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Abstract 

The durability of digital audio tape is a function of the elastic and plastic properties of the 

magnetic layer and substrate. In this work a micro-indentation method has been used to 

estimate these properties. The loading part of the compliance curve (load against indentor 

penetration) is analysed to obtain magnetic layer hardness. The unloading part is used to 

determine the reduced elastic modulus. Indentations at various depths have been recorded and 

an extrapolation technique used to predict layer properties. Rate dependence of the magnetic 

layer has been studied through constant loading rate tests. Results are presented isochronally, 

to indicate any viscous elastic-plastic non-linearities. 

Nomenclature 

h depth of indentor penetration (measured with the undeformed surfaces as a datum) 

hf final recorded depth of penetration (depth of residual indentation) 

hc contact depth (vertical distance from the edge of the contact area to the indentor tip) 

hmax maximum penetration of the indentor 

P load applied to indentor 

Pmax  maximum load applied to indentor 

Ac projected area of contact under load 

E* reduced modulus 

S contact stiffness, dP/dh 

Introduction 

Digital audio tape (DAT) consists of a polymer strip coated with a thin layer of magnetic 

particles suspended in a polymeric binder. A polyurethane backcoat is also sometimes 

applied. Figure 1 shows a section through the tape used in these experiments. The substrate is 

9 µm thick polyethylene tetraphthalate (PET) and the magnetic layer is a 2 µm thick 

suspension of iron oxide particles in a binder. 

The durability of magnetic tape is a function of both the properties of the magnetic coating 

and the substrate. For optimum wear resistance a hard, low modulus layer may be desirable. 

To minimise layer/substrate interfacial shear stress it is important to match the elastic 

properties of the two materials. In addition, when modelling the behaviour of this tape in 

normal operation it is important to know its elastic and plastic properties. 
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Figure 1. Section through the magnetic tape used in this study. 

Tape substrate elastic properties may be measured in a microtensile test. However 

measurement of layer properties is more difficult. Recently the availability of micro and nano 

indentation testers has made these measurements possible. In principle, a diamond indentor 

(commonly a triangular base Berkovitch type) is pressed onto the specimen surface held for a 

pre-set time and then released. Throughout the loading cycle the applied load and depth of 

penetration are sensed by inductive transducers. 

Analysis of Load Penetration Depth Indentation Curves 

A typical load penetration depth curve is shown in Figure 2. During indentor loading, the 

material undergoes both elastic and plastic deformation. This loading part of the curve, with 

the subtraction of the elastic deformation, is used to determine the hardness of the material. 

The unloading part of the curve is essentially elastic and with some analysis gives 

information about the elastic material properties. The behaviour of the material during a load 

hold or under various loading rates can be used to determine rate dependent properties. 

 

Figure 2. Schematic diagram of a typical load/penetration micro-indentation curve. 

Interpretation of the Loading Curve - Material Hardness 

The hardness H, is defined as the mean pressure under the indentor: 

  (1) 

where Pmax is the applied load and Ac is the projected area of the impression under load. 

In a conventional Vickers hardness test the area of the residual impression is measured 

optically and used in place of the area of the impression under load. Stilwell & Tabor (1) 

showed that this is acceptable since when a indentation is unloaded there is little elastic 

recovery of the impression sides (although the depth recovers substantially). 

A depth sensing hardness tester records only the total penetration, h. Pethica (2) demonstrated 

that using the penetration depth and the shape function of the indentor to calculate, Ac the 
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contact area gives only an approximate value of the hardness. This is because the penetration 

depth incorporates both the contact depth and the elastic deformation of the surrounding 

hinterland (as shown in figure 2). Clearly only the depth in contact should be used in the 

determination of Ac and hence the hardness. 

Doerner and Nix (3) showed that for some materials the first part of the unloading curve is 

linear. This implies that within this region, the contact area remains constant (i.e. flat punch 

behaviour P ∝ h). Extrapolating this straight line part of the curve gives the contact depth h c 

under the maximum load Pmax. (as shown in figure 2). 

Oliver and Pharr (4) showed that for many materials a linear initial unloading does not occur. 

They suggest a power law fit, P ∝ (h-hc)
m to the unloading curve is a more general behaviour. 

Then the slope of the fit at the maximum load gives the contact depth. 

Alternatively one may estimate a relationship between the total penetration and the contact 

depth by assuming an ideal shape for the indentor, using the relations of Sneddon (5). Then 

hc/h is given by 2/π, 1/2, or 5/8 for a cone, circular punch, or parabolic profile indentor 

respectively. 

Briscoe and Sebastian (6) also curve fit to the unloading data using a form P ∝ E*(h-h0)
m . 

However they introduce a zero correction to accommodate the difficulties micro-indentation 

devices have in sensing the specimen surface. 

Once the contact depth has been determined the contact area is readily obtained from the 

geometry of the diamond pyramid (which is assumed to remain undeformed). For a perfect 

Berkovitch indentor: 

  (2) 

Real indentor diamonds will deviate from this perfect geometry. Indentations at low 

penetrations are particularly susceptible to tip imperfection. Calibration of the tip geometry 

may be carried out to determine this area function to greater accuracy (3,4,6). 

Interpretation of the Unloading Curve - Elastic Properties 

Stilwell and Tabor (1) showed that the unloading of a conical indentor was essentially an 

elastic process. As such , it can be considered as the elastic loading of a cone into a conical 

cup. The analysis for an axisymmetric cone, presented by Love (7), gives a relationship 

between the load and penetration: 

  (3) 

Where α is the apical semi-angle of the cone and E* is the reduced modulus: 

  (4) 

where, E and υ are the Young’s modulus and Poisson’s ratio of the materials and s and i 

signify the specimen and the indentor respectively. 

Analytical solutions for the Berkovitch type indentor are not available. Murakami et al (8) 

carried out a finite element analysis of a Berkovitch indentor and showed: 

  (5) 
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Where α is the included face angle of the Berkovitch indentor (α = 65.3o). Larsson et al (9) 

found a similar relation by the same method: 

  (6) 

Both these relationships assume the residual impression has no effect on the unloading. This 

is generally not the case. The form of the unloading curve is dependent on the size of the 

residual impression. 

An alternative method for determining the modulus was first given by Doerner and Nix (3) 

using the relations of Sneddon (5). The stiffness of the contact at the point of unloading for 

any solid of revolution is given by: 

  (7) 

Using the initially linear part of the unloading curve, both the stiffness and the contact depth 

are determined and hence the reduced modulus calculated. Oliver and Pharr (4) obtain this 

stiffness by differentiating the power law fit (as described above) to perform a similar 

calculation. Both methods are reported to give close agreement with conventional testing 

methods for a wide range of materials. It is this last method which has been used to determine 

elastic reduced modulus in this study. 

Indentation Experiments 

Tape samples (with and without the magnetic layer) were mounted on glass slides and a 

series of micro-indentation experiments carried out at a range of loads and loading rates. The 

indentation device and tape specimen are maintained at a constant temperature and humidity 

throughout the test. Initial tests were performed at the highest loading rate to determine 

instantaneous response of the material. Subsequent tests were performed with hold periods (at 

constant load) and at slower rates. 

High Loading Rate Tests 

Figure 3 shows a series of load penetration plots recorded at different maximum loads. Figure 

4 shows SEM images of the residual impressions. 
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Figure 3. A series of load penetration plots for magnetic tape. Measurement made at high 

loading rate (0.142 mN/s). 

 

 

 

 

 

Figure 4. SEM images of residual impressions following Berkovitch micro-indentations. 

The modulus has been determined from these unloading curves (using the method of Oliver 

and Pharr). Figure 5 shows this data plotted against the maximum depth of penetration during 

the test. 
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Figure 5. The reduced modulus calculated from a series of indentations on magnetic tape. 

At deep penetrations the indentation of the tape is dominated by the properties of the 

substrate. As the depth of penetration is reduced the properties of the film become more 

important. It is usual to ensure that when performing indentations on a surface layer, the 

depth of the penetration should be no more than 10% of the layer thickness. For this 

relatively soft material this requires loading to less than 1 mN. At low loads the data is 

subject to scatter caused by surface roughness, tip geometry, and extraneous noise. To 

improve accuracy we extrapolate the curve in Figure 5 and estimate the layer reduced 

modulus to be between 7 and 8 GPa.  

The hardness of the magnetic layer, as defined by equation 1, has also been determined 

(again after the method of Oliver and Pharr). Figure 6 shows this hardness as a function of the 

depth of penetration; a layer hardness of 400 - 450 MPa is predicted. However, a large 

amount of scatter is apparent, probably caused by the anisotropy of the material. 
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Figure 6. The hardness calculated from a series of indentations on magnetic tape. 

Load Hold Tests 

At maximum depth we hold the load constant for a pre-set period of time. Creep effects are 

manifested as an increase in penetration under this fixed load. Figure 7 shows two such tests 

where the hold times are 1 second and 30 seconds. 

 

Figure 7. Two constant load hold tests on magnetic tape. 

Figure 8 replots the 30 second hold data showing the increase in penetration with time. Some 

results for brass (normally not subject to creep at room temperature) are also shown to 
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demonstrate the stability of the apparatus (measurements like these are susceptible to thermal 

drift). 

 

Figure 8. Increase in penetration during the hold part of a constant load hold test for both 

magnetic tape and brass. 

The magnetic layer material is clearly creeping under the applied load. Within a few seconds 

the bulk of the relaxation has occurred. However after this period, some steady state viscous 

flow is apparent. 

During the hold period, although the load is constant, the stress beneath the indentor is 

reducing as the indentation relaxes. In this test therefore both the stress and strain are varying 

(over the range 100<σ<400 MPa, 10-3 < < 101 sec) continually. 

Maxwell-Voigt and other types of visco-elastic/plastic deformation models become more 

difficult to implement under these conditions. Ion et al (10) give a detailed study of these 

flow properties for drawn and amorphous PET. In this study, given the complex geometrical 

non-linearities, we choose to investigate rate dependence of the P vs h compliance behaviour 

rather than the stress strain behaviour. We do this by the analysis of a series of constant 

loading rate tests. 

Constant Loading Rate Tests 

Figure 9 shows a series of indentation tests carried out at a range of constant loading rates. 

Clearly, when loading occurs at a lower rate, the depth of penetration is greater. The 

unloading curves are slightly different; creep is also occurring during the unloading. 
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Figure 9. A series of micro-indentation tests on the magnetic layer carried out at a range of 

loading rates. 

If the layer deforms in a linear visco-elastic or plastic manner when subjected to a constant 

stress, σ then the strain, ε, after a period of time, t is given by; 

  (8) 

where J is a creep compliance function (and is independent of stress). Plotting stress and 

strain data at constant time (isochrones) gives a series of straight line stress strain lines where 

the slope depends on the time period. Any non-linear polymer deformation behaviour would 

be indicated by deviation from the straight line. 

We follow a similar analysis here. The loading data from Figure 9 is replotted as isochrones 

in Figure 10. There is a scarcity of data, since the number points is the same as the number of 

loading rate tests performed. 
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Figure 10. The loading part of a series of constant loading rate micro-indentations on 

magnetic layer materials. Data plotted at constant time (isochrones). 

Typically power law curves of the form P=khn may be fitted to loading data. The constant k is 

a function of the material stiffness (for both the elastic and plastic deformation) and the 

geometry of the indentor. If the polymer is linear visco-elastic/plastic, then we would expect 

a series of curves where the stiffness k varies with time but the exponent n remains constant. 

Curve fitting to the data, shows that within the experimental scatter, this is the case; the 

exponent n varies between 1.6 - 1.9 with no apparent trend. No gross non-linearities are 

observed over this stress/strain rate range. 

Discussion 

In this work we have determined the reduced modulus of the magnetic using a standard 

indentation technique (Oliver and Pharr). Performing indentations at shallow penetrations has 

a number of difficulties (shape of the indentor tip, machine compliance, extraneous noise, 

thermal drift etc.). The extrapolation methods provides a simple method for estimating the 

layer properties avoiding some of these problems. 

The modulus of the substrate material, without the magnetic layer, was also estimated by the 

indentation method. A reduced modulus of between 3 and 4 GPa was determined. This value 

agrees qualitatively with measurements on PET by Ion (10) 2.4 - 3 GPa, Bushan (11) 2.7 

GPa, and Billmeyer (12) 3.6 - 5.6 GPa. Clearly PET comes in different forms (amorphous or 

drawn) so only qualitative agreement is expected. 

The magnetic layer is a polymer binder with a suspension of iron oxide particles. A rough 

estimate for the modulus of such a filled polymer may be obtained from the modulii of the 

constituent components and the volume fraction, Vf: 

  (9) 

where the subscripts p and m indicate the particle and matrix material. Performing this 

calculation for the magnetic tape layer (using appropriate values for the volume fraction and 
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component modulii) predicts a modulus 6 - 8 GPa. This estimate is consistent with that 

measured by micro-indentation. 

The magnetic layer is anisotropic; both the tape microstructure and the particles are aligned 

parallel to the surface. The indentation method will determine a modulus more closely linked 

to a direction normal to the surface (since the majority of the strains during indentation are in 

the normal direction). In tribological studies of surface damage and wear it is not 

unreasonable to use this modulus (i.e. as a resistance to penetration) but if it is bending or 

flexure of the tape which is of interest then it may not be wholly appropriate. 

The indentation method determines the reduced modulus (defined in equation 4). The 

modulus of the diamond indentor material is large compared with the polymer and so may be 

neglected. Clearly the reduced modulus incorporates Poisson’s ratio of the layer material. At 

present it is not possible to separate Poisson’s ratio and Young’s modulus by an indentation 

technique. This is a serious limitation which may only be overcome by assuming a value for 

Poisson’s ratio for the film material. 

This isochronal analysis of the compliance curves (figure 10) provides a simple method for 

displaying rate dependent properties. It overcomes the complexities of the stress/strain state 

during indentation. It is difficult to extract hardness and modulus from such data since both 

viscous elastic and plastic deformation occur during both loading and unloading. It is still 

difficult to fully classify the nature of the creep process but the isochronal method indicates 

that there are no major non-linearities. This type of presentation  is useful for the engineer. If 

the tribological process (e.g. tape/head contact or tape/roller contact) occurs over some 

particular duration we can use the isochrone appropriate at that duration to give load 

deflection response. 

Conclusions 

1. A micro-indentation method has been used to measure the properties of the magnetic 

layer on digital audio tapes. A series of indentations are recorded at reducing ultimate 

loads and an extrapolation technique used to predict layer properties (i.e. when the effect 

of the substrate on indentation is negligible). 

2. The hardness is deduced from the loading part of the curve (by subtracting the elastic 

deformation of the impression hinterland). For the layer H = 400-450 MPa. 

3. The reduced modulus is deduced from the unloading part of the curve (by determining 

the stiffness at the point of unloading). For the layer E* = 7-8 GPa and for the substrate 

E* = 3-4 GPa. 

4. Isochronal plotting of the P vs. h compliance data is a useful method for displaying rate 

dependence. Within the stress and strain rates tested no large non-linear behaviour was 

apparent. 
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