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The use of reflected Rayleigh waves to study rough contact 
interfaces 
Eng S Ooi and R S Dwyer-Joyce 
Leonardo Centre for Tribology and Surface Technology, Department of Mechanical Engineering,  
University of Sheffield, Sheffield, UK 
 
 
Abstract: Ultrasonic reflectometry is commonly used in the field of tribology. Bulk waves that travel 
through a component and are reflected from an interface can be used to measure parameters such as 
contact stress and lubricant film thickness. This paper presents the development of a novel ultrasonic 
technique using Rayleigh waves that propagate along the surface of a component. An analytical model 
is first proposed to explain the interaction of Rayleigh waves with a contact interface. When contact 
parameters change, so does the amplitude of the reflected Rayleigh wave. From the reflected waves, it 
is possible to simultaneously predict both normal and tangential interface stiffness. Experiments have 
been conducted to show how the reflected waves change as cyclic loading is applied and the 
roughness of the contact interface varied. Results have shown there is good agreement between 
experimental data and analytical predictions. Potential application of this study includes the remote 
monitoring of sealing components such as o-rings or radial lip seals.  
 
Keywords: Rayleigh waves, ultrasonic reflection, Hertzian contact, contact stiffness, rough surface 
contact 

1 Introduction 

One approach for the measurement of contact parameters is by recording the proportion of an 
ultrasonic pulse that is reflected from the interface. Several authors have used ultrasonic bulk waves 
in this way. Kendall & Tabor [1] used ultrasonic waves to study the real contact area between two 
bodies. Pialucha and Cawley [2] used ultrasound to detect and quantify the thickness of a thin layer 
sandwiched between two much thicker media. Contact stiffness measurements using both longitudinal 
and shear bulk waves were made in separate studies by Krolikowski and Szczepek [3] and Biwa and 
co-workers [4]. Ultrasound has also been shown to measure contacts and oil films in actual 
engineering components such as bearings [5], mechanical seals [6], railway contacts [7] and 
interference fits [8]. 

 
There are however, several limitations to the use of bulk (i.e. travelling through the material and 
usually normal to the contact interface) ultrasonic waves. If  the material in which the pulse is 
travelling is highly attenuative e.g. elastomeric seals and rubber gaskets, little or no reflection is 
obtained. Also, many tribological components have complex geometries that introduce multiple 
interfaces or discontinuities through which the pulse would have to pass before reaching the interface 
of interest. These intermediate interfaces cause unwanted reflections which reduce the overall energy 
content of the signal. Coupled with background noise, the signal strength can be severely attenuated. 

 
To overcome these issues, the use of Rayleigh waves to analyse tribological interfaces is proposed. 
One of the main advantages of using Rayleigh waves is that instead of travelling through the bulk of 
the material, they travel along the surface. When there is a change to the topography of the Rayleigh 
wave path, such as that caused by an interface, the waves will be scattered. This paper details the 
development of an analytical model that describes the interaction of Rayleigh waves with a contact 
interface. This model is then compared with experimental results where the reflections of a Rayleigh 
wave from a series of rough contact interfaces have been measured. 
 
A potential application of the work here is to apply ultrasonic Rayleigh waves in monitoring remote 
contacts that has a configuration that could be hard to reach using conventional ultrasonic waves but 
readily accessible using Rayleigh waves. One example of this is the sealing zone of a lip seal whereby 



the configuration involved makes it more practical to use Rayleigh waves instead of conventional 
bulk waves.  
 

2 Background 
 
A Rayleigh wave is a type of wave mode that propagates along the surface of a half space. It is a 
combination of both the longitudinal and transverse waves propagating simultaneously and decaying 
exponentially into the medium. Reflections are caused by sudden changes in the wave path. These can 
be caused by changes in the topography of the medium (e.g. a crack, a raised profile) or changes at the 
surface (e.g. a drop of liquid or a solid body coming into contact). Rayleigh wave reflection has been 
widely used in the area of flaw detection [9,10] for near surface defects and cracks.   
 
Reflections due to changes in the topography of the medium 

Early work by Viktorov [9] showed how Rayleigh waves are reflected at  the edge of a specimen with 
varying angles (Fig.1a). Graczykowski  [11]  developed finite element models to study how surface 
waves were reflected from three different geometries (Fig.1c,d,e). The results show that the maximum 
reflection coefficients in these cases were around the region of 0.2 – 0.25. These values were affected 
by the dimensions of the steps and grooves. The reflection from the edge of a quarter space (Fig.1b) 
by Gautesen [12], was studied numerically for both reflected and transmitted waves, the results of 
which are used later in the present study. 

 

 
 

Fig.1 Sources of Rayleigh wave reflection 

 
Reflections due to changes at the surface of the medium 

Reflections of Rayleigh waves also arise due to changes in the bordering medium such as a liquid or a 
body in contact with the surface. Work on reflected surface waves from a liquid loaded surface have 
been conducted by Newton et al [13] and McHale et al [14]. In their work, a strip of viscous fluid 
(Fig.1g) was introduced directly into the path of a travelling surface wave. Resonances were observed 
as the liquid spreads across the surface. Experiments conducted by Rudy [15] have proved the 
existence of reflected Rayleigh waves from a loaded surface by bouncing the signals off a piston ring. 
The waves were sent down the cylinder and echoes recorded from the piston ring to determine the 
location of the contact. Possibly the most common Rayleigh reflection phenomenon is that occurring 
at mechanical gratings (Fig.1f) which can be found in most surface acoustic wave (SAW) devices 
used in telecommunications. The reflection from mechanical gratings were studied using either the 
perturbation method or the variational approach [16].  

 
Plesski and Simonyan [17] developed an approach to study a contact modelled as a mass attached to 
the surface with springs.  An incident Rayleigh wave was assumed to excite the spring as it travels 



from along the positive x-axis. As the spring vibrates, some of the vibrations are transferred back to 
the base and returns to the source as reflected waves. The model was developed with the purpose of 
examining reflecting elements in SAW devices instead of a classic tribological interface. In this paper, 
a new model is proposed to explain the interaction of Rayleigh waves with a contact interface. 

3 Response of Rayleigh wave from an interface 

The material through which the Rayleigh wave travels is modelled as an elastic isotropic half-space. 
Fig.2 shows a cylindrical specimen pressed, with a normal load P, onto the half-space to create a line 
contact of length, ݈ and width 2a. The contact is modelled as a spring with both normal and tangential 
stiffness, denoted as ܭఙ and ܭఛ as shown.  
 

 

 

Fig.2 Model of the Contact Interface 

A Rayleigh wave is a combination of both a longitudinal component, UI  and a transverse component, 
WI. In Fig.2, the two components are shown separately. The displacement as a function of time, t and 
distance from the origin, x are given by [9]: 

ூܹ ൌ ݍܤ ቆͳ െ ʹ݇ଶ݇ଶ  ଶቇݏ cosሺ݇ݔ െ  ሻ (1)ݐ߱
 

ூܷ ൌ ݇ܤ ൬ͳ െ ݇ଶݏݍʹ  ଶ൰ݏ sinሺ݇ݔ െ  ሻ (2)ݐ߱

 

Where B is an amplitude coefficient, and Ȧ is the wave frequency. kr, kl, and kt are the wavenumbers 
of the Rayleigh, longitudinal, and transverse waves respectively, and: 

ݍ ൌ ට݇ଶ െ ݇ଶ 
ݏ ൌ ට݇ଶ െ ݇௧ଶ 

As both WI and UI travels along the positive x direction, they will eventually impinge on the interfacial 
springs. WI causes excitation of the spring in the y-direction while UI causes excitation of the spring in 
the x-direction. The development of the equations that follow will be broken down into two parts; 
displacements corresponding to these two axes. 

3.1 Displacements caused by incident wave components WI and UI 
Excitation of the spring by WI causes the spring to oscillate vertically (Fig.3a). The oscillating motion 
of the spring appears as a periodic load applied on to the surface of the elastic half space along a line. 
This generates a wave field consisting of bulk waves, transmitted Rayleigh waves and reflected 



Rayleigh waves in the half space. The wave field generated by the periodic force caused by the spring 
on the surface of the elastic half-space has been solved by Lamb [18]. Of interest in this study is the 
reflected Rayleigh wave. Expressions for vertical and horizontal displacements of a reflected Rayleigh 
wave due to WI are: 

 

ோܹଵ ൌ െ݅ ܩଵ݈ܨߜ ߰ 

 

(3) 

ܷோଵ ൌ െܨߜଵ݈ܩ ߮ 

 

(4) 

 

Where ܨߜଵ the periodic force due to vertical spring excitation, G is the shear modulus and ߰ǡ߮ are 
constants that are functions of the half-space Poisson’s ratio 

 

 

Fig.3 Reaction of the interface due to vertical & horizontal excitations 

In the same manner, the horizontal component of the incident Rayleigh wave, UI also generates 
reflected Rayleigh waves (Fig.3b), the expressions of which have also been derived by Lamb [18]. As 
before, the expressions for vertical and horizontal displacements are: 

ோܹଶ ൌ ܩଶ݈ܨߜ ߰ƍ 
 

(5) 

ܷோଶ ൌ െ݅ ܩଶ݈ܨߜ ߮ƍ 
 

(6) 

Where ܨߜଶ is the periodic force due to horizontal spring excitation and ߰ƍǡ ߮ƍ are constants that are 
functions of the half-space Poisson’s ratio. 

The constants ߰ǡ ߮ǡ ߰ƍand ߮ ƍ are related to Poissons ratio,ߥ where the exact formulation can be found 
in [18]. The range of values for these constants for most common materials have been calculated and 
are shown in Fig.4. It should be noted that ߰ ൌ ߮ƍ. 



 

Fig.4 Values of constants ߮ǡ߮ᇱǡ ߰ǡ and߰ᇱ variation with Poisson’s ratio, ߥ 

3.2 Deriving reflection coefficient 
 

The reflection coefficient in the x-direction, Rx is defined as the total reflected displacement in the x-
direction divided by the incident displacement in the x-direction and likewise Ry in the y-direction. 
Thus;  
 ܴ௫ ൌ ோܷଵ  ோܷଶூܷ ൌ െͳ݈ܩ ቈܨߜͳ߮ ƍூܷ߮ʹܨߜ݅   

(7) 

ܴ ൌ ோܹଵ  ோܹଶூܹ ൌ ͳ݈ܩ ቈെ݅ܨߜͳ߰ ƍூܹ߰ʹܨߜ  
 

 
(8) 

Equations (7) and (8) can be simplified by recognizing that the stiffness of an interface in the normal 
and tangential directions, Kı and KĲ respectively, are given by:  

ఙܭ ൌ ଵܹூܨߜ  (9) 

ఛܭ ൌ ଶூܷܨߜ  (10) 

Combining (9) and (10) with equations (7) and (8) gives: 

ܴ௫ ൌ െͳ݈ܩ ߮ ூܹூܷ ఙܭ  ݅߮ƍܭఛ൨ (11) 

 

ܴ ൌ ͳ݈ܩ െ݅߰ܭఙ  ߰ƍ ூܷூܹ  ఛ൨ (12)ܭ

 
The total reflection coefficient is then: 

ܴ ൌ ටܴʹݔ ܴʹݕ 
(13) 

  



3.3 Interface stiffness 
Fig.5 shows how normal stiffness, ܭఙ changes as the interface is normally loaded (the case for 
tangential stiffness, ܭఛ is analogous). Initially, at zero load the normal stiffness, ܭఙ – the gradient of 
the load-displacement curve is zero; this occurs at the origin. ܭఙ increases non linearly as load is 
applied. At an applied load of P, the equilibrium point is (y,P), as shown in Fig.5. When vertical 
components of the incident Rayleigh wave, WI impinges on the interface, it causes the spring to 
oscillate about this equilibrium. This results in a periodic change between a relaxation and a further 
compression of the spring as shown in Fig.5. In practice, WI is a very small value so it is reasonable to 
define the normal stiffness as: 

ఙܭ ൌ Gradientatሺݕǡ ܲሻ ൎ Gradientatሺݕ േ ூܹ ǡ ܲ േ ଵሻܨߜ ൌ ଵூܹܨߜ  

 

(14) 

 

Fig.5 Graphical representation of changes in normal stiffness 

The changes in tangential stiffness are analogous to the normal stiffness so: 
ఛܭ  ൎ ଶூܷܨߜ  

(15) 

 
For this problem the contact stiffness arises from two mechanisms [19], elastic deformation and 
interaction of surface asperities and bulk deformation of the body as a whole. In both cases these are 
elastic stiffness. The amplitude of the ultrasonic pulse is very small and so passes through the contact 
elastically. Whilst the global deformation of the contact during loading may occur with some plastic 
contact, the ultrasonic wave passage is an elastic process. The two stiffness components act in series, 
as shown in Fig.6 for normal stiffness; the tangential stiffness case is analogous. The total longitudinal 
and shear stiffness due to asperity and bulk deformation are then: 
 



ͳܭఙ ൌ ͳܭఙି  ͳܭఙି 
(16) ͳܭఛ ൌ ͳܭఛି  ͳܭఛି 
(17) 

 
Where Kı-a and Kı-b are the asperity and bulk stiffness components for normal stiffness. Likewise KĲ-a 
and KĲ-b are the asperity and bulk stiffness components for tangential stiffness. 
 

 
 

Fig.6 Multi-scale stiffness in a line contact 

 
Stiffness Due to Asperity Interactions  

For a line contact, the stiffness due to asperity interaction is derived from works by Lo [20] and 
Gelinck and Schipper [21]. The basis of their work assumes that the asperities lie along a profile that 
is a function of the x-axis due to the curvature involved. In general, the solution to the problem is 
difficult and requires involved algorithms (e.g. Gelinck and Schipper uses multigrid algorithms). 
 
However, the problem can be greatly simplified by assuming that the cylinder remains rigid when 
pressed onto the surface. This assumption is approximately true when the surfaces are rough as the 
asperities are considered to deform readily as opposed to the bulk of the cylinder. Doing so yields 
stiffness of the form (for a Gaussian distribution of asperities) 
 

ఙିܭ ൌ Ͷ͵ නߟଵȀଶߚƍܧ݈ ൦න ͵ʹ ሺݕ െ ݄ሻଵȀଶ e൬షమమమ൰ߪξʹߨ ∞ݕ݀

 ൪∞

ିஶ  ݔ݀

(18) 
 

 
Where Ș is the asperity density, ȕ is the radius of the asperity tip, h is the separation between the two 

surfaces, ı is the combined RMS roughness of the two surfaces (ߪ ൌ ඥߪଵଶ   ଶଶሻ and E’ is theߪ

combined youngs modulus ቀଵாƍ ൌ ଵିఔభమாభ  ଵିఔమమாమ ቁ .  ߥͳǡܧͳ and ߥʹǡ  are the Poissons ratio and elastic ʹܧ

modulus of the half space and cylinder respectively. The quantities Ș, ȕ and ı can be estimated from 
profilometer measurements of a particular surface while h can be obtained by satisfying the force 
balance equation [22] given by equation (19) as 
ǡ݈݈݀ܽܽݐܶ  ܲ ൌ න ǡݖሺ ஶݔሻ݀ݔ

ିஶ  
(19) 

 
Where p(z,x) is the distributed load at the contact interface given as [20,21] 
ǡݖሺ  ሻݔ ൌ ͺ͵ ଵȀଶනߚᇱܧߟ݈ ሺݖ െ ݄ሻଷȀଶ expሺି௭మଶఙమሻߪξʹߨ ஶݖ݀

  
(20) 
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We further assume that the tangential stiffness is proportional to the normal stiffness. This is 
inherently true for a single asperity contact as shown by Mindlin [23]. In general, for rough surfaces 
in contact the stiffness ratio has the form: 
ఙିܭఛିܭ  ൌ ሺͳܣ െ ʹሻሺߥ െ ሻߥ  

(21) 

 
Where A is a constant that has differing values depending on the distribution and shape of asperity 
peaks assumed. A summary for the values of A is given by Gonzalez et al [24] where, for a Poissons 
ratio Ȟ = 0.3, 0.7<A<2.  
 
Stiffness Due to Bulk Deformation 

The case of a smooth cylinder pressed onto a rigid flat has been analytically studied by Puttock and 
Thwaite  [25]. Their results for the surface deformation can be extended to give an expression for the 
normal stiffness: 
 
ఙିܭ  ൌ ଶ݈݈݊ܧଵܧߨ ൬െ ଶయగாభாమ൫ாభజమమାாమజభమିாభିாమ൯൰ ሺܧଵ߭ଶଶ  ଶܧ ଵ߭ଶ െ ଵܧ െ  ଶሻܧ
 

 
 
 
(22) 

 
For identical materials in contact equation (22) reduces to: 
ఙିܭ  ൌ ሺͳʹܧߨ݈ െ ଶሻlnቂߥ యగாሺଵିఔమሻቃ 
 

(23) 

Although some studies on the tangential loading applied onto a line contact have been done, 
mathematical difficulties prevent the evaluation of a closed form solution. Experimental results of 
stiffness ratios [3,4,24] strongly suggest that the normal and tangential stiffness have an almost 
constant proportionality between them. Therefore for simplicity, we assume that the stiffness ratio due 
to bulk deformation is a constant and follows the definition given by equation (21), and so: 
ఛିܭ  ൌ ሺͳܣ െ ʹሻሺߥ െ ሻߥ  ఙିܭ

 

(24) 

 
4 Analytical prediction of Rayleigh wave response from an interface 

Table 1 Properties of the contact interface 

Parameter Value 
Young’s Modulus, E 210 GPa 
Poissons Ratio, 0.3 ࣇ 
length of the contact, l 46 mm 
Specimen diameter, D  10 mm 
Shear modulus, G 80.7 GPa 
Density, ȡ 7850 kg/m3 
Rayleigh wave speed, cR 3000 m/s 
Asperity density, Ș 109 m-2 
Radius of asperity tip, ȕ 20 µm 



To illustrate the interplay between the contact parameters, calculations were performed on a sample 
case of a steel-steel contact. Calculations were performed for A=0.7 with varying combined 
roughness, ı. Table 1 gives the values of the other required parameters used in the calculations. 

Given the sample parameters, h was calculated by satisfying the force balance equation at the contact 

[22] and was approximated as  ݄ ൎ െͲǤ͵ߪǤଽହ lnሺିߪଵǤଽܲଵǤଵ ൈ ͳͲିଵହሻ  ௫మ  .  

The results for stiffness  ܭఙ and ܭఛ are plotted in Fig.8. As ܭఙand ܭఛ are in direct proportion, the 
curves are identical but with a different y-axis scale. The ordinate is expressed both as the applied 
contact load, Fig. 8a and the resulting Hertzian contact width and maximum pressure, Fig. 8b. As the 
contact load is increased, the interface becomes stiffer (i.e. the rough contact becomes more complete 
and an increase in load causes little approach of the surfaces). Likewise, a reduction in the roughness 
increases the reflection coefficient. 

 

Fig. 7 Analytical plots of Kı and KĲ as they vary with (a) contact load, P and (b) contact width 2a. 

 

Fig.8 Analytical plots of Reflection Coefficient as it varies with (a) contact load, P and (b) contact 
width 2a. 



Fig.8 shows the reflection coefficient obtained by applying equations (11), (12), and (13) to the data 
of Fig. 7. The stiffer the contact the greater the reflection of the Rayleigh wave. Also shown is the 
upper limit of reflection coefficient where the interface is assumed to be perfectly smooth. This gives 
an indication of the maximum value of reflection coefficient that can be obtained from a given case. 

Combining (11), (12) and (13) with (21) and (24), the following expressions are obtained 

 

ܴ ൌ ܫܷܫඩอቆܹ߮ܩ݈ʹߪܭ  ݅߮Ԣሺͳ െ ʹሺܣሻߥ െ ሻߥ ቇʹ  ቆെ݅߰߰Ԣܷܫሺͳ െ ʹሺܫܹܣሻߥ െ ሻߥ ቇʹอ (25) 

ܴ ൌ ʹሺܫඩอቆܹ߮ܩ݈ʹ߬ܭ െ ሺͳܫሻܷߥ െ ܣሻߥ  ݅߮Ԣቇʹ  ቆെ݅߰ሺʹ െ ሻሺͳߥ െ ܣሻߥ ߰Ԣܷܫܹܫ ቇʹอ 
(26) 

  

Thus reflection coefficient is directly proportional to both Kj and Kk. (25) and (26) are plotted in Fig. 
9 and it can be seen that plots of R against Kj and Kk appear as straight lines through the origin. The 
plotted data points represent the endpoints (P=2400N) for the line that is traced by each data set for 
different ߪ.  

 

Fig. 9 Relationship between R and ܭఙ and ܭఛ 



To demonstrate the effect of A, both the upper and lower limit for A has been plotted. Based on (24), 
increasing A for a Poisson’s ratio of 0.3 has the effect of decreasing the relative difference between ܭఙand ܭఛ i.e. the stiffness ratio approaches unity. This is reflected in Fig. 9 where the lines of ܭఙ and ܭఛ approaches each other as A is increased. For intermediate values of A, the plots for ܭఙand ܭఛ will 
fall in their respective shaded regions.  

Thus, if the stiffness ratio for a contact interface is known; this allows for a convenient way of 
predicting contact stiffness by virtue of reflection coefficient from Rayleigh waves alone, without 
having to first characterise the nature of the surfaces in contact.  

 
5 Experimental apparatus and instrumentation 

5.1 Model Contact and Loading Apparatus 

Fig.10 Physical layout of the experiment 

The experimental contact (shown in Fig.10) consisted of a steel rod (46 mm contact length and 10 mm 
in diameter) pressed against a steel block in a servo-hydraulic tension-compression machine operating 
in load control. This allows a consistent loading-unloading cycle to be applied on to the specimen. 
The maximum load applied was 2.4 kN which corresponded to a maximum contact pressure of 621 
MPa and a contact width of 107 µm. 
 

Table 2 Roughness parameters 

 j (microns) Ra (microns) 
Specimen 1 0.071 0.05 
Specimen 2 0.112 0.084 
Specimen 3 0.130 0.094 
Specimen 4 0.177 0.138 
Specimen 5 1.047 0.834 

Steel Block (Ground) 1.179 0.950 
Steel Block (Polished) 0.094 0.071 

 

The experiments were conducted with roughness variation on both specimens. The roughness of the 
cylindrical specimens was controlled by wet-sanding on a lathe with different grades of abrasive 
paper.  The steel block was ground using a surface grinder to both smooth and flatten the surface. 
Experiments were first conducted on the ground surface. This was followed by experiments done on 
the same block but with a polished surface to simulate a contact with lower roughness. The roughness 
parameters were measured using a profilometer and are shown in Table 2. 



5.2 Ultrasonic Instrumentation 
 
To generate the Rayleigh wave, the wedge method was used whereby the transducer is coupled to the 
sample using a Perspex wedge as shown in Fig.10.  The angle, ߠଵat which the Rayleigh wave was 
generated is called the Rayleigh angle. It is dependent on the longitudinal wave speeds in both the 
wedge and the steel block. For a Perspex – steel combination, this is approximately 65o.  Coupling the 
wedge with the block is achieved using a thin layer of viscous oil. The wedge was fitted with a 
longitudinal wave transducer (Panametrics Model NDT A403S) with a centre frequency of 2.25 MHz 
which operates in pulse-echo mode.  The transducer itself generates regular longitudinal waves, as the 
longitudinal waves hit the interface at the Rayleigh angle, the longitudinal waves are transformed into 
Rayleigh waves which then travel along the surface of the steel block. 

An integrated ultrasonic data acquisition system was used both to drive the transducer and to record 
the incoming reflections. Fig.11 shows the main features of the ultrasonic system used in the 
experiment. Transducer pulsing parameters and amplification of the received signals were controlled 
through an Ultrasonic Pulser Receiver (UPR) card using a program written in the LabVIEW 
environment. The integrated system was controlled by a PC fitted with a high speed 8 channel data 
acquisition card (DAQ) which captures and stores the required data for further post processing. 

 
 

 
Fig.11 Schematic of ultrasonic system 

The transducer performed in pulse-echo mode whereby signals were transmitted and received using 
the same transducer. The received signals from the transducer (i.e. the reflected Rayleigh waves) were 
digitized and displayed in real time on a virtual oscilloscope. The UPR was set to pulse at 2.2 MHz 
centre frequency at 100 volts. As the load was applied, the ultrasonic system continuously recorded 
the reflected pulse at a rate of 160 pulses per second. This provides a full picture of how the amplitude 
of the reflected pulse evolves during the loading cycle. 
 

5.3 Signal Processing 
 

The first step was to record a reference time domain signal. This was done by sending a wave across 
the surface of the steel block and recording all nominal reflections i.e. reflections due to the input 
pulse and those from the boundaries of the steel block, as shown in Fig.12a. The nominal reflections 
A, B and C occur at the refraction interface and substrate edges as indicated in the insert diagram. The 
specimens were then loaded and the signal recorded. As shown in Fig.12b, the appearance of a 
reflected pulse, D can be observed.  
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Fig.12 Identifying reflected pulse in the time domain (a) without specimen and (b) with specimen 

 
Pulse D was extracted from the waveform. To obtain the reflection coefficient this pulse must be 
divided by the amplitude of the incident pulse. The amplitudes for the incident pulse could either be 
measured directly through the use of an identical transducer or by estimating it using reflections from 
a known geometry. In this study, the latter option has been used. Fig.13a shows how reflected and 
transmitted Rayleigh waves are produced as a result of an incident Rayleigh wave striking the edge of 
a quarter space, a geometry that is identical to that creating pulse B in Fig.12.  Through numerical 
methods, the reflection and transmission coefficients for a Rayleigh wave striking the edge of a 
quarter space was calculated by Gautesen [12], the results of which are summarized in Fig.13b. 

 

 
 

Fig.13 Rayleigh wave reflection from an elastic quarter space [12] 

 
By using the Poissons ratio of steel given in Table 1, it can be determined from Fig.13b that the edge 
reflects 32% of the total energy of the incident wave. In this way, the amplitude of the incident pulse 
can be calculated directly from the reflected pulse at edge B (Fig.12) scaled by 32%. 

 



A collection of reflected pulses (i.e. pulse D), taken at four discrete load steps of 500 N up to 2000 N 
is shown in the time domain in Fig.14 after a bandpass filter has been applied to remove noise. 
 

 
 

Fig.14 Time domain pulses reflected from the contact at various applied loads. 

To get a measure of the changes in amplitude, the time domain data was converted into the frequency 
domain by using the Fast Fourier Transform (FFT) algorithm. The FFT was performed for each 
reflected pulse and the results are shown in Fig.15. These pulses were then divided by the incident 
pulse to yield reflection coefficient (Fig.16) at a bandwidth of -2.5 dB or 75% of the peak amplitude 
of the reference pulse which resulted in a frequency range between 1.9 MHz to 2.4 MHz. Outside this 
bandwidth, the data become increasingly noisy and was thus discarded. In the actual test, the time 
domain waveform was captured at a rate of 160 times per second to obtain a continuous change in 
reflected waves as load was increased.  
 

 
Fig.15 Frequency domain reflected from the contact at various applied loads (FFT of data in Fig. 15). 



The reflection coefficient can easily be converted to ܭఙand ܭఛ using the gradients of the lines in Fig. 
9 provided A is known. To illustrate, the conversion to stiffness in Fig.16 was done for A=0.7. As 
would be expected, the measured reflection coefficient and hence stiffness components ܭఙ and ܭఛ are 
largely unaffected by the frequency. The slight waviness is attributed to electrical and background 
noise from the measuring apparatus.  

 

 

Fig.16 Reflection coefficient and stiffness components at -2.5dB bandwidth. 

 

6 Results and discussions 
 
A series of three controlled load cycles were applied. The specimens were not unloaded to zero load, 
but rather, care was taken to ensure that there was a small residual load (≈ 5 N) to ensure that the 
surfaces continue to stay in contact. This prevented relative movement of the surfaces, allowing the 
load to always be applied on the same asperity contacts at each subsequent cycle. 
 
Fig.17a shows the reflection recorded during these three loading cycles for a rough and a smooth 
contact pair plotted against the equivalent Hertzian maximum pressure. The rough and smooth contact 
pairs were generated by pressing specimen 1 against the ground and polished block respectively.  
 
Hysteresis is apparent in the first loading cycle for both cases. This is caused by plastic crushing of 
the asperities where the local contact pressure is much higher than the nominal contact pressure. The 
difference here is that the hysteresis loop for rougher contact is larger, which is expected as rougher 
surfaces undergo more plastic deformation when pressed together.  
 
 



 
Fig.17 (a) Reflection cofficient recorded during three loading cycles for two different roughness 

contact pairs. (b) With analytical curves overlaid 

 
For the smooth case subsequent loading cycles are largely elastic as shakedown has occurred. In 
contrast, subsequent cycles for the rougher contact exhibit a repeating hysteresis loop. This suggests a 
“repeatable irreversibility” caused by an increase in roughness of the interface. Similar phenomenon 
were observed in early work on ultrasonic bulk waves [24,26,27] where this hysteresis was attributed 
to irreversible adhesion at the interface.   
 
Also shown in Fig.17b are the analytical predictions calculated for the limits of A=0.7 to A=2 
calculated for both contact pairs. The radius of the asperity tip, ȕ and asperity density, Ș required in 
generating the analytical curves were obtained from the measured profiles of the contact. For the case 
where ı is 0.118 µm, ȕ and Ș were estimated to be 47µm and  7×1010 m-2 respectively.  When ı is 
1.181 µm, ȕ and Ș takes the value of 10.34 µm and 0.65 × 109 m-2. 

The agreement between predicted and analytical results is well within an order of magnitude of each 
other, with a better match obtained at the limits of A=0.7. The equivalent stiffness corresponding to 
A=0.7 are shown on a separate axis.  

The better match at A=0.7 suggests that the contact interface has a low stiffness ratio. This agrees with 
findings by Nagy [28] where it was  shown that an interface formed between two unbonded surfaces 
(which are the interfaces formed in this study) have, in general low stiffness ratios.   



One source of error arises from the fact that in calculating the asperity stiffness, the analytical model 
assumes elastic deformation of the asperities. It is clear from the observed hysteresis loops that plastic 
deformation of the asperities takes places, causing deviations from the analytical model. The plastic 
deformation is less pronounced in the case of a smooth contact, hence the match is better in this case 
(at A=0.7).  
 
Relaxation of full elastic assumption may allow the prediction of plastic effects, but at the cost of 
greater complexity in the analytical model. This can be done by using plastic contact models and 
incorporating them into the definition of asperity stiffness in section 3.3. An example of a line contact 
model that considers  plasticity has been developed by Behesti and Khonsari [22]. 
 
The analytical model derived in the work here describes the response of Rayleigh waves as it interacts 
with a contact interface and is dependent on proper prediction of contact stiffness. For a smooth 
surface, the stiffness models can be readily determined from contact mechanics since they represent 
idealized cases. However, stiffness models for cases where the surfaces are rough are in general 
statistical in nature and are never exact since any two surfaces can never truly be identical on the 
micro-scale. This is compounded by the fact that the idealizations made in some of the models are far 
removed from the actual cases but are nonetheless still widely used due to their simplistic nature. 
Thus the accuracy of the model can only be as accurate as the stiffness models themselves.  
 

 

Fig.18 Reflection coeficient recorded during the third loading cycle for a range of different roughness 
pairs. 

Fig.18 shows results for the third loading cycle for a range of rough contacts, achieved by using 
different combinations of the specimens in Table 2 pressed against the polished steel block. Again, the 
rougher specimens exhibit more hysteresis. In some cases, where the specimens were not perfectly 
straight along their axis, the contact area at low loads decreased due to the added curvature. This 
resulted in a lower reflection coefficient while flattening of the specimens takes place, as shown in 
Fig.18.  
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Although the study here was focused on a line contact, the analytical model was developed such that 
contact of different configurations can be studied; as long as the contact width is several orders of 
magnitudes smaller than the wavelength of the Rayleigh waves to maintain the assumption that the 
contact can be viewed as a discrete interface (c.f. section 3.1). For example, the case for a flat contact 
can be studied if expressions for flat contacts were utilized in the calculation of the stiffnesses.   

 
7 Summary and Conclusions 

 
An analytical model that predicts the interaction of Rayleigh waves with a line contact has been 
developed. The model describes the interface as a series of springs with the stiffness controlling the 
amount of wave being reflected from the interface. It is shown from the analytical model that it is 
possible to simultaneously predict both normal and tangential stiffness provided that the stiffness ratio 
of the contact is known.  
 
Experiments were conducted with variable roughness components undergoing repeated normal 
loading. Hysteresis loops were observed with the size of the loops increasing as roughness increases. 
It is observed that increase in roughness reduces the reflection coefficient of the Rayleigh waves. 
Overall, the analytical model agreed well with experimental results at both smooth and rough contact 
interfaces.  
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