noticed 
that there was a definite trend that is mirrored in each test run. 
This trend can be seen in Figures 7 and 9. The explanation for 
this trend is that the NSD uses fixed data with respect to each 
of the sensors and what POI they can see. As a result, repeated 
runs show a similar trend in the results produced as this data is 
replayed with each successive run. Despite this, there is enough 
variability to demonstrate dynamic behavior to give us a useful 
baseline with which to compare the output of the NSD when 
the DBS-EF is applied. 

 

Figure 7.  Number of POI returned per request 

Our first set of tests concerned Invalid Requests. For these 
tests, each request was sent to the NSD 1000 times and the 
results recorded. 

We observed that the output of the NSD fell into three 
separate categories. The first category included results from the 
NSD which included data on the POI within the ROI despite 
being given erroneous QoS parameters. In this category, the 
NSD returned differing numbers of POIs from the baseline. 
These results are shown in Figure 8(ii). Subsequent Invalid 
Request tests returned zero POI.  

These results indicate that the NSD is not checking the QoS 
values for errors as it was possible to supply invalid data and 
still get a response from the NSD. 

The second category returned no data from the NSD when 
the ROI parameters were set to +/- infinity or NaN. Following 
on from the previous category, given the NSDs insensitivity to 
QoS faults, we observed that the NSD is sensitive to invalid 
ROI values, but fails to return any valid error messages to the 
client. The only error we were able to observe was an 

EJBException which gave no indication as to the cause of 
the exception. 



The final category returned POI data that contained zero 
POI. This only occurred when the ROI data was set to min/max 
float values (i.e. the ROI was way beyond the boundaries 
expected by the NSD). In this instance the NSD exhibits 
behavior that is erroneous as it still attempts to return POI 
information for an ROI that does not exist in terms of the 
NSD’s specification. 

We also analyzed the run times for the three categories. In 
category 1, the runtimes were between 136.502 seconds and 
157.018 seconds. Category 2 exhibited shorter runtimes - 
between 96.404 seconds and 104.975 seconds - as the sensor 
service was not called. Category 3 exhibited the longest 
runtimes – between 68.36485 minutes and 68.6256 minutes – 
as the NSD was searching an extremely large ROI.  

For the second batch of test runs, we introduced the 
simulated interface faults. For these test runs, we ran each test 
in five runs of 1000 requests due to a smaller set of tests. In 
each run, we noticed a significant reduction in performance of 
the NSD similar to the performance degradation observed in 
the Invalid Request test cases. In this instance, whereas the 
baseline runs took approximately two minutes to complete 
1000 requests, when we introduced the Interface Faults, we 
found that each test run took approximately 69 minutes to 
complete.  

  

Figure 8.  (i) Baseline average number of POI per test run.  

(ii) Average number of POI per test (Test 1-6) 

The output from the NSD showed that in the presence of 
Interface Faults, the NSD still returned a 

MonitorLocationInformation2 object, but each object 
contained zero POI. This output from our experiments 
demonstrates that our DBS-EF triggered successfully the 
abnormal behavior of the NSD as expected such that we are 
able to observe how severely the system was affected, e.g. how 
severely the response time of the system was impeded, and the 
output from the system, e.g. with or without any POI 
information to the client and any exception information. 

In the context of the dependability of the NSD, the system 
relies on a single gateway Web service which represents a 
single point of failure. Hence, by introducing the Interface 
Fault at the service, we are able to prevent the system from 
functioning as per the specification. It is interesting to note that 
while this represents a deviation from normal behavior, the 
NSD returns no information to the client that indicates that a 
problem was encountered whilst attempting to access the 
SensorWS. 

Additionally, the performance penalties exhibited in the 
presence of Invalid Requests, could be avoided were the NSD 
to error check the values of the parameters prior to submission 
to the DBS. 

It is this kind information that provides vital and valuable 
information for the system designer as in addition to suggesting 
a fault-tolerant and robust strategy for service instances, to 
prevent a single point of failure, it also suggests that they might 
wish to include appropriate error handling that will tolerate a 
change in interface, or develop a strategy for mediating 
between interface versions. Tolerating this type of fault is 
desirable in the context of the dynamic nature of the 
environment, as it may not be possible to know the interface of 
services a priori [7]. 

 

Figure 9.  Distribution of number of POI returned per baseline run 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we have discussed dynamic binding in SOC 
and the need to be able to assess the dependability of 
mechanisms that enable the binding of services at runtime. 
Previous work in this area does not consider the dependability 
of dynamic binding, rather choosing to focus on the correctness 
of the implementation. We have developed a novel evaluation 
framework that enables the evaluation of a DBS under test by 
considering the types of fault that can affect a DBS. These 
faults are taken from fault and system models derived from 
existing literature and presented in this paper. 

The Dynamic Binding System Evaluation Framework 
(DBS-EF) has the ability to trigger abnormal behavior of a 
DBS as expected, due to the certain type of fault injected. More 
importantly, the behavior triggered by the DBS-EF provides 
vital information about the levels of severity of different types 
of fault, and how the system reacts to certain types of fault. 
Such information can offer hints on how the system under test 
could be improved further. For example, when an Interface 
Fault is considered, the returned response from the system can 
be enhanced with a properly detailed message for exception 
handling. 

We have demonstrated the effectiveness of our approach by 
applying the DBS-EF to an existing DBS implementation in 
the form of the NECTISE Software Demonstrator (NSD). We 
have shown that by using the DBS-EF, we are able to simulate 
Interaction faults by injecting Invalid Requests and Interface 
Faults into the system. In turn, we then affect the behavior of 



the NSD. Our results show that the response time of the NSD is 
greatly affected by those types of fault and that in the case of 
both types of Interaction Fault, each response returned 
erroneous results to the client. Furthermore, in some cases the 
NSD exhibited a dramatic degradation in performance.  

In addition to this, there is no information at all in the 
response to suggest that either fault is the cause of behavior. 
Our analysis concludes that because the NSD uses a single 
gateway service to access sensor information, it suffers from a 
single point of failure. Additionally, we conclude that the NSD 
is not sensitive to invalid data with respect to the QoS 
parameters, or extreme values for ROI parameters. 

Our work is not without its limitations – because we are 
using a ‘black box’ approach to testing a DBS, we are unable 
to exactly pinpoint which parts of the system are affected by 
the introduction of faults. The experiments presented in this 
paper focus on demonstrating the working of the DBS-EF by 
injecting Interaction Faults and do not give a full picture of the 
dependability of the NSD. Our ongoing work considers the 
injection of Communication Faults into the NSD. 

The use of the NSD, whilst providing a real-life DBS to use 
to evaluate our framework also has limitations. The authors of 
NSD used fixed sensor data to model the sensors abilities and 
POI that they can see. This means that repeated runs showed 
similar trends with a variability of 18.2724% between each run. 
We have also used our knowledge of the NSD to verify that the 
DBS-EF is having an effect on the performance of the NSD in 
the presence of Interaction Faults. However, we note that the 
DBS-EF operates on the NSD in a strictly black box fashion. 
We also note that there is nothing to prevent the tester from 
combining the output of the DBS-EF with further information 
on the internal structure of a DBS if visible and additional 
White-Box testing if applicable. 

Our future work will focus on the injection of faults arising 
from the monitoring of QoS attributes at runtime. We also aim 
to put all of our experiments into a larger suite of test 
campaigns in order to provide a larger test suite that can be 
applied to any DBS such that improvements to the 
dependability to a DBS under test can be made. 
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