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What, if anything, are topological maps for?  

 

Stuart P. Wilson & James A. Bednar 

 

���������

 

What, if anything, is the functional significance of spatial patterning in cortical feature maps? 

We ask this question of four major theories of cortical map formation: self>organizing maps, 

wiring optimization, place coding, and reaction>diffusion. We argue that i) self>organizing maps 

yield spatial patterning only as a byproduct of efficient mechanisms for developing 

environmentally appropriate distributions of feature preferences, ii) wiring optimization assumes 

rather than explains a map>like organization, iii) place>coding mechanisms can at best explain 

only a subset of maps in functional terms, and iv) reaction>diffusion models suggest two factors 

in the evolution of maps, the first based on efficient development of feature distributions, and the 

second based on generating feature>specific long>range recurrent cortical circuitry. None of these 

explanations for the existence of topological maps requires spatial patterning in maps to be 

useful. Thus despite these useful frameworks for understanding how maps form and how they 

are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian 

neocortex cannot be rejected. The paper is intended as a non>technical introduction to the 

assumptions and predictions of these four important classes of models, along with other possible 

functional explanations for maps. 

 

	
������

 

topological map, wiring optimization, self>organization, place coding, reaction> diffusion, 

epiphenomenon, orientation preference. 
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Topological feature maps are ubiquitous in the mammalian brain. Distinct from the topographic 

maps in which they are embedded, which tend to correspond to the layout of sensory surfaces on 

the body like the skin or retina, topological maps tend to be organized in terms of similarities 

between more abstract features of sensory input. For example, spatial ordering of the neuronal 

responses to different spatial frequencies in an image, or to different directions in which a facial 

whisker is deflected, are topological rather than topographic maps. Much effort has been focused 

on explaining topological map organization, and our fascination with the continuous patterns that 

have been measured throughout the mammalian neocortex has driven neuroscience research 

forward. 

 

However, posing the fundamental question ‘what, if anything, is the spatial patterning of 

topological feature maps for?’ reveals the limitations of current theories. Several excellent 

comprehensive reviews of theories and models of map formation exist (e.g., Swindale, 1996; 

Simpson et al., 2009; Nauhaus and Nielsen, 2014). Here, our goal is to focus specifically on what 

four main theories of map organization, each represented by a strong computational modeling 

framework, have to say about the function of the continuous cortical map patterns that we see in 

the majority of mammalian species. 

 

First we outline input>driven self>organization, as a theory of cortical map development that 

derives from Kohonen’s self>organizing map algorithm and previous work by von der Malsburg 

(1973). These models go a long way to explaining why we have maps, in terms of the 

developmental processes from which they emerge. However, we argue that only the 

self>organizing developmental processes, not the particular map patterns that emerge from these 

processes, are demonstrably useful. From an evolutionary perspective, we then outline the 

minimal wiring lengths hypothesis presented by Koulakov and Chklovskii (2001), before 

explaining with reference to place>coding theory, how considerations based on wiring length 

optimization can answer only one half of the question of what map continuity might be for. 

Finally, we consider an important class of models that explains map organization in terms of 

Turing pattern formation. Through this model we explain how maps could be epiphenomena, 

arising from a selection pressure on general>purpose developmental dynamics to generate 
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specific cortical circuitry, but not necessarily to generate specific spatial patterning. Thus despite 

the evidence that self>organization drives the evolution of topological maps, we have not found 

strong evidence that the spatial pattern of organization has driven this evolution. 
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Topological feature maps are at least locally continuous. By continuous we refer to a smooth 

spatial organization of feature preferences, such that similar stimulus features in some sensory 

and/or motor space elicit responses in nearby neurons in the brain. Continuous maps that have 

received extensive experimental investigation include the retinotopic maps in primary visual 

cortices, and the somatotopic ‘homunculus’ maps in primary somatosensory and motor cortices. 

These are continuous (or topological) maps, because stimulation of adjacent regions of the 

feature space, i.e., presentation of images at adjacent regions of photoreceptors on the retina, or 

presentation of tactile stimulation to adjacent regions of mechanoreceptors on the skin, elicit 

selective responses in neurons located at adjacent regions in the corresponding cortices. These 

particular maps are also topographic, in that distances in the input space have a well>defined 

(albeit often nonlinear) relationship with distances across the cortical surface. 

 

In the case of retinotopic and somatotopic maps, the feature spaces are essentially 

two>dimensional, because the retina and skin can both be considered two>dimensional sensor 

surfaces. But feature spaces can have arbitrarily many more dimensions. For example, it has 

been suggested that the underlying visual feature space (or ‘plenoptic function’) can be captured 

by seven fundamental dimensions, along which visual stimuli can vary and elicit differential 

responses (Adelson and Bergen, 1991). The ‘plenhaptic function’ conveys a similar idea for the 

multiple dimensions along which tactile stimuli can be discriminated by neuronal activity 

(Hayward, 2011). We concentrate here on the representation of a particular slice of the plenoptic 

function, in the selective responses of neurons in primary visual cortex (V1) to the orientation of 

edges: orientation preference. 

 

In a series of seminal experiments, Hubel and Wiesel (1974) found that individual neurons 

respond preferentially to the orientation of a bar of light presented at a fixed position on the 

Page 4 of 34

John Wiley & Sons, Inc.

Developmental Neurobiology

This article is protected by copyright. All rights reserved.



retina, and that the preferred orientation of neurons in cat V1 varied smoothly with respect to 

bars oriented in the full range of 0 to π radians, as the recording electrode was moved 

incrementally along the cortical surface. Like the selectivity of adjacent neurons for adjacent 

retinotopic locations at the coarse level, at a finer resolution the V1 orientation preference map 

reflects the periodic topology of the space of possible orientations (see figure 1). Subsequent 

recording techniques such as optical imaging revealed the two dimensional organization of 

orientation preferences to be locally continuous in most species tested. 

 

Analysis of optical imaging data also showed some regions where orientation preferences vary 

discontinuously, across map features called pinwheels (Bonhoeffer and Grinvald, 1991; Blasdel, 

1992). Pinwheels (or singularities, or point discontinuities) are sites on the cortical sheet about 

which orientation preferences vary continuously in a circular pattern (see, e.g., the square three 

down and six to the right in figure 1). When neurons are colored according to the line orientation 

that elicits the maximum response, the resulting image of the orientation map reveals a colorful 

tiling of pinwheels. Contour lines drawn so as to delineate ‘iso>orientation domains’, i.e., regions 

preferring similar orientations, radiate outwards from the pinwheel centers and connect adjacent 

pinwheels together. Two>photon calcium imaging has since revealed that in cats, for example, 

the pinwheel organization is clear even at the level of individual neurons (Ohki et al., 2005). 

 

Insert Figure 1 around here. 

 

However, these studies have also shown that the orientation map organization in rodent V1 is not 

smooth. Instead, the rodent map appears randomly organized, with the orientation preferences of 

adjacent neurons at most only weakly correlated, despite a well>organized retinotopic map, a full 

range of different orientation preferences, and high orientation selectivity (Ohki et al., 2005, 

2006). Thus rodents presumably have a similar capacity to discriminate edges in the retinal 

image by their orientation. We therefore describe the organization in rodent V1 as an orientation 

map, because different stimuli elicit differential responses. We also describe this map as having 

good coverage of the feature space, because all orientations are represented within a local region 

of the retinotopic map in which it is embedded (see Swindale, 1991). However, as the topology 

of the feature space of orientation is not conserved we describe the rodent orientation map as 
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lacking continuity. In contrast, the pinwheel>dense spatial patterning of maps observed in 

primate V1 has been described in terms of an optimal trade>off between good continuity and 

good coverage (see Swindale et al., 2000; Durbin and Mitchison, 1990). Our goal here is not to 

explain the differences between rodent and primate maps (see Kaschube, 2014, for a recent 

review). Instead, inspired by the existence of both random and continuous maps in different 

mammalian species, our question is more general; ‘what, if anything, are topological maps for?’. 

Henceforth we use the term ‘topological feature map’, as a short>hand for ‘a spatial pattern that 

appears to trade off between good coverage and continuity’. 

 

In the following sections, we consider in turn what i) self>organizing maps, ii) wiring 

optimization, iii) place>coding, and iv) reaction diffusion models reveal about topological feature 

maps. It is important to note that these models do not represent mutually exclusive theories of 

what topological feature maps might be for. As we will see, models of class ii and iii represent 

largely compatible theories about the usefulness of map continuity at the local scale (i.e., 

between neurons), and models of class i and iv represent complementary theories about the 

mechanisms that additionally constrain locally continuous maps to form the millimeter>scale 

organizations observed in primates and carnivores (i.e., at the level of pinwheels and 

hypercolumns). In the final section we consider how mechanisms affecting the organization at 

both the local scale and the millimeter scale are responsible for the emergence of topological 

feature maps. The examples we consider throughout are focussed on pinwheel>dense orientation 

preference maps in primate V1, but the arguments that we develop apply to theories of spatial 

organization in the brain more generally. 

 

�
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Topological feature maps are spatially ordered collections of receptive fields. To say that 

adjacent neurons prefer similar features, e.g., similar orientations, is to say that nearby cells have 

receptive fields that are similar in some way. According to feed>forward neural network models 

of V1 simple cells, the receptive field of a neuron is closely related to the pattern of weights on 

the synaptic connections that it makes with peripheral neurons. In such models, maximal 
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responses will be elicited when the vector describing the intensity of light across the retina is 

most closely aligned to the corresponding vector of synaptic weight strengths, i.e., when the 

input pattern is a good template match to the weight pattern. In early sensory topological feature 

maps, nearby neurons can therefore be thought of as comprising similar templates. 

 

The first class of models that we consider, self>organizing networks, can explain both the overall 

patterning of topological feature maps, and the structure of the receptive field (or weight 

template) represented by each point in the map, as consequences of the same relatively simple 

developmental algorithm. 

 

Activity>dependent self>organization is exemplified by Kohonen’s self>organizing map algorithm 

(Kohonen, 1982, 2007; see also Ritter et al., 1992), which has been shown to be capable of 

recreating the main features of cortical map organization. In this model, a population of neurons 

arranged on a two>dimensional sheet learns by modifying synaptic weights from a set of input 

units whose activity might represent, e.g., the intensity of light measured by an array of 

photoreceptors. The following steps are repeated for many example input patterns: (1) identify 

the neuron whose vector of synaptic weights is most closely aligned to the vector of input unit 

activations, and (2) move the vector of weights for this neuron and those nearby on the sheet 

towards the vector of input unit activations. Step 2 is achieved by a type of Hebbian learning. 

Over time, this procedure encourages the weight vectors to spread out to cover the underlying 

space from which the input patterns have been drawn, while ensuring that the weight vectors of 

neighboring neurons, and thus the input patterns that will maximally excite them, become closely 

aligned. As a result maps emerge that are locally continuous; maps contain discontinuities 

similar to those measured in primary sensory cortices, e.g. orientation pinwheels emerge in 

networks trained on images of oriented edges; and neuronal weight vectors end up resembling 

the receptive field structures of real neurons (see Obermayer et al., 1990, 1992). 

 

An important prediction of self>organizing map models is that maps represent the underlying 

statistical structure in the feature space from which patterns of input are drawn (Durbin and 

Mitchison, 1990). Accordingly, if some region of the input space is disproportionately 

represented in the patterns of input presented to the network as it develops, then the resulting 
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distribution of cortical territory will be likewise distorted to reflect this. A map therefore reflects 

the personal history of developmental experiences of the animal, such that each map pattern is 

unique. In support of this idea, classic experiments have shown that early rewiring of projections 

from the optic nerve so that they drive putative auditory cortex rather than visual cortex leads to 

the emergence of visual orientation preference maps where normally we would expect maps to 

arise for auditory feature spaces (Sharma et al., 2000). This experiment suggests that some 

aspects of cortical regions may be equipotential, adapting to reflect their particular 

developmental history. 

 

By implementing self>organizing algorithms, a given region of adult cortex is thus assured of 

comprising a distribution of receptive fields that match the distribution experienced during 

development. If we can only perceive stimuli for which we have a (reasonable) receptive field 

match, and self>organization provides receptive fields for the range of stimuli encountered by the 

organism as it develops, then it is clear that self>organization represents a highly adaptive means 

of ensuring that neural representations are suited to the potentially wide variety of environments 

faced by mammals over their evolutionary history. 

 

���
�������
������� 

 

The details of how self>organizing maps are implemented vary subtly between the battery of 

related theories of cortical self>organization, e.g., in terms of the formulation of the Hebbian 

learning rule used to incrementally align weight vectors to input vectors in step (2). However, 

one important aspect of more biologically focused models is to replace the global supervisory 

mechanism required to identify maximally responsive neurons in step (1), with an entirely local 

process based on recurrent interactions between neurons. We consider these mechanisms for 

lateral interactions in detail here, because the lateral interactions are responsible for the 

continuity and smoothness of the map. 

 

The influential model of von der Malsburg (1973) applies Hebbian learning in localized 

neighborhoods of activity that have been established, without global supervision, as an emergent 

property of local recurrent intra>cortical dynamics (also see Dayan, 1993; Carreira>Perpin and 
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Goodhill, 2004). Similarly in the subsequent LISSOM model (Laterally Interconnected 

Synergetically Self>Organizing Map; Miikkulainen et al., 2005; Sirosh and Miikkulainen, 1994) 

and in the current GCAL (Gain Control, Adaptation, Laterally Connected) variant (Stevens et al., 

2013), each neuron excites its local neighbors and inhibits its more distal neighbors in a series of 

extra steps following presentation of each new input pattern, which results in multiple 

neighborhoods of localized activity emerging spontaneously across the neural sheet. In these 

models, Hebbian modification of the synaptic weights that connect neurons laterally results in 

the emergence of long>range ‘patchy’ recurrent connections between neurons that represent 

similar features. In models of V1 map development trained using naturalistic image patterns as 

input (e.g., photographs of natural scenes), these long>range patchy connections form between 

neurons representing similar orientations, matching data from Bosking et al. (1997) in tree shrew 

V1 (see Bednar, 2012). 

 

We can think of the localized neighborhood function used in Kohonen’s algorithm, and the 

profile of short>range excitation and long>range inhibition in the more mechanistic approaches 

like LISSOM and GCAL, as representative of an assumption made by the developing cortex that 

statistical structure in the world is inherently spatial. The physics of our universe determine that 

correlated information sampled from the environment tends to be attributable to matter that is 

co>localized in space (indeed, before quantum physics it was difficult to imagine an alternative!). 

Incorporating into the developmental plan the general assumption that correlational structure in 

the world is locally continuous, allows a compact genetic encoding of an algorithm for extracting 

that correlational structure. Specifying only the gross network architecture, Hebbian learning, 

and local interactions requires far less genetic information than specifying the receptive field 

structure of each neuron individually. Exploiting spatial continuity in the environment enables a 

highly compressed algorithm to generate a distribution of receptive fields that is suited to the 

particular environment in which an organism develops. 

 

However, although self>organizing map models have been very successful at developing the 

observed receptive fields and map patterns, they do not demonstrate that the map patterning itself 

is functionally important. One way to see this is to look at a related class of models with similar 

ingredients, but lacking the additional assumption of spatial continuity. For instance, clustering 
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algorithms closely related to Kohonen self>organizing maps but with no neighborhood function 

and thus no spatial ordering still generate populations of biologically realistic receptive fields 

(Barrow, 1987; Coates et al., 2011). There is also a large body of models based on sparse coding 

(assuming that the pattern of activation of cortical neurons should contain only a few active at 

any time) or independent component analysis (assuming that neurons should have activities 

statistically independent from each other) that can also explain the development of a set of 

receptive fields matching patterns seen during development (Olshausen and Field, 1996; Bell and 

Sejnowski, 1997). Biological interpretations of sparse coding models require some form of 

competition between neurons, as in the self>organizing map models, but for development of 

feature preferences do not require any spatially localized connectivity that would lead to 

continuous maps. Thus neither this spatially specific connectivity nor map continuity appear to 

be essential for how these models function. 

 

We will not further investigate the details of the clustering, sparse>coding, and 

independent>component>analysis (ICA) models here, using them only as examples of 

self>organization without spatial patterning. It is interesting to consider how these models may be 

extended to generate topological map patterns, e.g., as the topographic>ICA model of Hyvärinen 

et al. (2001) extends ICA to create continuous maps by grouping according to the remaining 

higher>order dependencies between linearly independent neurons. However, in the context of the 

self>organizing map models, what is important is that these examples suggest that self>organizing 

map algorithms may have been selected because of the component they have in common; 

competitive interactions between neurons. This competition ensures that neurons develop 

different receptive fields, and hence adaptively give rise to appropriate distributions of receptive 

fields across the population. In self>organizing map algorithms the competition is enforced by the 

neighborhood function (either explicitly as in Kohonen’s algorithm, or implicitly as in LISSOM 

and GCAL), and so it is inherently spatially localized. Spatial localization of these competitive 

interactions may represent a saving of genetic information required to ensure that emerging 

receptive fields compete to represent features typical in visual scenes. And thus self>organization 

can provide a sound explanation for why we have maps. But the point to emphasize is that at no 

stage in formulating this explanation are we required to attribute function to the spatial 

patterning, and so these models do not provide evidence for why maps should need to be ordered 
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in the way that they are. 

 

�������������������������������������������
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Apart from developmental algorithms, another explanation for why topological feature maps 

exist is that they optimize wiring lengths: Representing nearby points in feature space by the 

activity of nearby neurons in the brain minimizes structural and metabolic costs associated with 

connecting neurons over larger distances. This wiring optimization principle is perhaps the most 

popular explanation for the existence of spatial organization in the brain provided by authors of 

textbooks, when motivating the importance of studying neural maps. But it is an incomplete 

explanation. This was apparent even to early researchers who articulated the ‘minimal wiring 

lengths hypothesis’; “[W]hy is there a map at all? [. . . The] answer rests on an assumption, 

which is that interactions between cortical neurones are much more important for cells 

representing points close together in visual space” (Cowey, 1979; see also Mitchison, 1991). We 

explain here how making this assumption is problematic for the minimal wiring lengths 

hypothesis. We do so by deconstructing its most explicit statement, in the computational model 

of Koulakov and Chklovskii (2001), whose original discussion of the limitations is often 

neglected. 

 

Koulakov & Chklovskii used simulations to determine the pattern of orientation preferences 

across a cortical sheet that minimizes connection lengths, when each neuron is required to make 

a proportion of its synaptic connections to others that depends on the similarity of their 

orientation preferences. The algorithm they used is meant as an abstraction of the kind of 

evolutionary process by which cortical maps may have been selected, and proceeds as follows. 

 

All simulations begin by randomly assigning orientation preferences to neurons arranged as a 

regular lattice on a two>dimensional sheet. For a given simulation, the first step is to define a 

target histogram a priori, which relates the proportion of connections that each neuron should 

make to others based on the similarity of their orientation preference. For example, we might 

specify that each neuron should be connected to five others with a difference in orientation less 

than 10°, to three others with a difference of 10>20°, and so on. The next step is to connect every 
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neuron to the nearest set of neurons on the sheet that result in it having the same distribution of 

connections as that defined by the target histogram. Note that the shape of the target histogram 

for all neurons is identical. Once the connections for every neuron have been (independently) 

made, the total length of connections in the network is determined. The process of wiring length 

optimization then begins by randomly perturbing the orientation preference of the first neuron, 

and accepting the change in orientation preference if the overall wiring length is reduced, else by 

rejecting the change (with some probability) and restoring the original orientation preference. 

The procedure of randomly rejecting perturbations that increase a cost function is a type of 

Monte Carlo method, where the cost function here is simply the overall wiring length. The 

method is applied to each neuron on the sheet in turn, such that by the end of one iteration 

through all neurons the arrangement of orientation preferences will have changed to reduce the 

overall wiring length. Over many such iterations, a map structure will emerge from this process, 

which makes the wiring length as short as possible given the target distribution. 

 

Koulakov and Chklovskii found that using different distributions of target connectivity yields 

different patterns of orientation preference across the cortical sheet. If each neuron is required to 

make equal numbers of connections to others that differ in preferred orientation over the full 

range of orientation differences, i.e., to make equal numbers of connections with others of 

similar and dissimilar orientation tuning, then the pattern that makes wiring lengths as short as 

possible is a random ‘salt>and>pepper’ arrangement like that in rodent V1 (figure 2; left panels). 

For a narrower target distribution, where neurons are required to make more connections to 

others with a similar orientation preference, the pattern that minimizes wiring lengths displays 

continuity, such that nearby orientations end up represented by neurons that are next to each 

other. As the width of the target distribution is made smaller the colored images of the resulting 

map patterns start to resemble bands like rainbows, and as the width is further reduced these 

rainbows twist into a configuration that starts to resemble a staircase. For very narrow target 

distributions, where almost all connections are to be made between neurons with similar 

orientation preferences, the patterns twist further until they resemble maps measured in cat and 

primate primary visual cortex, which are punctuated by pinwheel point discontinuities, about 

iso>orientation domains that radiate outwards from the pinwheel centers (figure 2; right panels). 

Hence, optimizing for a narrow target distribution can lead to the observed local trade>off 
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between map continuity and coverage in topological feature maps. 

 

Insert Figure 2 around here. 

 

The implication of this result is that an evolutionary process, that likewise minimizes the overall 

wiring lengths across a sheet of neurons tuned to a periodically repeating feature space like 

visual edge orientation, should result in the locally continuous pinwheel>rich maps that we 

measure in the primary visual cortices of most mammalian species. In similar terms we might 

explain why orientation preferences in rodents are organized as random maps across the cortical 

sheet, despite being well tuned for orientation; perhaps these species did not undergo the same 

selection pressures to preferentially connect neurons with similar feature tuning, or perhaps 

organization with respect to some other dimension of the visual feature space carried a greater 

selection pressure. 

 

Thus an intuitive answer to the question, why do we have topological maps?, is that our maps 

have been selected to minimize the clear structural and metabolic costs associated with having to 

connect neurons over long distances. Yet this is only one half of the full picture. It is the other 

half of the question that is most important for us to answer; why preferentially connect similarly 

tuned neurons, i.e., why should evolution have optimized for a narrow target connectivity 

distribution? Wiring minimization explains map organization in terms of the cost to having long 

wires, but it does not explain map organization in terms of the benefit to preferentially 

connecting similarly tuned neurons. Only once we assume that preferentially connecting 

similarly tuned neurons is beneficial, does wiring minimization open the door to an explanation 

for map organization via evolution by natural selection. 

 

The minimal wiring hypothesis therefore leaves us asking whether there is a good computational 

reason to put adjacent regions in the feature space next to each other in the cortical tissue. Let us 

frame this question the other way around. What are the implications of taking a topological map 

with a set of connections that result from optimizing a narrow target distribution, and then 

moving every neuron to a random location on the cortical sheet while keeping the connectivity 

the same? This would be equivalent to taking the initial pattern of connectivity in Koulakov & 
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Chklovskii’s networks before having run any optimization; neurons with similar orientation 

preference are preferentially connected, and we are likely to have very long overall wiring 

lengths. Metabolic costs aside, what functional capacity have we lost by having long wires 

between similarly tuned neurons? Clearly, if no quality of a signal traveling from one neuron to 

another with which it makes connections depends on the distance traveled, then the network is 

functionally equivalent to the network obtained after wiring optimization. The same is true if we 

permit the signal propagation time to vary randomly with distance. But the two networks are not 

functionally equivalent if some quality of the signal varies non>randomly with the distance 

traveled. In the following section, we consider a computational mechanism that can only work in 

the latter case, where physical distances between points on the map correspond to distances in 

the feature space. We ask whether such a mechanism can complete the missing half of the 

explanation for map spatial patterning that is left open by the tautology of the minimal wiring 

lengths hypothesis. 

 

��
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The qualities of signal propagation that we might imagine to vary predictably with 

communication distances in a topological feature map include the signal to noise ratio, the 

amplitude of the signal, and the signaling delay. In the third class of model that we consider, 

place coding, we are concerned with the latter, the signaling delay. Let us assume that for a finite 

signal propagation speed the signaling delay varies monotonically with the physical distance 

separating communicating cells. For propagation velocities slower than a meter per second, an 

action potential may take tens of milliseconds to register at a cell located several millimeters 

away. The idea of place coding is that in such a scheme it might be possible for relative signaling 

delays to subserve computation of the relative timing of external events. 

 

The place coding model proposed by Jeffress (1948) provides a sketch of how this could be 

done. Jeffress considered that if two events (A and B) register at two sufficiently distant neurons 

(a and b), and signals travel at a finite speed between them, then those signals will coincide at a 

specific location between a and b that depends on the relative timing of events A and B. If events 

A and B are registered simultaneously then signals propagating from a and b will coincide at a 
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neuron located exactly half way between them. If event A precedes B then the two signals will 

coincide at a point that lies closer to b, and vice versa. For an interval longer than the time it 

takes for the signal to travel from a to b, the two will never coincide, but within this range longer 

intervals yield coincidences that occur closer to the second neuron. Hence, in an array of neurons 

between a and b, with thresholds high enough that they respond only when multiple signals 

arrive coincidently, the identity of the active neuron uniquely reports the inter>stimulus time 

delay. Wiring length might therefore be useful for deriving from a lower level topological map 

representing a spatial feature like edge orientation, a higher>order topological map representing 

the stimulus velocity. 

 

Jeffress’ place>coding model has most successfully been used to explain the selectivity of 

midbrain auditory neurons to the relative time at which sound arrives at two ears, as determined 

by the azimuth angle of the sound source relative to the head orientation of an auditory specialist 

like the barn owl (reviewed in Yoris and Yin, 2006). Claims that such computation could occur 

in mammalian cortices have been somewhat controversial, but we have recently provided 

evidence that such a scheme could operate between barrel columns in rodent primary 

somatosensory cortex, given the relatively large distances separating the barrels and axonal 

conduction velocities as slow as ten centimeters per second (Wilson et al., 2011). This 

mechanism could render supragranular neurons sensitive to a psychophysically relevant range of 

inter>whisker deflection intervals (a range of up to ten milliseconds). 

 

At first, this idea seems very powerful. It is not hard to imagine that the ability to compute 

spatial>temporal derivatives for an appropriately mapped feature space could place a species at a 

selective advantage. The barn owl can use such a scheme to localize prey, the rat could use it to 

direct biting, the bat could use it to echolocate, and so forth. Indeed, consideration of the model 

later formalized by Jeffress led Boring (1933) to argue that we should “search for a place theory 

for all dimensions of consciousness”. It is also noteworthy that in the review that popularized the 

term ‘computational map’ (Knudsen et al., 1987), the only concrete example provided for a 

computation for which map continuity is required, is Jeffress’ place coding theory. 

 

However, there is a fundamental limitation to the generality of this model. It can only work for 
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maps of one and two dimensional feature spaces, such as the topographic maps of sensor 

surfaces, not many>dimensional topological maps. Consider that the analogous computation with 

respect to visual orientation preference would be the abstraction of the rotation velocity of image 

contours. For this to be possible, signals between sequentially activated iso>orientation domains 

would have to travel not isometrically across the two cortical sheet dimensions, but in circles 

around the pinwheel centers. 

 

To accept the minimal wiring hypothesis, we must escape its inherent tautology by asking what 

advantage the specific map patterning yields, and so we must ask what trading off between 

continuity and coverage is good for. Through place coding, a reasonable computational argument 

for continuity can be made in terms of isotropic mechanisms allowing the extraction of 

spatial>temporal derivatives. The justification for having good coverage is also clear, because 

ensuring that each orientation is represented at a given point in V1 is necessary for detecting 

oriented stimuli at all retinal locations (Durbin and Mitchison, 1990). The problem comes when 

we attempt to trade continuity for coverage, as in smooth topological feature maps. Promoting 

coverage at any cost to continuity causes isotropic map decoding mechanisms to break down. 

Anisotropic mechanisms that can compensate for degraded continuity are not hard to imagine, 

particularly in the context of the self>organizing map models where circuitry is shaped by 

experience. But if cortical circuitry is free to build anisotropic mechanisms, then why promote 

continuity at all? Indeed, patchy connectivity between like>tuned neurons suggests that V1 

circuits operate despite continuity, not because of it, potentially allowing activation to spread 

between similar iso>orientation domains by leap>frogging from pinwheel to pinwheel. This 

discontinuous spread of activation does not appear to exploit the continuity in map patterns, so 

why then has pressure for coverage not taken over entirely to generate random maps, which 

promote coverage at all spatial scales? 

 

A plausible answer is that discontinuous leap>frogging is useful. It may be that orientation maps 

actually maximize the retinotopic distance over which orientation>specific activity is able to 

spread, and hence that orientation map patterning has been selected to maximize interaction 

lengths over the retinotopic map in V1 (as far as is metabolically and structurally viable). 

Topological feature maps may therefore maximize feature>specific interaction distances, for 
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minimal wiring lengths. Or perhaps the cortex simply has to compute with respect to whatever 

pattern it is given, and it is given continuity because of its efficiencies in some 

non>computational regard, as we will consider in the next section. 

 

Hence, despite the intuitive notion that mirroring distance in feature space by distance in a 

topological map in the brain should be useful, we are aware of no concrete cortical computation 

that demonstrates this to be the case in a mammal. We are therefore no closer to explaining a 

selective advantage to preferentially connecting similarly tuned neurons, and thus we are no 

more motivated to accept wiring length optimization as a complete explanation for topological 

feature maps. 
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The final main class of models that we consider in detail derives from the reaction>diffusion 

models of pattern formation (morphogenesis) introduced by Turing (1952). At a conceptual 

level, and paraphrasing the tutorial presented by Kauffman (1993), the basic ingredients of 

reaction>diffusion models are as follows. For each cell in a dense array, chemical A increases 

production of chemicals A and B at that location and in the immediately surrounding cells, while 

chemical B decreases production of A and B with a more diffuse spatial profile that spans a 

greater distance. With concentrations of ‘activator’ A and ‘inhibitor’ B equal at each cell, 

nothing interesting happens. But increasing A even slightly at (arbitrary) point X leads activation 

to build up and form into a sharp peak at X, which in turn causes the more diffuse inhibition to 

build up around point X, but with a flatter peak of lower amplitude. The ratio of A to B will 

become largest at X, but in surrounding regions, beyond the spatial extent of A, B dominates and 

the ratio of A to B becomes low. Further away from X, just beyond the spatial extent of B, any 

other slight increases in A will give rise to similar regions of activation flanked by inhibition. In 

the ratio of activation to inhibition we see a tiling of Mexican hats emerge, each with the same 

spatial profile, repeating at a particular spatial frequency. Given noisy initial concentrations 

across the array, it can be possible for a given profile of activator versus inhibitor to amplify an 

infinite number of spatial frequencies, but boundary conditions that stop A and B diffusing 

beyond the edges of the cell array yield attractors permitting only wavelengths that are integer 
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fractions of the array length (in a given direction) to dominate. Thus, the patterns that will form 

from noisy initial conditions during Turing instabilities are affected primarily by the profile of 

activator and inhibitor diffusion (relative to the array length if boundaries are enforced). 

 

An instructive demonstration of how reaction>diffusion can be used to study pattern formation in 

cortical maps is provided by Ermentrout et al. (2009). They analyzed a Turing system using 

equations for the profile of activator and inhibitor that specify similar Mexican>hat interactions 

to those described above, but in this case defined across a two>dimensional disk of neurons that 

correspond to a barrel column. Using the ratio of chemical attractor to inhibitor to specify the 

density of thalamocortical axons across the barrel, they were able to recreate sub>barrel 

patterning characteristic of that revealed by cytochrome oxidase staining in real barrels, 

resembling a coffee bean, a Mercedes car badge, a baseball, and then a bullseye pattern, as the 

size of the disk, and therefore the number of solution modes, was increased. As well as being 

able to predict the shape of a pattern given the size of the column boundary, numerical 

simulations with boundary conditions constrained by the outlines of real barrels generated strong 

matches to the patterning measured in those barrels, providing strong support that specific 

patterning found in cortical maps may arise via Turing instabilities. Models of this form allow 

the relative contribution of terms comprising the profile of activator versus inhibitor to be 

investigated analytically, such as the rates of axon production, pruning, and diffusion in the 

example from Ermentrout et al. (2009). Recognizing that short>range excitatory interactions and 

long>range inhibitory interactions in the recurrent activity of neurons might serve as the 

activators and inhibitors in a Turing>like model of feature map formation, we are primed to 

understand the elegant reaction>diffusion model of orientation map development considered by 

Wolf (2005). 

 

Wolf (2005) starts by assuming that orientation map development can be modeled in terms of 

Turing pattern formation (thereby implicitly assuming map continuity), and by considering a 

form for the profile of activator and inhibitor that guarantees that all orientations will be 

represented (thereby explicitly assuming map coverage). Under the assumption of 

Mexican>hat>like lateral interactions (see Reichl et al., 2012; Hein and Kaschube, 2014), many 

different types of continuous map organization were found to be possible, including rainbow>like 
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and pinwheel>dense maps like those found by Koulakov and Chklovskii (2001). Wolf showed 

that what distinguishes between these various map solutions is the number of modes that become 

selectively amplified as the dynamics of the model unfold. When Turing instabilities selectively 

amplify a large (finite) number of modes, maps have pinwheel densities in the range observed 

across real cortices. The model of Wolf assumes no cortical boundary effects, but asks instead 

what extra constraints added to the Mexican>hat>like lateral interactions will lead to the 

amplification of many modes, and thus the emergence of topological feature maps. 

 

Wolf’s analysis shows that many modes will tend to be amplified when the recurrent inhibitory 

interactions are additionally constrained to be strongest between similar orientations over large 

cortical distances (far beyond a hypercolumn). This additional constraint stabilizes the 

developmental dynamics, such that Turing instabilities yield pinwheel>dense continuous maps 

like those in primate primary visual cortex. Importantly, the additional interactions that lead to 

primate>like orientation maps are required to be based primarily on orientation similarity rather 

than on the proximity of neurons. Hence, like the model of Koulakov and Chklovskii (2001), 

orientation>specific interactions appear to be key. 

 

However, for our discussion the key insight from the Wolf (2005) model is that orientation 

preference maps might well reflect an optimization process; but an optimization based on the 

strength of interaction between like>tuned neurons over larger distances rather than an 

optimization based on reducing the distance between like>tuned neurons. Moreover, this process 

takes place through the developmental dynamics that play out within each organism, rather than 

through the evolutionary dynamics that play out across generations. The account of topological 

feature map organization is thus largely in agreement with that provided by the self>organizing 

map models considered earlier. The specific spatial patterning of primate orientation maps may 

result from pressure for interactions between neurons to be orientation specific. It is interesting 

to note that feature>specific long>range interactions emerge spontaneously through Hebbian 

learning in mechanistic models like GCAL, due to correlational structure in the images used to 

train them, hence these models help explain where the feature>specific constraints, shown by 

Wolf (2005) to be so important for primate>like map development, might come from. 

Mechanistic models and reaction>diffusion models of map self>organization might therefore 
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agree, that evolution constrained general>purpose, pattern>forming, developmental dynamics, to 

promote feature>specific recurrent interactions, and in doing so incidentally created the 

pinwheel>dense maps that we observe. 

 

For the natural selection of maps to have begun, as Wolf did, with general>purpose 

pattern>forming dynamics, makes evolutionary sense because it means that genes need only 

specify the rules of recurrent interaction that will guarantee neuronal representation of (and 

hence the ability to perceive) all stimulus combinations, rather than specifying the receptive field 

structure of each individual neuron. Selective suppression between the correlates of similar 

orientations over larger distances (over the cortex and thus over the retinotopic map) may have 

emerged since, because it facilitates visually relevant integrative operations like contour 

completion and pop>out effects across the visual scene. 

 

Insert Figure 3 around here. 

 

Kaschube et al. (2008) later derived from the model of Wolf (2005) the additional theoretical 

prediction that the pinwheel density, defined as the number of pinwheels per hypercolumn, 

should approach the mathematical constant π. Here the hypercolumn is defined in terms of the 

distance separating adjacent iso>orientation domains, hence the π>density metric is unitless. 

Kaschube et al. (2010) then tested this prediction, by measuring pinwheel densities in the maps 

of many animals taken from multiple mammalian lineages (including tree shrew, bush baby, and 

ferret), representing branches of the phylogenetic tree that diverged up to 65 million years ago. 

The pinwheel densities in each lineage were indeed found to converge to π. This remarkable 

result, indicating the presence of a fundamental mathematical constant in the mammalian brain, 

not only validates the theory that topological maps emerge as Turing instabilities, but also 

suggests that nature has converged upon this solution multiple times. In line with the conclusion 

of Kaschube et al. (2010), the emergence of maps by Turing instability may thus represent a 

deeply canalized attractor in the ‘epigenetic landscape’ (see Striedter, 1998). 

 

The Koulakov and Chklovskii (2001) model suggests that evolution may have optimized maps 

for the length of connections between the neural correlates of similar orientation. The Wolf 
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(2005) model instead suggests that development may optimize map>generating processes for the 

strength of interaction between the neural correlates of similar orientation. As an explanation of 

what maps might be for, the former is a tautology, amounting to a formal description of what the 

map is; i.e., like>tuned connectivity for minimal wiring cost. The latter model takes us beyond 

re>stating what the map is, to hint at what the connectivity behind the map might be for; i.e., 

suppression of responses to similar features across the visual scene. 

 

��������������������

 

We asked of four important classes of model, what, if anything, are topological maps for? 

Self>organizing maps explain why we have maps in terms of efficient competitive mechanisms 

between neurons that ensure that the distribution of receptive fields within the population match 

the distribution of features experienced as an organism develops. In these terms we were able to 

explain the emergence of maps, but to do so we did not require their patterning to be useful. 

Considering next the principle of wiring optimization we obtain only a tautology; maps with 

good coverage and local continuity like we see in primate visual cortex minimize wiring lengths 

only if we first assume that preferentially connecting like>tuned neurons yields a selective 

advantage: Continuous maps are demonstrably optimal if we start with the assumption that map 

continuity has been optimized. The place>coding proposal that continuity is optimized to mirror 

in cortical space distances in feature space is viable for topographic maps, with one or two 

cortical sheet dimensions isometric with one or two dimensions of the feature space, as in the 

Jeffress model for computing stimulus velocity with respect to cortical distance. However, it fails 

to provide an advantage for continuity in the case of topological maps with multiple feature 

dimensions, as in the visual cortex. Finally, the reaction>diffusion model of Wolf (2005) suggests 

that orientation>specific long>range connectivity may be the key constraint that discriminates the 

pinwheel>dense maps we see from the many other possibilities that satisfy continuity and 

coverage constraints. 

 

We interpret these analyses as support for a two>part evolutionary model: i) General 

pattern>forming mechanisms based on reaction>diffusion principles were originally chosen for 

their efficiency in generating maps with good coverage of the feature space, in terms of the 
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genetic information required to specify the necessary competition between emerging receptive 

fields, ii) additional pressure to generate feature>specific cortical circuitry for long>range 

integration across the sensor surface is responsible for the specific pinwheel>dense patterning of 

topological feature maps, which are themselves epiphenomena of the underlying developmental 

process. This interpretation is consistent with the minimal wiring hypothesis as well as the 

mechanistic accounts of map development provided by self>organizing map models like GCAL. 

 

This review has focused on single–cortical>level models, such as those for simple cells in the 

visual cortex, to see if topological map patterns can be justified at that level. One interesting 

direction for future work is to consider how these maps could interact across a sensory hierarchy, 

which might provide more constraints on possible functions. For instance, several models of 

maps of complex (phase>insensitive) cells in V1 rely on a multi>stage architecture, with an 

orientation map of simple cells as a first layer, followed by complex cells pooling 

indiscriminately over multiple nearby simple cells with the same orientation but different spatial 

phases (Antolik and Bednar, 2011; Hyvärinen et al., 2009; Weber, 2001). This approach 

simultaneously requires a continuous organization for orientation (so that local pooling will not 

destroy orientation selectivity) and a disordered organization for spatial phase (so local pooling 

will sample from multiple phases). The models differ on how they explain the local phase 

disorder (either mechanistically due to variability in long>range projections, Antolik and Bednar, 

2011, or as a mathematical convenience based on squaring of putatively negative activations, 

Hyvärinen et al., 2009; Weber, 2001), and thus these models do not yet offer a clear functional 

explanation for why such an organization may occur. But because complex cells are thought to 

be useful for visual computations, these models suggest that further study of how they develop 

may offer stronger evidence for a functional role for continuity (and discontinuity, in the case of 

spatial phase) in topological maps. 

 

Common to the self>organizing models discussed, which includes the reaction> diffusion model 

of Wolf (2005), is the assumption of lateral interactions that are excitatory at short ranges and 

inhibitory over longer ranges. Interestingly, the anatomical data reveals a much more complex 

architecture—>the longest lateral connections are from excitatory to excitatory cells, but the net 

effect of surround modulation is typically suppressive at high input contrasts (Gilbert et al., 
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1990; Hirsch and Gilbert, 1991; Weliky et al., 1995; Ren et al., 2007; Somers et al., 1998), 

probably due to polysynaptic inhibition. Thus it is likely that the aspects of the circuit that 

dominate map development are only part of the story of how the circuit operates. 

 

In any case, the assumption of Mexican>hat>like lateral interactions is a clear link between the 

mechanistic and reaction>diffusion approaches (as shown formally by Wolf and Geisel, 1998, 

and Keil and Wolf, 2011; see also Hein and Kaschube, 2014). In the absence of a formal 

analysis, it would seem that map organization in LISSOM and GCAL>like models is due to 

similar principles of pattern formation. As strong (albeit circumstantial) support for this claim, 

maps from the GCAL model of Stevens et al. (2013) have a pinwheel density that reliably 

converges to π. Therefore we might think of such models as being mechanistic implementations 

of reaction>diffusion models, or at least consistent with their predictions. The mechanistic 

models are difficult to analyze compared to the Wolf (2005) model, because every neuron is a 

non>linear system of equations, and it would have been difficult to first recognize and second 

understand the π pinwheel density prediction had Wolf’s analytically tractable model not so 

elegantly paved the way. 

 

An important distinction between these two modeling approaches is that the reaction>diffusion 

formalism explicitly assumes feature>specific lateral interactions between neurons during 

development, whereas feature>specific interactions in the mechanistic models emerge from the 

same Hebbian processes that underlie map self>organization, because unsupervised learning at 

intra>cortical synapses captures the long>range statistical structure of naturalistic image patterns. 

The former explains why feature>specific interactions are a key ingredient in generating observed 

topological feature maps, and the latter reveals how such interactions can be driven by statistical 

structure in the environment. 

 

Whether by accepting only short connections, assuming Mexican>hat>like connectivity, or 

utilizing distance>dependent delays, our explanations for the spatial patterning of primate V1 

maps each require neurons to interact preferentially over short distances. In addition, models 

based on the principles of wiring optimization and pattern formation both rely on the additional 

assumption that representations of similar stimulus features should preferentially interact. In both 
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cases this additional assumption is problematic; explaining precisely why similar features should 

preferentially interact is deceptively difficult. 

 

The mechanistic self>organizing map models go a step further to reveal how preferential 

interactions based on the similarity of stimulus features can emerge through the same Hebbian 

learning mechanisms as those responsible for establishing map patterning itself. Mechanistic 

algorithms like GCAL, which rely on Hebbian learning of environmental statistics, generate 

rather than assume preferential interactions between similar features, insofar as they recreate 

observed patchy connectivity between like>tuned neurons without explicit instruction to do so. 

Perhaps then the optimization constraint represented by the narrow target histogram in the 

Koulakov and Chklovskii (2001) model, and by the orientation>specific nonlinearities in the 

Wolf (2005) model, is Hebbian learning itself. I.e., perhaps Hebbian learning of environmental 

statistics (rather than a Jeffress>like decoding mechanism) is the criterion against which wiring 

lengths are optimized, and no further computational constraint is required to escape the minimal 

wiring lengths tautology and explain spatial patterning in topological feature maps. 

 

Again, this explanation does not depend on spatial patterning being useful. Thus so far the 

default answer to ‘what, if anything, are topological maps for?’ remains that topological map 

patterns may not serve any purpose, beyond providing a common reference point for validating 

different theories of cortical evolution and development. 
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%����
�&: Retinotopic and orientation map in V1. Given a particular fixation point (marked with 

a red + symbol above), the visual field seen by an animal can be divided into a regular grid, with 

each square representing a 1°×1° area of visual or retinal space. In cortical area V1 of mammals, 

neurons are arranged into a retinotopic map, with nearby neurons responding to nearby areas of 

the retina. As an example, the image on the right shows the retinotopic map on the surface of V1 

of a tree shrew for an 8°×7° area of visual space (adapted from Bosking et al., 2002; scale bar 

below is 1mm). A stimulus presented in a particular location in visual space (such as the thick 

black bar shown) evokes a response centered around the corresponding grid square in V1 (3° 

right, 5.5° down). Which specific neurons respond within that general area, however, depends on 

the orientation of the stimulus. The V1 map is color coded with the preferred orientation of 

neurons in each location; e.g. the black bar shown at left will primarily activate neurons colored 

in purple in the corresponding V1 grid squares. 
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%����
� ': Map organization predicted by wiring�length minimization. Panels on the top row 

show the target histogram of connectivity that each neuron should make to others based on the 

similarity between their orientation preferences. Target histograms are defined a priori to guide 

the process of wiring optimization. By the algorithm of Koulakov and Chklovskii (2001), 

perturbations of each orientation preference are iteratively accepted if reconnecting neurons to 

the nearest set of neighbors satisfying the target histogram reduces the overall wiring length. The 

corresponding map organizations that emerge are shown in corresponding panels below. As the 

target histograms increasingly promote connections between like>tuned neurons, from left to 

right, the resulting maps can be described as ‘salt>and>pepper’, ‘rainbow’, ‘staircase’, and 

‘pinwheel>tiling’, respectively. Color>coding of orientation preferences as in figure 1. Adapted 

from figures 2 and 3 of Koulakov and Chklovskii (2001). 

 

%����
� (: Self�organizing orientation preference maps and the π�pinwheel density prediction. 

The left panel shows an example of a realistic orientation preference and selectivity map with 

approximately π pinwheel density generated using the self>organizing GCAL model of Stevens 

et al. (2013). The right panel shows the pinwheel density of three species (diamonds) and 

simulated maps (circles) as a function of hypercolumn size. Animal data is replotted from 

Kaschube et al. (2010). Horizontal lines indicate median values of each cluster, with the medians 

of animal maps and of realistic model maps (GCAL) clustered around π, and those of relatively 

poorly organized maps (here from the L model, a simplified version of LISSOM) typically being 

much larger and more variable. Reprinted from Stevens et al. (2013). 
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�������3: Selforganizing orientation preference maps and the πpinwheel density prediction. The left panel 
shows an example of a highquality, realistic, orientation preference and selectivity map with approximately 
π pinwheel density generated using the selforganizing GCAL model of Stevens et al. (2013). The right panel 

shows the pinwheel density of three species (diamonds) and simulated maps (circles) as a function of 
hypercolumn size. Animal data is replotted from Kaschube et al. (2010). Horizontal lines indicate median 

values of each cluster, with the medians of high quality model maps (GCAL) clustered around π, and those 
of relatively poorly organized maps (here from the L model, a simplified version of LISSOM) typically being 

much larger and more variable. Reprinted from Stevens et al. (2013).  
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