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Abstract

We study a simple Markov chain, the switch chain,

on the set of all perfect matchings in a bipartite

graph. This Markov chain was proposed by Diaco-

nis, Graham and Holmes as a possible approach to

a sampling problem arising in Statistics. They con-

sidered several classes of graphs, and conjectured

that the switch chain would mix rapidly for graphs

in these classes. Here we settle their conjecture al-

most completely. We ask: for which graph classes is

the Markov chain ergodic and for which is it rapidly

mixing? We provide a precise answer to the ergodic-

ity question and close bounds on the mixing ques-

tion. We show for the first time that the mixing

time of the switch chain is polynomial in the class

of monotone graphs. This class was identified by Di-

aconis, Graham and Holmes as being of particular

interest in the statistical setting.

∗The work described here was partially supported by EP-

SRC grants “Computational Counting” (refs. EP/I011935/1 and

EP/I012087/1) and “Randomized algorithms for computer net-

works” (ref. EP/M004953/1)

1 Introduction

Counting perfect matchings in a bipartite graph, or

computing the permanent of 0-1 matrix, has been one

of the most central problems in Computer Science.

This, and the computationally equivalent problem of

sampling matchings uniformly at random, also has

practical applications, in Statistics and other areas.

In [8], Diaconis, Graham and Holmes considered

the applications of the 0-1 permanent to Statistics,

in particular where the 0-1 matrix has recognisable

structure, which they called truncated or interval-

restricted.

The truncated 0-1 matrices are those for which the

columns can be permuted to give the consecutive 1’s

property on rows. That is, no two 1’s in any row

are separated by one or more 0’s. Diaconis, Graham

and Holmes [8] considered “one-sided” truncation,

where the consecutive 1’s appear at the left of each

row, and “two-sided” truncation, where the consecu-

tive 1’s can appear anywhere in a row. For two-sided

truncation, they considered two special cases. In the

first, both the rows and columns can be permuted so

that they have the consecutive 1’s property. In the

second, the rows and columns can be permuted so

that the consecutive 1’s have a “staircase” presenta-

tion, the monotone case, which is of particular inter-

est in statistical applications [10].

Diaconis, Graham and Holmes [8] proposed a

Markov chain for sampling perfect matchings in a bi-

partite graph, which we call the switch chain. They



showed ergodicity of the chain for the truncated ma-

trices considered in [8], and conjectured that it would

converge rapidly. Computing the 0-1 permanent is

a well-solved problem from a theoretical viewpoint.

It is #P-complete to compute exactly [30], but there

is a polynomial time approximation algorithm [16].

However, the switch chain gives a simpler and more

practical algorithm than that of [16], making it wor-

thy of consideration. Thus Diaconis, Graham and

Holmes’s conjecture was subsequently studied in the

PhD theses of Matthews [22] and Blumberg [4], and

we will discuss their results.

A 0-1 matrix is equivalently the biadjacency matrix

of a bipartite graph, and we will study the graphs

corresponding to the matrices considered by Diaco-

nis, Graham and Holmes [8]. We identify the largest

hereditary graph class in which the switch chain is

ergodic: chordal bipartite graphs. We show that the

graphs considered in [8] form an ascending sequence

within this class. We examine the mixing time be-

haviour of the switch chain for graphs from these

classes, extending work of [8], [4] and [22].

In particular, we show for the first time that the mix-

ing time of the switch chain is polynomial on mono-

tone graphs. This is proved by a novel application

of a simple combinatorial lemma, the solution to the

so-called mountain climbing problem [13, 18, 24, 28,

31]. Though this lemma is well known, there appears

to be no worst-case analysis of this problem in the

literature. We provide such an analysis in the full

paper [9].

After this paper was written, we learned that Bhatna-

gar, Randall, Vazirani and Vigoda [3] had used a sim-

ilar approach for a different problem. They analysed

the Jerrum-Sinclair chain [15] for generating random

bichromatic matchings in graphs that have edges par-

titioned into two colour classes.

For further information on Markov chains, see [1, 14,

20]. For the graph-theoretic background, see [6, 12,

27, 31].

1.1 Notation and definitions

Let N = {1, 2, . . .} denote the natural numbers. If

n ∈ N, let [n] = {1, 2, . . . , n} and, if n1, n2 ∈ N,

let [n1, n2] = {n1, n1+1, . . . , n2}. We will also use

the notation [n]′ = {1′, 2′, . . . , n′} and [n1, n2]
′ =

{n′
1, (n1 + 1)′, . . . , n′

2}. Here the prime serves only

to distinguish i from i′. Ordering and arithmetic for

[n]′ elements follows that for [n]. Thus, for example,

1′ < 2′ and 1′ + 2′ = 3′.

A graph G = (V,E) is bipartite if its vertex set

V = [m] ∪ [n]′ and there is no (undirected) edge

(v, w) ∈ E such that v, w ∈ [m] or v, w ∈ [n]′. Thus

V comprises two independent sets [m] and [n]′. Bi-

partite graphs G1 = ([m]∪[n]′, E1) and G2 = ([m]∪
[n]′, E2) are isomorphic if there are permutations σ
of [m] and τ of [n]′ such that (j, k′) ∈ E1 if and only

if (σj , τk′) ∈ E2. If G = ([m] ∪ [n]′, E) , we con-

sider [m] and [n]′ to have the usual linear ordering,

and we will abuse notation by denoting these ordered

sets simply by [m] and [n]′. Then A(G) denotes the

m × n biadjacency matrix of G, with rows indexed

by [m] and columns by [n]′, such that A(i, j′) = 1 if

(i, j′) ∈ E, and A(i, j′) = 0 otherwise. The neigh-

bourhood in G of a vertex v ∈ [m] ∪ [n]′ will be

denoted by N (v). To avoid trivialities, we will as-

sume that G has no isolated vertices, unless explic-

itly stated otherwise.

A matching in a bipartite graph G = ([m] ∪ [n]′, E)
is a set of independent edges, that is, no two edges in

the set share an endpoint. A perfect matching is a set

of edges such that every vertex of G lies in exactly

one edge. For a bipartite graph G = ([m] ∪ [n]′, E)
this requires m = n, and n independent edges in

E. In particular, G can have no isolated vertices.

We will call a bipartite graph with m = n balanced.

Equivalently, a perfect matching may be viewed as n
independent 1’s in the n×n 0-1 matrix A(G). Thus

a perfect matching M has edge set {(i, π′
i) : i ∈ [n]},

where π is a permutation of [n]. Equivalently, M has

edge set {(σj , j
′) : j ∈ [n]}, where σ is a permu-

tation of [n]. Note that σ = π−1 as elements of the

symmetric group Sn. We may identify the match-

ing M with the permutations π and σ. An example

is shown in Fig. 1 below.

The total number of perfect matchings in a bipartite

graph G is called the permanent of the matrix A(G).
We will denote this by per(A) when A = A(G).

1.2 Computing the permanent

Valiant [30] showed that computing the permanent

exactly is #P-complete for a general 0-1 matrix. No
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Fig. 1: Bipartite graph with perfect matching σ = (3241), π = σ−1 = (4213).

algorithm running in sub-exponential time is known

for the exact evaluation of the permanent of 0-1 ma-

trices.

Jerrum, Sinclair and Vigoda [16] showed that the 0-

1 permanent has a fully polynomial randomised ap-

proximation scheme (FPRAS), using an algorithm

for randomly sampling perfect matchings. This im-

proved a Markov chain algorithm of Jerrum and Sin-

clair [15], which was not guaranteed to have polyno-

mial time convergence for all bipartite graphs. The

algorithm of [16] is simple, but involves polyno-

mially many repetitions of a polynomial-length se-

quence of related Markov chains. The best bound

known for the running time of this algorithm is

O(n7 log4 n), due to Bezáková, Štefankovič, Vazi-

rani and Vigoda [2].

Jerrum, Valiant and Vazirani [17] showed that sam-

pling almost uniformly at random and approximate

counting have equivalent computational complex-

ity for many combinatorial problems, including the

permanent. Technically, the problem must be self-

reducible.

From the viewpoint of computational complexity,

these results entirely settle the question of sampling

and counting perfect matchings in bipartite graphs.

However, simpler methods have been proposed for

special cases of this problem, and here we consider

one such proposal.

1.3 The switch chain

Diaconis, Graham and Holmes [8] proposed the fol-

lowing Markov chain for sampling perfect matchings

from a balanced bipartite graph G = ([n] ∪ [n]′, E)
almost uniformly at random, which we will call the

switch chain. A transition of the chain will be called

a switch. Diaconis, Graham and Holmes [8] called

this a “transposition”. The switch chain generalises

the transposition chain for generating random per-

mutations.

Switch chain

Let the perfect matching Mt at time t be the per-

mutation π of [n].

(1) Set t ← 0, and let M0 be any perfect matching

of G.

(2) Choose i, j ∈ [n], uniformly at random, so

(i, π′
i), (j, π

′
j) ∈Mt.

(3) If i 6= j and (i, π′
j), (j, π

′
i) are both in E,

set Mt+1 ← Mt \
{(i, π′

i), (j, π
′
j)} ∪ {(i, π

′
j), (j, π

′
i)}.

(4) Otherwise, set Mt+1 ←Mt.

(5) Set t← t+1. If t < tmax, repeat from step (2).

Otherwise, stop.

Note that the switch chain is invariant under isomor-

phisms of G, so properties of the chain can be inves-

tigated from the viewpoint of graph theory. An ex-

ample of a switch is shown in Fig. 2, with the edges

(4, 1′), (2, 2′) being switched for (4, 2′), (2, 1′).

2 Graph classes

2.1 Chordal bipartite graphs

The first question we might ask about the switch

chain is: for which class of graphs is it ergodic? We

wish to have a graph-theoretic answer to this ques-

tion, so that we can recognise membership of graphs

in the class. Therefore, we restrict attention to hered-

itary graph classes, that is, those for which all (ver-

tex) induced subgraphs of every graph in the class

are also in the class. Hereditary classes are central in

modern graph theory, and are most usually charac-

terised by describing a minimal set of “excluded sub-

graphs”, induced subgraphs which cannot be present.



2

1′ 4 3′

1

4′32′

Mt : 2

1′ 4 3′

1

4′32′

Mt+1 :

Fig. 2: A step of the switch chain

For example, perfect graphs are those which exclude

all odd-length cycles (odd holes) of length at least

5, or their complements (odd antiholes) [7]. Thus,

in particular, the class of perfect graphs contains all

bipartite graphs, which exclude all odd holes and an-

tiholes. All the graphs we consider here are bipartite,

and hence perfect.

In our application, there is a further technical reason

for preferring to work with hereditary graph classes.

We then have self-reducibility for most problems in

#P, including the permanent. This property implies

the equivalence between almost uniform sampling

and approximate counting referred to in Section 1.2.

See [17] for details.

The switch chain is ergodic on a graph G = (V,E) if

the state space of the chain, the set of perfect match-

ings, is connected by switches. We extend this to

include graphs with no perfect matching, where the

state space is empty. Then we will say that a graph

G is hereditarily ergodic if, for every U ⊆ V , the

induced subgraph G[U ] is ergodic. A class of graphs

will be called hereditarily ergodic if every graph in

the class is hereditarily ergodic.

Diaconis, Graham and Holmes [8] observed that the

switch chain is not ergodic for all bipartite graphs.

They gave the example shown in Fig. 3: This graph

has two perfect matchings, but the switch chain can-

not move between them. This is because the graph

is a chordless 6-cycle. In fact, this property charac-

terises the class of graphs for which the switch chain

is not ergodic, as we now show.

We say a graph G is chordal bipartite if it has no

chordless cycle of length other than four. The class

of chordal bipartite graphs is clearly hereditary. Note

that the definition of chordal bipartite graphs is an

excluded subgraph characterisation. To show that the

switch chain is ergodic for this class, we require the

following “excluded submatrix” characterisation.

A (Gamma) in a 0-1 matrix is an induced subma-

trix of the form :
[

1 1

1 0

]

. A matrix is called -free

if it has no such induced submatrix. Lubiw [21] gave

the following characterisation.

Theorem 1 (Lubiw). A bipartite graph is chordal

bipartite if and only if it is isomorphic to a graph

G = ([m] ∪ [n]′, E) such that A(G) is -free. This

property can be used to recognise chordal bipartite

graphs in O(|E| log |E|) time.

This was improved to O(|E|) time by Uehara [29].

Then, for the switch chain, we have

Lemma 2. Chordal bipartite graphs are the largest

hereditary class of bipartite graphs in which the

switch chain is ergodic. In this class, the diameter

of the chain is at most n, for G = ([n] ∪ [n]′, E).

Proof. Clearly any graph with an induced cycle of

length greater than 4 cannot be in the class, so

we need only show ergodicity for chordal bipartite

graphs. The chain is aperiodic, since there is a loop

probability at least 1/n at each step, from choosing

i = j in step (2). Thus we must show that the chain is

irreducible. From Theorem 1, we may suppose that

A(G) is a -free presentation.

Let G = (Ω, E) be the transition graph of the switch

chain, with Ω the set of perfect matchings in G, and

E the set of transitions. We must show that G is con-

nected, and has diameter at most n. Let π and σ be

any two perfect matchings in G, and let dist(π, σ) =
|{i : π′

i 6= σ′
i}|. Note that dist(π, σ) ≤ n, and

dist(π, σ) = 0 implies π = σ.

Let k be the smallest index such that π′
k 6= σ′

k and,

without loss of generality, suppose π′
k > σ′

k. Then

there exists ℓ > k such that π′
ℓ = σ′

k, and hence

π′
ℓ 6= σ′

ℓ. Then we have (k, σ′
k), (k, π

′
k), (ℓ, σ

′
k) ∈
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Fig. 3: A non-ergodic graph

E, ℓ > k and π′
k > σ′

k. The -free property

of A(G) then implies (ℓ, π′
k) ∈ E. Thus we have

(k, π′
k), (ℓ, π

′
ℓ) ∈ π and (k, π′

ℓ), (ℓ, π
′
k) ∈ E. There-

fore τ ∈ Ω and (π, τ) ∈ E , where τ = π \
{(k, π′

k), (ℓ, π
′
ℓ)} ∪ {(k, π

′
ℓ), (ℓ, π

′
k)}.

Note that τ ′i = π′
i for i 6= k, ℓ. However, π′

k 6= σ′
k,

but τ ′k = π′
ℓ = σ′

k. Also π′
ℓ 6= σ′

ℓ, but τ ′ℓ = π′
k = σ′

ℓ

if π′
k = σ′

ℓ. Thus dist(π, σ) − 2 ≤ dist(τ, σ) ≤
dist(π, σ) − 1. Hence there is a path of at most

n edges in G between any pair of matchings π, σ.

Therefore the diameter of G is at most n.

Computing the permanent exactly is #P-complete for

the class of chordal bipartite graphs [23], though

this result does not extend even to chordal bipartite

graphs of bounded degree. The complexity of exact

computation of the permanent is unknown for all the

subclasses of chordal bipartite graphs considered be-

low, with the exception of chain graphs, which we

discuss in Section 2.5.

2.2 Convex graphs

The largest class of graphs considered by Diaconis,

Graham and Holmes [8] were those with “two-sided

restrictions”. These are bipartite graphs G for which

A(G) has the consecutive 1’s property. These have

been called convex graphs in the graph theory liter-

ature. They were introduced by Glover [11], who

gave a simple greedy algorithm for finding a maxi-

mum matching in such a graph. The consecutive 1’s

property can be recognised in O(|E|) time by, for

example, the well-known algorithm of Booth and

Lueker [5].

A bipartite graph is convex if it is isomorphic to a

graph G = ([m] ∪ [n]′, E) such that N (i) is an in-

terval [α′
i, β

′
i ] ⊆ [n]′ for all i ∈ [m]. Note that this

property remains true under an arbitrary permutation

of [m]. Then, it is easy to show that

Lemma 3. Convex graphs are a proper hereditary

subclass of chordal bipartite graphs.

2.3 Biconvex graphs

Diaconis, Graham and Holmes [8] considered the

following subclass of convex graphs. A graph G =
([m] ∪ [n]′, E) is biconvex if it is convex and N (j′)
is an interval [αj′ , βj′ ] ⊆ [n] for all j′ ∈ [n]′. Thus

A(G) has the consecutive 1’s property for both rows

and columns.

Lemma 4. Biconvex graphs are a proper hereditary

subclass of convex graphs.

Thus we know that the switch chain converges even-

tually on biconvex graphs, but how quickly is this

guaranteed to occur? Unfortunately, the convergence

may be exponentially slow. Both Matthews [22] and

Blumberg [4] gave the following examples Gk =
(

[n] ∪ [n]′,Ek

)

, where n = 2k − 1 :

(i, j′) ∈ Ek ⇐⇒











1 ≤ i < k, k′ ≤ j′ ≤ (k + i)′;

i = k, 1′ ≤ j′ ≤ n′;

k < i ≤ n, (i− k)′ ≤ j′ ≤ k′.

We omit the proof of slow mixing here. A sketch

is given in the full paper [9], but see [4] or [22] for

details.

2.4 Monotone graphs

Diaconis, Graham and Holmes [8] considered a

structured subclass of biconvex graphs, which they

called monotone, and showed that the switch chain

is ergodic on monotone graphs. However, note that

Lemma 2 gives a stronger result for the larger class

of chordal bipartite graphs. Diaconis, Graham and

Holmes [8] conjectured that the switch chain mixes



rapidly in the class MONOTONE. An example is

shown in Fig. 4.

A bipartite graph G = ([m] ∪ [n]′, E) will be called

monotone if it is isomorphic to a convex graph such

that α′
i ≤ α′

j and β′
i ≤ β′

j for all i, j ∈ [m] with

i < j. Thus A(G) has a “staircase” presentation,

and we assume that G is labelled accordingly. First,

we can show that, if G is row-monotone, it is also

column-monotone.

Lemma 5. A monotone graph is biconvex, and αi′ ≤
αj′ , βi′ ≤ βj′ if i′, j′ ∈ [n]′ and i′ < j′.

Next we give a “forbidden submatrix” characterisa-

tion of monotone graphs.

Lemma 6. A bipartite graph is monotone if and only

if it is isomorphic to a graph G such that A(G) has

none of the following as an induced 2×2 submatrix:

(Gamma) :

[

1 1

1 0

]

, (backwards L) :

[

0 1

1 1

]

,

(slash) :

[

0 1

1 0

]

.

We note that Le [19] has independently given a

somewhat tighter result. Using Lemma 7 below, [19,

Cor. 1] implies that that only the submatrices and

need be forbidden to obtain the class of monotone

graphs.

A bipartite permutation graph is a permutation

graph which is also bipartite. A graph G = (V,E)
is a permutation graph if there are permutations π, σ
of V so that (πi, πj) ∈ E if and only if πi < πj
and σi > σj . This can be given a intersection rep-

resentation, where π, σ are points on two parallels

and, for all v ∈ V , v ∈ π is connected by a line to

v ∈ σ . Then (v, w) ∈ E if and only if corresponding

lines (v, v) and (w,w) cross. Spinrad, Brandstädt

and Stewart [26] studied this class of graphs, and

gave O(|E|) time algorithms for recognising mem-

bership in the class, and for constructing the inter-

section representation. Our reason for introducing

this class of graphs is that the bipartite permutation

graphs are precisely the monotone graphs.

Lemma 7. A graph is monotone if and only if it is a

bipartite permutation graph.

Proof. The condition of Lemma 6 is equivalent to

the following. If (i, k′), (j, ℓ′) ∈ E with i < j and

k′ > ℓ′, then (i, ℓ′), (j, k′) ∈ E. The conclusion now

follows from the characterisation of bipartite permu-

tation graphs given in [26], in particular Definition 3

and Theorem 1.

2.5 Chain graphs

Diaconis, Graham and Holmes called the simplest

class of graphs they considered “one-sided restric-

tion” graphs. These are usually called chain graphs

in the graph theory literature [32], and form a proper

subclass of monotone graphs. An example is shown

in Fig. 5.

A chain graph is isomorphic to a graph G = ([m] ∪
[n]′, E) where N (i) = [ai]

′ for all i ∈ [m], with

a1 ≤ a2 ≤ · · · ≤ am. Hence chain graphs are

a proper hereditary subclass of monotone graphs,

given by taking α′
i = 1′, β′

i = a′i, for all i ∈ [n].
It is then easy to show that N (j′) = [bj ,m] for all

j′ ∈ [n]′, with b1 ≥ b2 ≥ · · · ≥ bn. Diaconis, Gra-

ham and Holmes [8] observed that there is a “clas-

sical” explicit formula for the permanent of a chain

graph G. Thus the permanent can can be evaluated

exactly in FP for chain graphs, in fact in O(n) time.

This is easily proved, but we omit the details here.

Regarding the switch chain, Matthews [22] showed,

using a coupling argument, that the mixing time for

chain graphs is bounded by O(n3 log n).

3 Analysis of the switch chain

In Section 2 we have shown that the hereditary

graph classes considered by Diaconis, Graham and

Holmes [8] form an ascending sequence:

CHAIN ⊂ MONOTONE ⊂ BICONVEX

⊂ CONVEX ⊂ CHORDAL BIPARTITE.

We know from Lemma 2 that the switch chain is er-

godic for bipartite graphs in all these classes. We

have observed that the switch chain may have ex-

ponential mixing time in the class BICONVEX, and

the switch chain has mixing time O(n3 log n) in the

class CHAIN [22]. Therefore we need only determine

whether or not the class MONOTONE has polynomial

mixing time. The remainder of this section will be

devoted to showing that this class does indeed have
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Fig. 4: A monotone graph
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Fig. 5: A chain graph

polynomial mixing time.

For an ergodic Markov chain on state space Ω, tran-

sition probabilities P : Ω2 → [0, 1] and stationary

distribution π, the variation distance at time t, start-

ing in state x ∈ Ω, is ∆x(t) = maxA⊂Ω |P
t(x,A)−

π(A)|. The mixing time, Tmix(ε) = maxx∈Ωmin{t :
∆x(t) ≤ ε}, is the first time that the variation

distance falls below ε, maximised over the starting

state x. It is usual to measure this as a function of

problem size n, suppressing the dependence on ε,

which may be set to some conventional value, usu-

ally ε = 1/e.

3.1 Canonical paths and flows

Suppose the problem size is n. The method requires

constructing paths of transitions of the chain X =
Z1 → Z2 → · · · → Zℓ = Y , between each pair

of states X and Y in the state space Ω, so that the

length of each path is at most polynomial in n. This

is often easy to achieve, but to obtain a good upper

bound on mixing time it is essential that the paths are

“spread out” over the state space, and do not overload

any particular transition. The degree of success in

achieving this end is measured by the congestion of

the set of paths. Denote the (canonical) path from X
to Y by γXY . Then the congestion ̺ of the chosen

paths is

̺ = max
(Z,Z†)

∑

X,Y :γXY ∋(Z,Z†) π(X)π(Y ) |γXY |

π(Z)P(Z,Z†)
,

(1)

where π is the stationary distribution of the chain,

|γXY | is the length of the path γXY , the maximisa-

tion is over all transitions Z → Z†, i.e., all pairs

Z† 6= Z with P(Z,Z†) > 0, and the sum is over

all paths that use the transition Z → Z†. A precise

relationship between congestion and mixing time is

given in [14, Cor. 5.9], based on Sinclair [25].

Lemma 8. Let Tmix(ε) be the mixing time of a sym-

metric Markov chainM. If ̺ is the congestion with

respect to any set of canonical paths, then Tmix(ε) ≤
2̺(ln |Ω|+ 2 ln ε−1).

Thus a bound on mixing time follows from a bound

on congestion. When π is uniform on Ω, this can

be done by ensuring that the number of canonical

paths through any transition is bounded by a “small”

multiple of |Ω|. Thus a strategy for obtaining a

bound on congestion is the following. Fix a transi-

tion Z → Z†. For every canonical path γXY from X
to Y that uses transition (Z,Z†), specify an encod-

ing W ∈ Ω, such that, given W and g additional bits

of information, we can identify X and Y uniquely.

Then, if |γXY | ≤ ℓ, for all X,Y , and P(Z,Z†) ≥ µ,

for all Z,Z†, we have ρ ≤ 2gℓ/µ.



3.2 Construction of canonical paths

Our goal is to construct canonical paths between ar-

bitrary pairs X , Y of perfect matchings in G. In

general, (V,X ∪ Y ) is a subgraph of G, composed

of alternating cycles C1 ∪ · · · ∪ Cs = X ⊕ Y , and

isolated edges X ∩ Y . These cycles are ordered de-

terministically in some way, for example, according

to the smallest unprimed vertex in each cycle. Then

we switch each of the cycles in order, using the pro-

cedure we described below. The isolated edges are

left untouched. Thus, it is sufficient to construct the

canonical path for a single alternating cycle.

In fact, we may specialise the canonical path

construction even further. Since MONOTONE

is a hereditary class, if H is any alternat-

ing cycle in G, it is a Hamilton cycle in a

smaller monotone graph G[V (H)]. Thus we

assume that G[V (H)] = G in the remainder

of this section, and let H be the (Hamilton)

cycle with vertices (u1, v
′
1, u2, v

′
2, . . . , un, v

′
n).

So our initial and final matchings are

X =
{

(u1, v
′
1), (u2, v

′
2), . . . , (un, v

′
n)
}

and

Y =
{

(u2, v
′
1), (u3, v

′
2), . . . , (u1, v

′
n)
}

where we

choose u1 = n as the initial vertex of the cycle.

With each pair (u, v′) ∈ [n] × [n]′, we associate a

point p = (v, n − u + 1) in R
2. In particular, the

points {pi = (vi, n− ui +1) : i ∈ [n]} represent the

edges in X , and {qi = (vi, n− ui+1 + 1) : i ∈ [n]}
represent those in Y , interpreting un+1 as u1. This

mapping assigns Cartesian coordinates to the entries

of A(G) such that the x coordinate increases with

increasing column number, and the y-coordinate de-

creases with increasing row number. Denote the x-

and y-coordinates of point p ∈ R
2 by x(p) and y(p),

so p = (x(p), y(p)).

Let P = {p1, p2, . . . , pn} ∪ {q1, q2, . . . , qn} ⊂ [n]2.

The alternating (Hamilton) cycle X ∪Y corresponds

to the cyclic sequence (p1, q1, p2, q2, . . . , pn, qn).
Join adjacent points in this sequence by line seg-

ments, omitting (qn, p1), to yield a continuous

path Π from p1 to qn. This path consists of alternat-

ing horizontal and vertical segments. By the choice

u1 = n for the initial vertex, we have y(p1) =
y(qn) = 1, i.e., that the path begins and ends at the

lowest point, in the final row of the matrix. The path

reaches the highest point at x(qk) = x(pk+1) = n,

in the first row of the matrix.

The following lemma, inspired by the “mountain

climbing problem” (see, e.g. [28]) is proved in the

full version of this paper [9].

Lemma 9. Suppose Π is as above. There are contin-

uous functions α, β : [0, 1] → Π satisfying α(0) =
p1, α(1) = qk, β(0) = qn, β(1) = pk+1, and

y(α(t)) = y(β(t)) for all t ∈ [0, 1]. Moreover the

set of events T =
{

t ∈ [0, 1] : α(t) ∈ P or β(t) ∈
P
}

has cardinality at most n2.

The trajectories of α(t) and β(t) do not generally

move uniformly along Π It may be necessary for ei-

ther or both of α(t) and β(t) to retreat along Π in

order to make progress later.

We regard the points points P , and the path Π, as be-

ing contained in the board [n]2, on which we move

n tokens. Movements of the tokens correspond to

switches on the path from X to Y . The tokens are

initially on p1, p2, . . . , pn, representing the match-

ing X . We move these n tokens to q1, q2, . . . , qn,

representing Y , in a manner consistent with switches

in the graph. At each step, we relocate two tokens.

These two tokens are the endpoints of the diagonal

of some axis-aligned rectangle, say R. We switch

these tokens to the endpoints of the opposite diago-

nal of R. For this to be a valid switch in the graph,

the new locations must correspond to 1’s in the ma-

trix A(G). Ensuring that this at every step requires

the tokens to be moved in a particular order.

As t increases from from 0 to 1, the foci α(t) and

β(t) move along Π. We move tokens in the neigh-

bourhood of the foci according to certain rules. (See

Fig. 6 for an example.) If we remove α(t) and

β(t) from Π, we separate it into three connected

pieces. Denote the points in P lying in the middle

piece by PU = PU (t) and the remaining points by

PL = PL(t). Note that PL(t) ∪ PU (t) = P , except

at events t, when α(t) ∈ P or β(t) ∈ P . We en-

sure that tokens in PU are in their original locations

(i.e., at points of the form pi), while those in PL are

in their final locations (i.e., at points of the form qi).
When t = 1, Pu = P , and all tokens are at their final

location.

The arrangement of tokens on the board at time t
(viewed as a subset of [n]2) will be called the con-



figuration, and denoted σ = σ(t). Since σ should

correspond to a perfect matching in G, we insist that

it contains one point from every row, x ∈ [n], and

column, y ∈ [n], of the board. The basic underlying

strategy is to keep the tokens on the points P as far

as possible. If this can done effectively, we can con-

struct an encoding of the current state (as described

in Section 3.1), by forming a perfect matching W
from the points of P that are not in the current con-

figuration σ.

As the foci move, there are time periods (open t-
intervals) when both α(t) and β(t) are on (open)

vertical segments. During these periods y(α(t)) and

y(β(t)) are either both increasing or both decreas-

ing. Call these v-periods. They are separated by

h-periods, during which one of α(t) or β(t) is sta-

tionary and the other moves horizontally. During v-

periods, σ(t) is constant and well defined. We will

not examine configurations during h-periods, so the

definition there is unimportant. During a v-period,

α(t), β(t) /∈ P , so PL(t)∪PU (t) = P , and all points

of P are assigned to PL(t) or PU (t). So assume that

α(t) and β(t) are both on (open) vertical segments.

For convenience we use a local labelling around α(t)
and β(t). Let a1 and a2 be the lower and upper

ends of the line segment containing α(t). Continue

the labelling . . . , a0, a1, a2, a3, . . . along Π as far as

neeeded. This is a local labelling of some subse-

quence of p1, q1, . . . , pn, qn. Similarly, we label the

points around β(t). So b1 and b2 are the lower and

upper ends of the line segment containing β(t).

If σ ⊂ [n]2 is a configuration of tokens, a hole-pair

is a pair H of adjacent points H = {pi, qi} or H =
{qi, pi+1} of P such that σ ∩ H = ∅. As the foci

move, we maintain the following Invariant I:

I1 {a1, a2} is a hole-pair.

I2 If x(a1) < x(b1) then {b2, b3} is a hole-pair;

otherwise {b0, b1} is a hole-pair.

I3 The are no hole-pairs beyond these two.

A number of consequences follow from I1–I3:

(i) σ(t) is completely determined by α(t) and β(t),
(ii) |σ ∩P | = n− 1, (iii) σ ∩PL ⊆ {q1, q2, . . . , qn},
and (iv) σ ∩ PU ⊆ {p1, p2, . . . , pn}. (Working

around Π from a hole-pair, successive points in P
must be alternately in and out of σ, demonstrating (i).

The other conclusions follow from this argument.)

Invariant I may fail after a token-switch, but when

this happens it will be reinstated at the following

switch. There may be a single token (and excep-

tionally three) lying outside P (i.e., |σ \ P | = 1 or

|σ\P | = 3). Such tokens are called dislocations, and

denoted by d (or d′ or d′′). See Fig. 6 for an example.

Initially σ = {p1, . . . , pn} so Invariant I is not sat-

isfied. A similar remark applies to the final configu-

ration σ = {q1, . . . , qn}. We will see how to finesse

this issue later. Let us assume that Invariant I is satis-

fied, and that t is in a v-period, so that α(t) and β(t)
move upwards on vertical line segments (a1, a2) and

(b1, b2). The situation when α(t) and β(t) move

downwards can be handled by symmetry. Depend-

ing on the ordering of y(a2) and y(b2) one of two

events occurs first: either y(α(t)) = y(a2) (an α-

event) or y(β(t)) = y(b2) (a β-event). We consider

the situation just before and just after the event, and

what action must be taken to maintain the invariant.

The proof now proceeds by case analysis. There are

eight cases I–IV and I*–IV*, and these are exhaus-

tive. First we split on whether x(a1) < x(b1) (Cases

I and II) or x(a1) > x(b1) (Cases III and IV). Then

we split on whether y(a2) < y(b2) (Cases I and III)

or y(a2) > y(b2) (Cases II and IV). Finally we split

on whether α(t) and β(t) have the same horizontal

relationship after the event (unstarred cases) or op-

posite (starred cases). For space reasons we will con-

sider only Case I. For the remaining cases see the full

paper [9].

Case I. This case is x(a1) < x(b1), y(a2) < y(b2)
and x(a3) < x(b1), see Fig. 6. In this figure, the

dotted-and-dashed line is y = y(α(t)) (= y(β(t))),
the current y-coordinate of the foci. Points with to-

kens are grey and points without tokens are white.

The configuration in the left diagram is changed to

that in the right. The current location of the disloca-

tion is d. Note that d is always the intersection of the

vertical line through a1 and a2, and either the hori-

zontal line through b0 and b1, or through b2 and b3,

since the board contains a token on every horizontal

and vertical line.

We switch the tokens at a3 and d. This means mov-

ing the tokens to the endpoints of the opposite di-

agonal of an axis-aligned rectangle with diagonal

(a3, d). In this case, the tokens move to a2 and a new
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Fig. 6: Case I: x(a1) < x(b1), y(a2) < y(b2) and x(a3) < x(b1)

dislocation d′. We must check that d′ corresponds to

a 1 in A(G). Here use the fact that G is monotone.

We see that d′ is above a3 and left of b2. (Note that

the position of a4 is purely diagrammatic, and does

not imply this.) Since a3 and b2 correspond to 1’s in

the matrix, so does d′. It is now easy to check that

I1–I3 have been preserved.

We noted that the initial and final configurations do

not satisfy the invariant. So, to start the procedure,

we create one horizontal and one vertical hole-pair.

We do this by adding three “virtual points” p′1, pn+1

and qn+1. Suppose the coordinates of p1 are (h, 1).
Delete p1 and add p′1 = (h, 0), pn+1 = (n + 1, 1)
and qn+1 = (n + 1, 0). In G, this corresponds to

adding new vertices n+1 and (n+1)′ and new edges

(n+1, h′), (n, (n+1)′) and (n+1, (n+1)′), together

with any others needed to preserve monotonicity. We

add a token to qn+1, leaving the existing tokens in

place. The token at p1 now becomes dislocation d.

Place α and β just below d and pn+1. The invariant

is satisfied, and we can now start the canonical path

construction as described earlier. A similar construc-

tion can be used to finish the path.

3.3 Encoding and congestion

In Lemma 9, reverse the role of α and β, so that

α(0) = qn, α(1) = pk+1, β(0) = p1 and

β(1) = qk. Place the n tokens initially on the points

{q1, . . . , qn}, and denote the configuration at time t
by σ′(t). Since the trajectories of α(t) and β(t) are

oblivious of the tokens, PL = PL(t) and PU =
PU (t) are unchanged. According to the invariant, the

configuration σ′ satisfies σ′ ∩ PU ⊆ {q1, . . . , qn},
σ′ ∩ PL ⊆ {p1, . . . , pn} and |σ′ ∩ P | = n − 1. At

any legal time t, then
∣

∣(σ(t)∪ σ′(t))∩P
∣

∣ = 2n− 2.

Consider a canonical path X = Z0 → · · · →
Zℓ = Y constructed as in Section 3.2. Some of

cases involve two switches. Then we call the con-

figuration between the two switches (and the cor-

responding perfect matching Zi) transitory. Non-

transitory configurations are of the form σ(t) for

some t, and these configurations satisfy Invariant I.

If Zi is not transitory, consider a time t at which con-

figuration σ(t) corresponds to Zi. Then σ′(t) is a

near complement to σ(t) with respect to P , and its

corresponding perfect matching Z ′
i is a near com-

plement to Zi with respect to X ∪ Y . Specifically,

since
∣

∣(σ(t) ∪ σ′(t)) ∩ P
∣

∣ = 2n − 2, we have
∣

∣(Zi ∪ Z ′
i) ∩ (X ∪ Y )

∣

∣ = 2n− 2.

If (Z,Z†) is a transition of the switch chain, we wish

to provide each canonical path through (Z,Z†) with

a unique encoding. In fact, our encoding will be

an element of Ω × [4n2]. Suppose the transition is

(Zi, Zi+1) on a canonical path from X to Y . We can

suppose that C = X ∪ Y is a single cycle. At least

one of Zi and Zi+1 is not transitory, say, Zi. Our

encoding will be the Z ′
i above, with some additional

data. Since C ′ = Zi ∪ Z ′
i, we provide the identity of

the edges in C ′ \ C: there are at most 2n2 possibili-

ties. Now we must add two edges so that the result is

a cycle, but there are only two ways this can be done.

Finally, we need to signal Z ′
i corresponds to Zi and

not Zi+1: a further two possibilities. This gives us

our encoding within the set Ω× [8n2].

We have all the quantities needed for the calcu-

lation of the congestion ̺. From the definition

of the switch chain, P(Z,Z†) = 2n−2. From

Lemma 9, the maximum length of a canonical path

is n2. Substituting these values into (1) yields

̺ ≤ |Ω|−1(n2/2)(8n2) |Ω|n2 = 4n6. Then, from



Lemma 8, noting that the state space Ω has cardinal-

ity at most n!, we obtain the bound on mixing time.

Theorem 10. The switch Markov chain has mixing

time τ(ε) < 8n6(n lnn + 2 ln ε−1) = O(n7 log n)
for any graph G = ([n]∪[n]′, E) in the class MONO-

TONE.

We note that the algorithm of [2] has running time

O(n7 log4 n), but with no bound given on the im-

plied constant. It may be possible to improve our

analysis, but it is highly unlikely that we could

match the O(n2 log n) bound conjectured by Diaco-

nis, Graham and Holmes [8].
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Lectures in Mathematics, Birkhäuser, Basel,
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