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Abstract—Sparse wideband sensor array design for sensor
location optimisation is highly nonlinear and it is traditi onally
solved by genetic algorithms, simulated annealing or other
similar optimization methods. However, this is an extremely time-
consuming process and more efficient solutions are needed. In this
work, this problem is studied from the viewpoint of compressive
sensing and a formulation based on a modifiedl1 norm is derived.
As there are multiple coefficients associated with each sensor,
the key is to make sure that these coefficients are simultaneously
minimized in order to discard the corresponding sensor locations.
Design examples are provided to verify the effectiveness ofthe
proposed methods.

Index Terms—Sparse array, frequency invariant beamforming,
wideband beamforming, tapped delay-line, compressive sensing.

I. I NTRODUCTION

Wideband beamforming has been studied extensively in the
past [1], [2]. It is well-known that in order to avoid the
spatial aliasing problem for uniform linear arrays (ULAs),
the adjacent sensor spacing has to be less than half of the
minimum operating wavelength corresponding to the highest
frequency of the signal of interest. On the other hand, sparse
arrays allow adjacent sensor separations greater than half
a wavelength while still avoiding grating lobes due to the
randomness of sensor locations [3].

However, the unpredictable sidelobe behaviour associated
with sparse arrays means some optimisation of sensor loca-
tions is required to reach an acceptable performance level.
Various nonlinear methods have been used to achieve this
required optimisation. For example, Genetic Algorithms (GAs)
[4], [5], [6] and Simulated Annealing (SA) [7] have been
regularly used. The disadvantage of these types of methods
are the potentially extremely long computation times and the
possibility of convergence to a non-optimal solution.

Recently, the area of compressive sensing (CS) has been
explored [8], and CS-based methods have been proposed in
the design of narrowband sparse arrays [9], [10], [11], [12].
Further work has also shown that it is possible to improve
the sparseness of a solution by considering a reweightedl1

minimisation problem [13], [14], [15], [16]. The aim of these
methods is to bring the minimisation of thel1 norm of the
weight coefficients closer to that of the minimisataion of the
l0 norm.

However, for a wideband array to be sparse, all coeffi-
cients along the tapped delay-lines (TDLs) associated with
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Fig. 1. A general wideband beamforming structure with a TDL lengthJ .

an individual sensor have to be equal or very close to zero.
Therefore, it is not sufficient to simply minimize thel1 norm of
the weight coefficients. Instead, a method similar to the tech-
nique employed in complex-valuedl1 norm minimization [17],
is presented in this paper, which can be considered as an
expanded version of the idea in [18]. As in the case with
narrowband array design, it is possible to use a reweighted
scheme for the wideband method as well.

The remainder of this paper is structured as follows. Sec.
II gives details of the array model, followed by the proposed
design methods in Sec. III. Design examples are provided in
Sec. IV and conclusions are drawn in Sec. V.

II. W IDEBAND ARRAY MODEL

A general linear array structure for wideband beamforming
with a TDL length J is shown in Fig. 1, whereTs is the
sampling period or temporal delay between adjacent signal
samples [2]. The beamformer outputy[n] is a linear combi-
nation of differently delayed versions of the received array
signalsxm[n], m = 0, · · · ,M − 1. The distance from the
zeroth sensor to the subsequent sensor is denoted bydm for
m = 0, · · · ,M − 1, whered0 = 0 as it is the distance from
the zeroth sensor to itself.

The steering vector of the array as a function of the
normalized frequencyΩ = ωTs and the angle of arrivalθ
is

s(Ω, θ) = [1, · · · , e−jΩ(J−1),

e−jΩµ1 cos(θ), e−jΩ(µ1 cos(θ)+1),

· · · , e−jΩ(µ1 cos(θ)+(J−1)),

· · · , e−jΩ(µM−1 cos(θ)+(J−1))]T . (1)

whereµm = dm

cTs

for m = 0, 1, · · · ,M − 1 and{·}T indicates
transpose operation.

The response of the array is then given by

P (Ω, θ) = wHs(Ω, θ), (2)

wherewH is the Hermitian transpose of the weight coefficient
vector of the array, given by

w = [wT
0 wT

1 ... wT
M−1]

T , (3)
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with
wm = [wm,0 wm,1 ... wm,J−1]

T . (4)

III. SPARSEWIDEBAND ARRAY DESIGN VIA

COMPRESSIVESENSING

As previously mentioned, CS has been employed in the de-
sign of sparse narrowband arrays by trying to match the array’s
response to a desired/reference one,Pr(Ω, θ). Extending the
design to the wideband case, we first consider Fig. 1 as being a
grid of potential active sensor locations. In this instance, dM−1

is the maximum aperture of the array and the values ofdm, for
m = 1, 2, . . . ,M−2, are selected to give a uniform grid, with
M being a large enough number to cover all potential locations
of the sensors. Sparseness is then introduced by selecting the
set of weight coefficients to give as few active locations as
possible, while still giving a designed response that is close
to the desired one.

In the first instance, this problem could be formulated as

min ||w||0

subject to ||pr − wHS||2 ≤ α , (5)

where||w||0 is the number of nonzero weight coefficients inw,
pr is the vector holding the desired beam response at sampled
frequency pointsΩk and angleθl, k = 0, 1, · · · ,K − 1,
l = 0, 1, · · · , L− 1, S is the matrix composed of the steering
vectors at the corresponding frequencyΩk and angleθl, and
α places a limit on the allowed difference between the desired
and the designed responses. In the constraint in (5)||.||2
denotes thel2 norm.

In detail, pr andS are respectively given by

pr = [Pr(Ω0, θ0), · · · , Pr(Ω0, θL−1),

Pr(Ω1, θ0), · · · , Pr(Ω1, θL−1)

..., Pr(ΩK−1, θL−1)]

and

S = [s(Ω0, θ0), · · · , s(Ω0, θL−1),

s(Ω1, θ0), · · · , s(Ω1, θL−1), · · · , s(ΩK−1, θL−1)].

Here the desired responsePr(Ω, θ) can be obtained from that
of a traditional uniform linear array, or simply assumed to be
an ideal response (i.e. one at the mainlobe area and zero for
the sidelobe area) and this is adopted in what follows.

In practice, the cost function in (5) will be replaced by the
l1 norm,

min ||w||1

subject to ||pr − wHS||2 ≤ α . (6)

The above formulation is effective in the design of narrow-
band arrays, where the TDL lengthJ = 1 (i.e. each sensor
has only one weight coefficient attached) and the number of
nonzero coefficients will be the same as the number of active
sensors. In other words, any coefficient with a zero value

will mean that the associated sensor is inactive. However,
in the wideband case, to guarantee a sparse solution, the
weight coefficients along a TDL have to be simultaneously
minimized. When all coefficients along a TDL are zero-valued,
we can then consider the corresponding location to be inactive
and sparsity is introduced. To achieve this, similar to the
technique used in complex-valuedl1 norm minimization [17],
we minimize a modifiedl1 norm as follows [18],

min t ǫ R
+

subject to ||pr − wHS||2 ≤ α

|〈w〉|1 ≤ t (7)

where

|〈w〉|1 =

M−1
∑

m=0
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. (8)

Now we decomposet to t =
∑M−1

m=0 tm, tmǫ R
+. In vector

form, we have

t = [1, · · · , 1]







t0
...

tM−1






= 1T t. (9)

Then (7) can be rewritten as

min
t

1T t

subject to ||pr − wHS||2 ≤ α
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≤ tm, m = 0, · · · ,M − 1.

(10)

Now define

ŵ = [t0, w0,0, · · · , w0,J−1, t1, · · · , wM−1,J−1]
T , (11)

ĉ = [1, 0J , 1, 0J , · · · , 0J ]T (12)

and

ŝ(Ω, θ) = [0, 1, · · · , e−jΩ(J−1),

0, e−jΩµ1 cos(θ), e−jΩ(µ1 cos(θ)+1), · · · ,

e−jΩ(µ1 cos(θ)+(J−1)),

· · · , e−jΩ(µM−1 cos(θ)+(J−1))]T , (13)

where0J is an all-zero1× J row vector. A matrixŜ similar
to (6) can be created from̂s, given by

Ŝ = [̂s(Ω0, θ0), · · · , ŝ(Ω0, θL−1),

ŝ(Ω1, θ0), · · · , ŝ(Ω1, θL−1), · · · , ŝ(ΩK−1, θL−1)].
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Finally we arrive at the final formulation for the sparse
wideband sensor array design problem

min
ŵ

ĉT ŵ

subject to ||pr − ŵH Ŝ||2 ≤ α
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≤ tm, m = 0, · · · ,M − 1.

(14)

In the above formulation, it is straightforward to add addi-
tional constraint to meet some specific design requirements.
For example, we can add the response variation constraint
RV = ||LT ŵ||22 ≤ σ2 derived in [22], [23] to design a sparse
wideband array with frequency invariant beam response [19],
[20], [21], [22], where the matrixL and the threshold value
σ are formulated to make sure the change of response of the
resultant beamformer with respect to different frequencies is
limited to an acceptable level.

Moreover, to increase sparsity of the resultant array, we can
adopt the reweightedl1 minimisation approach in [16] and
reformulate (14) into the following form

min
ŵ

ĉT ŵ

subject to ||pr − ŵH Ŝ||2 ≤ α
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≤ tim,

m = 0, · · · ,M − 1 , (15)

where

ŵ = [ti0, w
i
0,0, · · · , w

i
0,J−1, t

i
1, · · · , w

i
M−1,J−1]

T , (16)

ĉ = [ai0, 0J , a
i
1, 0J , · · · , 0J ]

T (17)

and

aim =
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+ ǫ

)

−1

(18)

Hereǫ > 0 and i is the iteration number.
The above problem can be solved using cvx, a package for

specifying and solving convex programs [24], [25].

IV. D ESIGN EXAMPLES

In this section design examples are presented, which were
all implemented on a computer with an Intel Core Duo CPU
E6750 (2.66GHz) and 4GB of RAM. Comparisons will be
drawn with a GA-based design method, which optimises the
locations given a fixed number of sensors. In the GA based
design, the fitness value was chosen to beJ−1

CLS, whereJCLS

is defined in [22].
In the following example, the reference pattern was that of

an ideal array with the mainlobe atθm = 90◦ and sidelobe

TABLE I
SENSORLOCATIONSFOR THE REWEIGHTEDBROADSIDEDESIGN

EXAMPLE .

n dn/λ n dn/λ

0 1.92 6 5.66

1 2.83 7 6.26

2 3.33 8 6.67

3 3.74 9 7.17

4 4.34 10 8.08

5 5.00
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Fig. 2. Responses for reweighted broadside design example.

regions ofΘs = [0◦, 80◦]
⋃

[100◦, 180◦], which were sampled
every1◦. The frequency range of interestΩI = [0.5π, π] was
sampled every0.05π, with the reference frequencyΩr = π.
A grid of 100 potential sensor locations was spread uniformly
over an aperture of10λ, where the value ofλ is the wavelength
associated with a normalized frequency ofΩ = π. The values
α = 0.9, σ = 0.01, ǫ = 9 × 10−4 and TDL lengthJ = 25

were used.
The resulting array using the reweighted method was made

up of 11 active sensor locations as given in Tab. I, with
its beam response shown in Fig. 2. It can be seen that
the mainlobe is at the desired location for each normalised
frequency and sufficient attenuation has been achieved in the
sidelobe regions. The response also shows a good level of
performance in terms of the FI property.

This was then compared to an array designed using the
GA-based method. To allow a fair comparison, the GA was
set to optimise11 sensor locations over an aperture of6.16λ,
the same as the example given in Tab. I. Fig. 3 shows the
resulting array response.All these show a good performance
in terms of both sidelobe attenuation and the FI property.

Tab. II summarises the different performance measures
for each design method. The main disadvantage of the GA
design method is clearly shown, i.e. the computation time is
significantly longer. The mean adjacent sensor spacings arethe
same in both cases and larger than the spacing of an equivalent
ULA. This suggest some sparsity has been achieved, with the
same level in both cases. Finally the value of|JCLS | is slightly
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Fig. 3. Responses for the GA broadside design example.

TABLE II
BROADSIDEPERFORMANCECOMPARISON.

Method Reweighted GA
Mean Spacing/λ 0.62 0.62

JCLS 0.0372 0.0376
Computation Time (minutes) 130 436

lower for reweighted CS designed array, suggesting that in this
instance the reweighted wideband CS method has provided a
more desirable response (the difference largely being the FI
property in the extremes of the sidelobe regions). This will
not be guaranteed to be the case all the time.

V. CONCLUSIONS

In this paper, a CS-based method for the design of sparse
wideband arrays has been proposed, where a modifiedl1 norm
minimization problem is derived to simultaneously minimize
the coefficients along a tapped delay-line associated with
each sensor. Extra constraints can then be added to meet the
specific design requirements, such as the frequency invariant
constraint. To further improve the sparsity of the final design
result, an iterative process is employed with a reweighting
term introduced in the cost function. Design examples have
been presented, with comparisons also drawn with a GA-
based method. Similar performance levels are achieved but
the GA design takes considerably longer to reach the solution,
highlighting the advantage of our proposed design methods.
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