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Genetic factors influencing the risk of multiple myeloma
bone disease
DC Johnson1, N Weinhold2,3, J Mitchell4, B Chen5, OW Stephens2, A Försti5,6, J Nickel3, M Kaiser1, WA Gregory7, D Cairns7, GH Jackson8,
P Hoffmann9,10, MM Noethen9,11, J Hillengass3, U Bertsch3, B Barlogie2, FE Davis2, K Hemminki5,6, H Goldschmidt3,12, RS Houlston1,4 and
GJ Morgan2

A major complication of multiple myeloma (MM) is the development of osteolytic lesions, fractures and bone pain. To identify
genetic variants influencing the development of MM bone disease (MBD), we analyzed MM patients of European ancestry (totaling
3774), which had been radiologically surveyed for MBD. Each patient had been genotyped for ~ 6 00 000 single-nucleotide
polymorphisms with genotypes for six million common variants imputed using 1000 Genomes Project and UK10K as reference.
We identified a locus at 8q24.12 for MBD (rs4407910, OPG/TNFRSF11B, odds ratio = 1.38, P= 4.09 × 10–9) and a promising association
at 19q13.43 (rs74676832, odds ratio = 1.97, P= 9.33 × 10–7). Our findings demonstrate that germline variation influences MBD and
highlights the importance of RANK/RANKL/OPG pathway in MBD development. These findings will contribute to the development
of future strategies for prevention of MBD in the early precancerous phases of MM.
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INTRODUCTION
Multiple myeloma (MM) is a B-cell malignancy characterized by
the expansion of clonal plasma cells in the bone marrow.1,2

The disease is typified by varying numbers of osteolytic lesions
that are the result of reduced osteoblastic and increased
osteoclastic activity.3,4 The presence of such bone lesions is a
major criterion used to distinguish MM that requires treatment
from precursor entities such as monoclonal gammopathy of
undetermined significance and smoldering myeloma, which can
be managed expectantly,5 as such, it is important to understand
factors impacting on the development of MM bone disease (MBD).
Although most patients develop osteoblastic lesions, a subset is
unaffected by MBD, the reasons for which are not understood.
Understanding the genetic mechanisms that are responsible for
these differences in MBD is a pressing clinical issue, which has
important implications for the development of novel treatments
and in determining which patients might benefit from alternate
bone therapies. In this respect, it has been shown in the setting of
osteoporosis that heritable factors account for 50–85% of the
variation in bone mineral density (BMD).6,7 As the interaction
of bone-forming cells with MM cells is central to the development
of an osteolytic lesion and MM clonal growth, we hypothesized
that germline variation could also contribute to the development
of MBD. We have recently conducted genome-wide association
studies (GWAS) of MM searching for susceptibility alleles.8–10

Linking these genetic data to the extent of MDB at baseline has
allowed us to search for genetic variants influencing MBD risk.

METHODS
Patients
We studied four independent cohorts of MM patients that had been the
subject of previous GWAS8–11 (Supplementary Figure 1): (i) My9 comprising
1205 MM cases from the UK Medical Research Council Myeloma-IX trial12

(ISRCTN68454111); (ii) My11 comprising 768 MM cases from the UK
Medical Research Council Myeloma-IX trial8 (ISRCTN49407852); (iii) HdB,
comprising 1182 MM patients recruited by the German-speaking Myeloma
Multicentre Group (GMMG), coordinated by the University Clinic,
Heidelberg9 (ISRCTN644552890, ISRCTN05745813); (iv) ArK, comprising
619 newly diagnosed MM patients treated at the UAMS Myeloma Institute,
Little Rock, AR, USA11 (NCT00580372, NCT00081939, NCT00572169,
NCT00734877). The clinical characteristics and demographics of the
patients in each of the four patient cohorts are summarized in Table 1.
There was a higher proportion of patients with WHO performance stage
⩾ 3 MM in My9 and My11, reflecting in part the increased age of patients in
the non-intensive arms of these trials. The study was approved by the
respective institutional ethical review boards: MREC 02/8/95 (My9); MREC
17/09/09 (My11); 229/2003, S-337/2009, AFmu-119/2010 (HdB) and all
participants provided written informed consent.

Radiological assessment of bone lesions
MBD was detected using axial survey in My9 and My11, axial skeletal
survey (2001–2010) and whole body computed tomography (2011
onwards) in HdB and combined skeletal survey and skeletal computed
tomography in ArK. The frequency of MBD was marginally higher in
the HdB cohort (P=0.01). Owing to the differences in sensitivity of the
radiological methods used to detect MBD, patients were classified as either
affected (MBD) or unaffected (no MBD). Age was not significantly
associated with MBD in any of the four cohorts (that is, P40.05).
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Tumor karyotyping
Conventional cytogenetics of tumors was conducted using standard
karotyping methodologies, and standard criteria for the definition of a clone
were applied.13 Fluorescent in situ hybridization and ploidy classification of
My9 and My11 samples were conducted using the methods described by
Chiecchio et al.14 Fluorescent in situ hybridization analysis and ploidy
classification of HdB samples were performed as previously described.15 The
XL IGH Break Apart probe (MetaSystems, Altlussheim, Germany) was used to
detect immunoglobulin H translocations in HdB samples.

Genotyping and quality control
All cases were genotyped using Illumina Human OmniExpress arrays
adhering to the manufacturer's protocols (Illumina, San Diego, CA, USA).
Standard quality control was performed on all scans, excluding individuals
with low call rate (o90%) and extremely high or low heterozygosity
(Po1.0 × 10− 4), as well as all individuals shown to be of non-European
ancestry (using the HapMap version 2 CEU, JPT/CHB and YRI populations as
a reference; Supplementary Figure 2). A summary of the number
of genotyped single-nucleotide polymorphisms (SNPs) and the number
of SNPs passing quality controls is shown in Supplementary Figure 1.

Imputation
Genotypes for common variants across the genome were imputed using
data from 1000 Genomes Project (phase 1 integrated release 3, March

2012) and UK10K as reference in conjunction with IMPUTE2 v2.1.116 after
pre-phasing with SHAPEIT software;17 poorly imputed SNPs defined by an
information measure o0.90 were excluded. All genomic locations are
given in National Center for Biotechnology Information Build 37/UCSC
hg19 coordinates. All SNPs having a minor allele frequencyo1% were
excluded.

Statistical analysis
We compared the relationship between genotype and presence or
absence of MBD by logistic regression including covariates found in
univariate analysis to influence MBD. We adjusted for the method of
radiological assessment in each cohort and used eigenvalues in the
analysis of the HdB series, to adjust for population substructure. P-values
presented correspond to the significance of a test difference among all
three of the genotype groups (common allele homozygote, heterozygote
and rare allele homozygote). We confined our analysis to SNPs with a
minor allele frequency41% because of extreme value of the test statistics.
Overall statistical significance tests for each SNP were performed
by combining the results for each cohort by a fixed-effects meta-analysis.
All statistical tests were two-sided. Inflation of the test statistics, λ, was
estimated by dividing the 45th percentile of the test statistic by 0.357–the
45th percentile for a χ2 distribution on 1 degree of freedom. Between-
study heterogeneity was quantified using the I2 statistic. Associations were
regarded as statistically significant at a P-value ⩽ 5.0 × 10–8 (that is,
genome-wide significance). All statistical analyses were performed using
PLINK v1.0718 and R (v3.1.3) software.19

Functional prediction
To explore the epigenetic profile of genomic location associated with MBD,
we used ENCODE histone modification data and HaploReg and
RegulomeDB20,21 to examine whether any of the SNPs or their proxies
(that is, r240.8 in the 1000 Genomes European reference panel) annotate
transcription factor binding or enhancer elements. We assessed sequence
conservation using Genomic Evolutionary Rate Profiling scores.22

RESULTS
Relationship between genotype and bone lesions
After quality control measures were applied, genotype data on
55 31 610 SNPs was available for 3774 MM cases with MBD data.
Quantile–Quantile plots of test statistics of the relationship
between SNP genotype and MBD for each of the four cohorts is
shown in Supplementary Figure 3; inflation factors λ= 1.002–1.01,
λ= 1.0008 for the meta-analysis (Supplementary Figure 4).
Nine SNPs showed an association with MBD and reached

genome-wide significance (Figures 1 and 2, Supplementary
Table 1). All nine SNPs were located in the same region at
8q24.12 and were in strong linkage disequilibrium (LD). The
strongest association at 8q24.12 was provided by the common
SNP rs4407910 (risk allele frequency = 0.50, odds ratio = 1.38, 95%
confidence interval = 1.24–1.54, P= 4.02 × 10− 9). The association
was consistent across each of the four patient cohorts (Figure 3
and there was no significant between-study heterogeneity
(Phet = 0.44, I2 = 0%). An increased prevalence of MBD has been
observed in male patients and hyperdiploid MM.23,24 Stratifying
data by sex or ploidy did not provide evidence for a differential
effect of rs4407910 genotypes on the risk of MBD (Supplementary
Figures 5 and 6). Variation at 8q24.12 has been previously
associated with BMD and osteoporosis, but not as strongly with
risk of fracture.25–28 Meta-analysis of My9 and My11 data showed
no evidence that rs4407910 genotype influenced the risk of
vertebral body fracture (P= 0.28).
The MBD risk SNP rs4407910 localizes 19Kb 3’ to the gene

encoding TNFRSF11B (tumor necrosis factor receptor superfamily,
member 11b; alias osteoprotegerin; OPG). The genomic region
contains multiple enhancer markers from several tissue types
including bone marrow cells (Supplementary Table 2 and
Supplementary Figure 7). In lymphoblast and other tissues,
rs4355801, which is in perfect LD with rs4407910 (r2 = 1.0,

Table 1. Clinical characteristics and demographics of patients

My9 My11 HdB ArK

Number of cases 1205 768 1182 619
Median age at
MM diagnosis

64 66 57 59

Gender
Male 718 (59.6%) 446 (58.1%) 699 (59.1%) 389 (62.8%)
Female 487 (40.4%) 322 (41.9%) 483 (40.9%) 230 (37.2%)

ISS
I 236 (20.8%) 181 (24.9%) 208 (44.2%) 293 (47.3%)
II 457 (40.3%) 290 (39.8%) 160 (34.0%) 182 (29.4%)
III 440 (38.8%) 257 (35.3%) 103 (21.9%) 144 (23.3%)
NA 72 40 711 0

WHO performance stage
0 299 (25.0%) 265 (35.1%) 181 (48.1%) NA
1 549 (45.9%) 319 (42.3%) 161 (42.8%) NA
2 224 (18.7%) 130 (17.2%) 28 (7.4%) NA
⩾ 3 125 (10.4%) 40 (5.3%) 6 (1.6%) NA
NA 8 14 806 NA

Bone disease
Yes 875 (72.6%) 554 (72.1%) 912 (77.2%) 457 (73.8%)
No 330 (27.4%) 214 (27.9%) 270 (22.8%) 162 (26.2%)

Vertebral fractures
Yes 372 (41.3%) 222 (41.6%) NA NA
No 528 (58.7%) 312 (58.4%) NA NA
NA 305 234 NA NA

Heavy chain paraprotein
IgG 629 (62.2%) 403 (56.1%) 333 (58.7%) 353 (57.1%)
IgA 224 (22.1%) 195 (27.2%) 128 (22.6%) 140 (22.7%)
IgD 22 (2.2%) 13 (1.8%) 4 (0.7%) 4 (0.6%)
LCO 130 (12.8%) 103 (14.3%) 94 (16.6%) 111 (18.1%)
No
paraprotein

7 (0.7%) 4 (0.6%) 8 (1.4%) 10 (1.6%)

NA 193 50 615 1

Light chain paraprotein
Lambda 352 (34.7%) 239 (33.2%) 187 (33.1%) 238 (39.0%)
Kappa 662 (65.3%) 477 (66.3%) 378 (66.9%) 367 (60.0%)
No light chain 0 3 (0.4%) 0 6 (1.0%)
NA 191 49 617 8

Hyperdiploidy
Yes 367 (55.6%) 222 (48.9%) 536 (55.9%) NA
No 293 (44.4%) 232 (51.1%) 423 (44.1%) NA
NA 545 314 223 NA

Abbreviations: ISS, international staging system; LCO, light chain only; MM,
multiple myeloma; NA, not available.
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D’= 1.0) is associated with OPG expression; the risk allele for MBD
being associated with reduced OPG expression (Supplementary
Table 3).29–32

In addition to rs4407910, we detected a promising association
for MBD marked by rs74676832 at 19q13.43 (odds ratio = 1.97,
95% confidence interval = 1.50–2.59, P= 9.33 × 10–7, Phet = 0.43,
I2 = 0%). rs74676832 is located within a 29 kb region of LD
intergenic to ZNF444 and GALP (Figures 1 and 3 and
Supplementary Figure 8).

Impact of alleles influencing BMD on MM bone disease
Variation at 8q24.12 marked by rs23062375 and rs11995824,
which are intronic SNPs in OPG and in LD with rs4407910
(respective LD metrics r2 and D’ – 0.78, 0.93 and 0.79, 1.0) have
been demonstrated to influence BMD.25–27,31,33 To explore the
possibility that other genetic variants influencing BMD also
influence MBD, we investigated the association at 77 established
risk loci for BMD with MBD25–28 (Supplementary Table 4).
Aside from the 8q24.12 SNPs, no other BMD locus showed an
association with MBD after adjusting for multiple testing (that is,
P40.001). Moreover, there was no over-representation of
association for MBD across the 77 SNPs (Supplementary Table 5).

DISCUSSION
Our findings support the hypothesis that an individual's risk of
developing MBD is influenced by germline variation. Specifically,
we identified a locus at 8q24.12 (rs4407910) associated with MBD.
rs4407910 maps to a region of LD that only contains OPG, and
when taken in conjunction with eQTL data it is likely that reduced
OPG expression is the functional basis of the 8q24.12
association.31

Osteoclasts (OCs) are bone-resorptive cells, which are critical for
the integrity of bone. OC-differentiation and activation is
dependent on activation of nuclear factor-kB ligand (RANKL)
signaling through the p38 MAPK pathway.34–36 OPG is a negative
regulator of bone resorption acting as a decoy receptor for RANKL,
decreasing bone resorption through inhibiting differentiation of
OC precursors, activating mature OCs and stimulating OC
apoptosis. Germline inactivating mutations in OPG are responsible
for the autosomal dominant diseases: early-onset and familial
Paget’disease, familial expansile osteolysis and expansile skeletal
hyperphosphatasia, which are characterised by the development
of expansile osteolytic bone lesions.37,38 Myeloma cells express
RANKL and treatment of mice models of MM with OPG has been
demonstrated to prevent lytic bone lesions, maintaining cancel-
lous bone volume and inhibiting OC formation.12,32

Current clinical management of MBD involves reducing
myeloma cell infiltration of the bone marrow using

Figure 2. Regional plot of association and recombination rates for the 8q24.12 locus. Plots show association results of both genotyped
(triangles) and imputed (circles) SNPs and recombination rates. − log10 P-values (y axes) of the SNPs are shown according to their
chromosomal positions (x axes). rs4407910 shown as a large diamond. The color intensity of each symbol reflects the extent of LD with
rs4407910 white (r2= 0) through to dark red (r2= 1.0). Genetic recombination rates, estimated using HapMap samples from Utah residents of
western and northern European ancestry (CEU), are shown with a light blue line. Physical positions are based on NCBI build 37 of the human
genome. Also shown are the relative positions of genes and transcripts mapping to the region of association.

Figure 1. Association plot for combined analyses. The P-values of
the association between each single-nucleotide polymorphism
(SNP) and MBD. The y axis shows the − log10 P-values of each SNP
analyzed, and the x axis shows their respective chromosome
position. The red horizontal line corresponds to P= 5.0 × 10−8. All
statistical tests were two-sided.
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bisphosphonates to inhibit OC activity; however, there remains a
need to develop more targeted treatments. Established MM
therapies such as immunomodulatory drugs and proteasome
inhibitors partially exert their activity through the OPG/RANK/
RANKL system.39,40 Hence, targeting the OPG/RANK/RANKL system
through specific agents such as raloxifene may have therapeutic
potential.41,42 Raising OPG levels directly by infusion of recombi-
nant OPG (Fc-OPG) suppresses bone resorption.43 Potential
concerns over the generation of anti-Fc-OPG and binding to
TRAIL has however shifted further development away from
Fc-OPG as a RANK inhibitor, to Denosumab, a human monoclonal
antibody against RANKL.44,45

In addition to the 8q24.12 locus we identified a promising signal
at 19q13.43 proximal to genes ZNF444 and GALP. GALP encodes a
member of the galanin family of neuropeptides that are active
within the central nervous system.46 ZNF444, a zinc finger protein
activates a scavenger receptor gene, which participates in the
degradation of acetylated low-density lipoprotein.47 Intriguingly,
acetylated low-density lipoprotein promotes osteoblastic differ-
entiation, making ZNF444 a credible candidate gene for the basis
of the 19q13.43 MBD association.48

In making these conclusions, we have made use of various
differing methods for MDB, which have different sensitivity for
its detecting, the differences are between, not within, cohorts
and hence systematic basis is unlikely to have impacted on our

findings. In addition, the association was seen in each of the four
patient cohorts and was not confined to a specific MM subtype.
It is important to note, that the frequency of no MBD is equivalent
in each of the four case series.
Bone loss in MM is unlikely to be exclusively attributable to

RANKL/RANK/OPG providing a rationale for conducting further
GWAS-based analyses to identify additional MBD risk variants. It is,
however, noteworthy that SNPs, other than rs4407910, which are
strongly associated with BMD, were not found by us to be
associated with MBD. As our power to detect an allele with an
odds ratio 41.5 was high (490% power if the minor allele
frequency40.2), it implies that few such alleles are likely to exist.
However our power to detect an association for an odds ratio ~ 1.2
is poor (that is, o20%), and such variants could readily exist. It is,
therefore, apparent that larger studies will be required to identify
additional risk loci for MBD. Although the impact of any individual
genetic variant discovered by GWAS influencing MBD may
be relatively modest, their identification serves to highlight genes
and pathways relevant to developing novel intervention strate-
gies. The genotyping of patients from ongoing and future clinical
trials is likely to be especially informative in establishing the
relationship between markers of MBD and specific therapies.
In summary, our observations provide the first evidence that

germline variation influences a MM patient’s risk of developing
MBD and importantly impacts on this throughout disease

Figure 3. Forest plot of the ORs for the association between (a) rs4407910, (b) rs74676832 and MBD. Studies were weighted according to the
inverse of the variance of the log of the OR calculated. Horizontal lines: 95% CI. Box: OR point estimate; box area is proportional to the weight
of the study. Diamond (and broken line): overall summary estimate, with CI given by its width. Unbroken vertical line: null value (OR= 1.0).

GWAS of myeloma bone disease
DC Johnson et al

4

Leukemia (2016) 1 – 6 © 2016 Macmillan Publishers Limited



progression. These results also provide further support for the
importance of the RANK/RANKL/OPG pathway in the development
of MBD. As no other established BMD locus showed an association
with MBD, our results suggest the interaction between myeloma
cells and bone remodeling is primarily dictated by this pathway.
These findings will contribute to the development of future
strategies for prevention of MBD by defining those MM patients at
high risk of MBD and who may maximally benefit from therapeutic
intervention.
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