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Abstract 

This paper presents a novel method for tracking and characterizing adherent 

cells in monolayer culture. A system of cell tracking employing computer 

vision techniques was applied to time-lapse videos of replicate normal human 

uro-epithelial cell cultures exposed to different concentrations of adenosine 

triphosphate (ATP), acquired over a 20 hour period.  Subsequent analysis, 

comprising feature extraction, demonstrated the ability of the technique to 

successfully separate the modulated classes of cell. 

1 Introduction 

The bladder is lined by urothelium, a remarkable tissue that forms the tightest and 

most efficient self-repairing barrier in the body. After physical or other damage, the 

urothelium switches rapidly and transiently from a stable mitotically-quiescent barrier 

into a highly regenerative state. The mechanisms involved in this switch are poorly 

understood, but are central to understanding the pathophysiology of the human 

urinary bladder.  

The urothelium is reported to respond to mechanical and chemical stimulation by 

releasing various transient mediators, including adenosine triphosphate (ATP), which 

have been proposed to play a role in mediating neuronal signalling [1]. In addition, 



the urothelium expresses purinergic P2X and P2Y receptors and channels that are 

responsive to ATP released from autocrine or paracrine sources [2]. The outcome of 

such signalling is incompletely understood, as it could have a feedback role in 

modulating neuronal signalling, but alternatively could play a more direct role in 

urothelial barrier repair [2]. It has been further suggested that aberant expression of 

receptors and/or mediator release by the urothelium is involved in dysfunctional 

diseases of the bladder, including idiopathic detrusor instability and interstitial cystitis 

[3, 4].  

Despite the literature reporting expression of these channels and receptors by the 

urothelium, consensus has been confounded by contradictions in experimental 

approaches, including the species, specificity of reagents, and the nature of the tissue 

preparation (reviewed [5]).  Our approach to address these questions has been to 

develop a cell and tissue culture system for investigating normal human urothelial 

cells and tissues in vitro.  In our work, we have shown that stimulation of P2 receptors 

with exogenous ATP enhanced scratch wound repair, as did the addition of the ecto-

ATPase inhibitor ARL-67156, which prevents the breakdown of autocrine-produced 

ATP. By contrast, blockade of P2 activity inhibited scratch wound repair in either the 

presence or absence of ATP [2]. This indicates that ATP is one of the major factors 

released upon damage and contributes to the regenerative phenotype.  

To understand the effect of ATP on urothelial cell phenotype, time-lapse videos 

have been generated of urothelial cell cultures to which exogenous ATP has been 

applied. This paper describes the development of an automated method for objective 

measurement of these videos using computer vision techniques, followed by the 

extraction of features, with the aim of describing the cell behaviour.  These processes 

are described in detail in Section 2, where measurements have been obtained from the 

set of videos of urothelial cell cultures with and without exogenous ATP added.  The 

results with statistical analysis are presented in Section 3, verified by manual analysis. 

2 Methods 

The automated analysis of cell motion comprises the following sequence of 

analysis: capturing images of the cells at regular intervals using videomicroscopy, 

tracking cells within the video on a frame-by-frame basis using custom-written 

software, followed by characterisation of cell movement through the extraction of 

specially designed features.  Each of these stages is considered in further detail in the 

following sections.  

2.1 Cell Culture and Videomicroscopy 

Normal human urothelial (NHU) cells were established in culture as finite (non-

immortalised) cell lines and maintained as detailed elsewhere [6]. For ATP 

experiments, cells were seeded in a 12 well plate and the growth medium was 

supplemented with 0, 10 or 50 μM ATP in replicates of four.  Cultures were observed 

by differential interference contrast videomicroscopy (Olympus IX81 microscope) in 



an environmental chamber with an automated mechanical stage.  Timelapse videos 

were compiled from individual images captured digitally every 10 minutes over a 20 

hour time period. A sample frame from one such video is illustrated in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Sample frame from timelapse video of NHU cells in culture. 

2.2 Cell Tracking 

Custom-written software was developed to undertake automated cell tracking using 

the OpenCV computer vision programming library [7]. In order to track the relative 

movement of cells within a video, each frame undergoes processing to identify the 

likely locations of cells. This process takes the raw videos as an input, performs 

common preprocessing to each frame, and then either tries to identify the likely 

location of cells, or track the location of previously located cells. 

Each video frame initially undergoes Gaussian blurring to remove noise, followed 

by simple thresholding against a predetermined fixed value, resulting in a binary 

image separating the foreground and background (i.e. the cells from the frame 

background). A distance transform is then applied to this binary image, resulting in 

frames where the centre of large cells (or masses of cells) have a larger value, the 

edge of cells have a low value, and the background has a value of 0. 

In order to efficiently estimate the locations of the centres of cells, the local 

maxima of the distance images are computed. Local maxima are then selected from 

the highest to lowest scoring, with a small area around each selected maxima being 

filtered out to reduce the number of selections made within the body of a cell. The 

(x,y) coordinates of the selected maxima are then used as estimations of the locations 

of cells within the frame. 

To estimate the location of a cell within a frame, given the location within the 

previous frame, the distance image around the previous cell location is first multiplied 



by a simple Gaussian filter. The maximal pixel value in this region can then be used 

to estimate the new cell location. This approach, although simplistic, is demonstrated 

to be effective. The usage of the distance image promotes matches with the centre of 

cells, whilst the application of the Gaussian filter means that matches are preferred 

that are close to the original location of the cell. 

Although the process for tracking cells works well over the videos so far tested, it 

is unable to consistently identify and track cell locations for the duration of the 

videos. In order to detect as many cells as possible, a large number of potential cell 

locations are initially calculated, with many of these quickly converging into the same 

locations. Similarly, the cell tracking process can occasionally fail to track the 

location of cells within frames, meaning that if cell detection were only to be 

performed on the first frame of the video then many cells would not be tracked in the 

latter parts of the video.  These difficulties associated with tracking cells can be due to 

cell proliferation - giving rise to new cells, cell death – the loss of cells, and cells 

moving in and out of the field of view. 

In order to cope with these issues, an approach was adopted where duplicated cell 

locations are removed from the tracking process and cell detection is performed at 

regular intervals to find new candidate locations. This approach is found to be 

effective and results in location data for a sufficient number of cells over the duration 

of the video to adequately describe the cell population behavoir.  The entire cell 

tracking process is summarised in Fig. 2. 

 



 

Fig. 2. The process used for detecting cell locations within a video, and tracking detected cells 

between video frames 

2.3 Feature Extraction 

Once the location of cells has been identified for each frame of the video in the 

form of (x,y) coordinate pairs, it is possible to extract features with the aim of 

describing the cell population behaviour.  This was undertaken using the MATLAB 

programming environment [8] and to illustrate the processing applied, a single cell 

from a video analysed is taken as an example to demonstrate how features of interest 

are calculated. The cell selected has been tracked from a video of NHU cell culture 

with 50 µM exogenous ATP. As this cell was successfully tracked from the beginning 

to the end of the video, its path can be shown graphically as depicted in Fig. 3. 

 



 

Fig. 3. Example tracking of a single cell over a 20 hour video sampled every 10 minutes. 

2.4 Choice of Features 

The choice of features to extract from the videos was made on the basis of their 

subsequent use in describing cell behaviour.  For this reason features of (i) cell 

migration speed and (ii) migration persistence were defined as described below.  

2.4.1 Cell Migration Speed 

Speed of an object is the rate of change of its position. In this case, the aim is to 

obtain the migration speed of a cell from a video, which can be determined by 

calculating the number of pixels travelled over a certain time interval. The time 

interval applicable in this context is that between two consecutive video frames, at a 

frame rate of one every 10 minutes. The migration speed is therefore simply obtained 

by calculating the Euclidean distance between the two pairs of coordinates for the cell 

between consecutive frames. This is shown graphically in Fig. 4 where the initial 

position of the cell is at coordinates (74,32) and in the subsequent frame, coordinates 

(75,33). Hence, the distance travelled by this cell over time dt (10 minutes), and 

subsequently, its speed, can be calculated. The migration speed of all cells tracked 

during the entire video was calculated in the same way. 
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Fig. 4. Example calculation of cell migration speed. 

2.4.2 Cell Migration Persistence 

In cell migration, persistence is one of the features in which biologists are most 

interested and can be described as the tendency of cells to change direction. Hence, 

obtaining the direction of travel of the cell in each frame of the video is essential for 

calculating migration persistence.  
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Fig. 5. Direction of travel of cell migration. 

 

Fig. 5 shows how the angle of the vector formed from the coordinates of the cell in 

consecutive frames of the video can be used to determine the direction of travel. 

Angular Velocity is defined here as the rate of change of the direction of travel of a 

cell over subsequent frames. Fig. 6 illustrates an example calculation over two 

consecutive frames.  

 



                         

Angular Velocity = tan!!
!∀!!!

!∀!!∀
! tan

!! !∀!!∀

!∀!!∀
 radians/frame 

Fig. 6. Example calculation of cell migration persistence over two consecutive frames. 

3 Results 

Four time-lapse videos have been generated from three classes of NHU cell 

cultures: (i) a control culture with no ATP; (ii) a culture with 10 µM ATP; and (iii) a 

culture with 50 µM ATP.  The average cell migration speeds and average angular 

velocity for each video is presented in Table 1. 

 

Table 1. Automated average migration speed and average angular velocity values for a control 

culture with no ATP, a culture with 10 µM ATP and a culture with 50 µM ATP. 

Cell Culture Video  
Average Migration 

Speed (pixels/frame) 

Average Angular 

Velocity (rads/frame) 

Control1 3.52 1.31 

Control2 3.75 1.35 

Control3 3.45 1.37 

Control4 3.56 1.36 

10uM ATP1 3.04 1.52 

10uM ATP2 3.09 1.39 

10uM ATP3 3.08 1.52 

10uM ATP4 3.01 1.46 

50uM ATP1 2.00 1.79 

50uM ATP2 2.22 1.74 

50uM ATP3 2.06 1.77 

50uM ATP4 1.83 1.85 

 

By applying analysis of variance (ANOVA), it can be seen in Fig. 7 that the 

separation between the three classes for migration speed are statistically significant.  

Verification of these results was confirmed by comparing with manual tracking of 15 

random cells for each experimental condition as shown in Fig. 7.  Similarly, results 



for angular velocity, shown in Fig. 8, also demonstrate good separation between the 

three sets of culture conditions. 

 

 

Fig. 7. Automated calculation of cell migration persistence. Average migration speeds are 

shown in F-distribution form for Control, 10uM ATP and 50uM ATP Videos: small circles 

mark the mean of the group and the bars the 95% confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Calculation of cell migration persistence using manual tracking.   
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Fig. 9. Automated calculation of cell angular velocity. Average migration speeds are shown in 

F-distribution form for Control, 10uM ATP and 50uM ATP Videos: small circles mark the 

mean of the group and the bars represent 95% confidence intervals. 

 

4 Conclusion and Discussion 

The application of an automated approach for tracking and characterizing adherent 

cells in monolayer culture has been presented that compensates for the loss and gain 

of cells during the course of the video – a commonly encountered problem in tracking 

systems of this type. This opens the possibility of lineage-tracking within mixed 

populations, where the automated approach removes the labour intensive nature of 

manual tracking. Here, the classification of cells from cultures with and without 

exogenous ATP has identified statistically significant effects on cell behaviour that 

will contribute to understanding of urothelial tissue repair mechanisms and the role of 

ATP.   

We do not yet understand the implications of the results for urothelial biology as 

we have not previously had the capability to measure these aspects of cell behaviour.  

Purinergic receptor activation by ATP as a result of cellular release upon injury has 

been implicated in cellular migration during the restitution of cornea [9], airway [10] 

[11] and bladder [2] epithelial tissues, suggesting common effects. The underpinning 

mechanisms are poorly understood, although amplification of TGFβ1-induced actin 

remodelling associated with cell migration has been suggested [11].  The results of 

our study were unexpected in that we found ATP to give increased angular velocity 

and reduced migration speeds.  However, we studied the effect of exogenous 

application of ATP rather than local endogenous ATP release and although 

speculative, it may be that the precise mode (concentration/locality) of ATP 



stimulation might affect cell migration response including directionality, for 

recruitment to the wound. 

Current and future work is focused on further characterisation of the behaviour of 

cells using additional extracted features that relate to cohesivity – the tendency of cells 

to form and stay in clumps.  The nature of this contact can be described in terms of 

the duration of the contact and number of cells that form a clump, as well as the effect 

on post-contact migration speed and angular velocity of individual cells. These 

characteristics relate to the physical nature of the contact that forms between cells and 

provides critical information as to what extent they are transient or more sustained in 

character. 
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