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Abstract Endoscopic ultrasonography (EUS) is limited by variability in the
examiner’s subjective interpretation to differentiate between normal, leiomy-
oma of esophagus and early esophageal carcinoma. By using information other-
wise discarded by conventional EUS systems, quantitative spectral analysis of
the raw pixels (picture elements) underlying EUS image enables lesions to be
characterized more objectively. In this paper, we propose to represent texture
features of early esophageal carcinoma in EUS images as a graph by expressing
pixels as nodes and similarity between the gray-level or local features of the
EUS image as edges. Then, similarity measurements such as a high-order graph
matching kernel can be constructed so as to provide an objective quantifica-
tion of the properties of the texture features of early esophageal carcinoma
in EUS images. This is in terms of the topology and connectivity of the ana-
lyzed graphs. Because such properties are directly related to the structure of
early esophageal carcinoma lesions in EUS images, they can be used as fea-
tures for characterizing and classifying early esophageal carcinoma. Finally,
we use a refined SVM model based on the new high-order graph matching
kernel, resulting an optimal prediction of the types of esophageal lesions. A
10-fold cross validation strategy is employed to evaluate the classification per-
formance. After multiple computer runs of the new kernel SVM model, the
overall accuracy for the diagnosis between normal, leiomyoma of esophagus
and early esophageal carcinoma was 93%. Moreover, for the diagnosis of early
esophageal carcinoma, the average accuracy, sensitivity, specificity, positive
predictive value, and negative predictive value were 89.4%, 94%, 95%, 89%,

Corresponding author: Peng Ren, renpenghit@126.com

1 Software school, Xiamen University, Xiamen, Fujian, China
2 College of Information and Control Engineering, China University of Petroleum, Qingdao,
China.
3 School of Information,Central University of Finance and Economics, Beijing, China
4 Department of Computer Science, University of York, York, UK

Manuscript
Click here to download Manuscript: template_final_a.tex 
Click here to view linked References

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



2 Zhang et al.

and 97% respectively. The area under all the three ROC curves were close to
1.

Keywords Graph matching · Kernel · Endoscopic ultrasonography (EUS)
image classification

1 Introduction

Digestive system malignant tumors are common diseases for the human, and
so the diagnosis of gastrointestinal early carcinoma is very important for pa-
tient prognosis. This remains a difficult task, even for well-trained specialists.
Since its introduction in the 1980s, EUS has been established as a more ac-
curate imaging procedure compared with alternative imaging methods in the
diagnosis and staging of gastrointestinal malignant tumors. The greatest ad-
vantages of EUS are the visualization of the esophageal wall layers as well as
a guided biopsy of the specimen. The determination of the depth of tumor in-
vasion using EUS produces a ‘five-layer’ bright-dark-bright-dark-bright image
of the esophageal wall (see Fig.1(b)): the first layer represents the superficial
mucosa, the second layer corresponds to the mucosa, the third layer to the
submucosa, the fourth layer the muscularis propria, and the fifth layer the ad-
ventitia. Early esophageal cancer is often visualized as hypoechoic disruption
of the first three wall layers (see Fig.1(d)). However, EUS is usually limited
by the variability of the examiners’ subjective interpretation of images, and
the yield of EUS-FNA may be affected by technical limitations and tumor re-
lated factors. In addition, biopsies are highly required because of the inability
to specify target tumor cells, and this can result in complications attributed
directly to the procedure. Thus, there is an urgent need for new technologies
complementary to EUS for the diagnosis of early carcinoma. In particular, a
better differential diagnostic system is needed to assist endoscopists in their
decision making process and to guide EUS-FNA. Moreover, the methods can
be used to distinguish Crohn’s disease, intestinal tuberculosis, white plug’s
diseases and intestinal lymphoma.

Texture analysis is a basic issue in digital image processing (DIP) and com-
puter vision. Texture features are helpful for the diagnosis of several diseases in
clinical practice, and the potential of sonographic texture analysis to improve
tumor diagnosis has already been demonstrated [1–3]. However, few reports
exist regarding their use for EUS image classification. For the diagnosis of
early esophageal carcinoma, research using DIP and pattern recognition even
remains rare. For the diagnosis of pancreatic cancer, there are three reports
[4–6] of successfully using neural network analysis of EUS images to differenti-
ate pancreatic cancer from non-cancer. Das et al [5] reported high sensitivity
(93%) and specificity (92%), with excellent positive predictive values (87%)
and negative predictive values (96%). Loren et al [9] investigated the feasi-
bility of a computer-assisted evaluation of lymph nodes detected by EUS in
patients with esophageal carcinoma. Olowe et al [10] also applied quantitative
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Fig. 1 EUS images of normal esophagus and early carcinoma

analysis of the raw RF spectrum of the backscattered ultrasound to deter-
mine the feasibility of differentiating benign and malignant mediastinal and
abdonimal lymph nodes.

Another variation and application of EUS image analysis was based on
a support vector machine (SVM), which is one a successful kernel method
that learns the examples to assign labels to objects [11]. For example, two
recent studies [13] [14] utilized a simple SVM classification models for the
differential diagnosis of pancreatic cancer and chronic pancreatitis. The typical
SVM method which only uses predefined standard kernel functions to measure
the similarity of two objects. In our case, the source of data is EUS images [24].
However, standard kernel functions such as Gaussian or polynomial kernels are
rather limited for processing complex structured data such as EUS images, and
this may lead to a substantial loss of useful information. Therefore, further
refinements of the SVM method with a new kernel function could increase the
accuracy of the EUS diagnosis of tumors [13].

Digital images consist of pixels (picture elements), which are the basic
elements that compose a 2-dimensional picture. In order to extract useful in-
formation in digital image analysis, the distribution and spatial variation of
pixels is computed using texture analysis. Generally speaking, textures are
complex visual patterns composed of entities, or sub-patterns. Texture can be
considered as a group of repeated similarities relations on a image [15]. Thus
the definition of a texture pattern must take into account not only the isolated
primitives, but also the relations among pixels and their neighbors[18]. Con-
sequently, texture characterization and identification requires a methodology
capable of expressing the context surrounding each pixel, thus connecting local
and global texture characteristics. Graph theory lends itself naturally to the
analysis of the spatial relationship that exist in texture.
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4 Zhang et al.

Fig. 2 Graph-based representation of EUS image

In this paper, we aim to represent texture features of early esophageal car-
cinoma in EUS images using graphs and expressing pixels as nodes and sim-
ilarity between the gray-level or local features of the EUS image as weighted
edges. Measurements obtained by means of a high-order graph matching ker-
nel function can be constructed so as to provide an objective quantification of
the properties of the texture features. For early esophageal carcinoma in EUS
images this is in terms of the topology and connectivity of the analyzed graphs.
Because such properties are directly related to the structure of early esophageal
carcinoma lesions in EUS images, they can be used as features for character-
izing and classifying early esophageal carcinoma. More specifically, there are
three novel ingredients in our method. First, a graph based EUS image repre-
sentation is proposed, where each node represents a key point detected by the
SIFT algorithm (see Fig.2(b))[19]. Edges describe spatial relationships between
different SIFT key points(see Fig.2(c)). The graph structure encodes informa-
tion about key points located in a certain position of an image. Secondly, once
the graph representation is obtained, we formulate the EUS image classifica-
tion as a high-order graph matching problem. More specifically, we first develop
an h-layer depth-based representations for a graph, which is effected by mea-
suring the Shannon entropies [20] of a family of K-layer expansion subgraphs
derived from a vertex of the graph. The depth-based representation character-
izes graphs in terms of a high dimensional reformulation of the way in which
the complexity of the graph changes with the depth from its perimeter. Based
on the new representation, we first perform feature-based matching for EUS
images. This results in a coarse feature point mapping with certain mismatches
because the feature-based matching methods may neglect the spatial correla-
tions between feature points. We thus develop a high-order graph matching
scheme (referred to as hypergraph matching), which encodes spatial correla-
tions as hyperedges which can be used for identifying the mismatches in the
coarse matching results. Spatially inconsistent matches are then rejected from
the refined matching results. Finally, we develop a high-order graph matching
kernel and refine the SVM classifier using this new kernel. In summary, our
method may offer four advantages:
(1) It allows an objective quantification of the lesion properties and offers in-
formation complementary to conventional EUS imaging;
(2) Unlike feature-based matching methods which neglect the spatial cor-
relations between feature points, our method refines matched feature point
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pairs using higher order spatial constraints expressed in terms of a high-order
graph matching formulation. Furthermore, compared with alternative high-
order graph matching methods, which are computationally expensive, our
method reduces the computational complexity by taking advantages of the
matching results obtained from feature-based matching. It achieves high effi-
ciency in operation;
(3) Our high-order graph matching framework(referred to as hypergraph match-
ing) is robust to scale variation because the hypergraphs characterize higher
order spatial correlations which are scale invariant;
(4) The refinement of SVM model using an improved kernel better differentiate
between normal, leiomyoma of esophagus and early esophageal carcinoma.

2 Patients

The protocol used in this study was reviewed and approved by the Institutional
Review Board of the Zhongshan Hospital affiliated with Xiamen University,
Xiamen, Fujian, China. From December 2011 to July 2014, a total of 1210
EUS examinations were performed at the Department of Gastroenterology,
Zhongshan Hospital. Among this group, we randomly selected 66 patients with
early esophageal cancer(mean age 53 years; age range 21-87 years; 32 male and
34 female). The diagnoses obtained by EUS were further verified by biopsy. To
avoid selection bias, we excluded patients who had no early esophageal cancer
over the study period. Patients with pancreas and gall bladder lesions or masses
were also excluded. In total 91 patients (mean age 42 years; age range 32-75
years; 39 male and 52 female) who had no history of cancer (ie, EUS images
of corresponding parts presented with a normal anatomical structure of the
esophageal tract) were randomly selected and included as controls to describe
the appearance of the healthy gastrointestine. None of the control studies had
a history of pancreatic disease, symptoms of maldigestion, a history of alcohol
abuse, or elevated serum levels of pancreatic enzymes. None of them was a
smoker. All the EUS images obtained were processed and analyzed.

3 An Overview of Framework for EUS Image Classification

Figure 3 shows an overview of the proposed framework for EUS image classifi-
cation. From the preprocessed EUS images, we first establish a graph from each
ROI (region of interest). For each graph, the structure is characterized using
depth-based representation [7]. The advantage of using the depth-based rep-
resentation to characterize graphs is that it not only reflects dominant depth
complexity information around the vertex for a graph but also represents each
vertex in a high dimensional space. This is because the depth-based represen-
tation for a graph encapsulates information flow from the each vertex to the
global graph using entropy measures. In other words, the depth-based repre-
sentation reflect rich graph characteristics, and provides us an elegant way of
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6 Zhang et al.

evaluating the correspondence between a pair of vertices between two graphs.
Using the depth based representation of a graph, our framework takes first-
order feature point matching results as the coarse matching results. Then we
have conducted high-order feature point matching (referred to as hypergraph
matching) for rejecting mismatches and thus obtained the refined correspon-
dences. Based the matching results, a kernel is constructed. The kernel matrix
is then used to train the SVM classifier.

Fig. 3 Schematic diagram of the proposed classification framework

4 Depth-based Representations for EUS Images

An EUS image is represented by a graph G(V,E) whose nodes represent the
features selected using the SIFT algorithm [19] and nodes are connected based
on the relative neighborhood graph (RNG). When graphs are obtained, the
analysis of texture is converted to analysis a graph. Thus many graph-based
algorithms could be employed. Here, we exploit the graph structure by charac-
terising its high dimensional depth-based complexity information. The detail
of process is as follows:

For an undirected graph G(V,E) the shortest path SG(v, u) between a pair
of vertices v and u can be computed by using Dijkstra algorithm. The matrix
SG whose element SG(v, u) represents the shortest path length between v and
u is referred to as the shortest path matrix for G. Let NK

v be a subset of
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V satisfying NK
v = {u 2 V | SG(v, u)  K}. For G, the K-layer expansion

subgraph GK
v (VK

v ; EK
v ) around vertex v is
⇢
VK
v = {u 2 NK

v };
EK
v = {(u, v) ⇢ NK

v | (u, v) 2 E}.
(1)

Let Lmax be the greatest length of the shortest paths from v to the remain-
ing vertices of G(V,E). If Lv � Lmax, then the Lv-layer expansion subgraph
is G(V,E) itself.

4.1 The Shannon Entropy of A Graph

We compute the Shannon entropy of a graph based on steady state random
walks on the graph. Consider a graph G(V,E) where V denotes the set of
vertices and E ✓ V ⇥ V denotes the set of undirected edges. The adjacency
matrix A for G(V,E) is a symmetric |V |⇥ |V | matrix with the (v, u)th entry

A(v, u) =

⇢
1 if(v, u) 2 E;
0 otherwise.

(2)

The vertex degree matrix of G(V,E) is a diagonal matrix D whose vth di-
agonal element is given by D(v, v) = d(v) =

P
u∈V A(v, u). As a result, the

probability of a steady state random walk on G(V,E) visiting vertex v is
PG(v) = d(v)/

P
u∈V d(u). The Shannon entropy of G(V,E) associated with

the steady state random walk is

HS(G) = �
X

v∈V

PG(v) logPG(v). (3)

4.2 The h-layer Depth-based Representation for A Graph

For a graph G(V,E) and a vertex v 2 V , the h-layer depth-based representa-
tion around v is a h dimensional vector

Dh
G(v) = [HS(G

1

v), · · · , HS(G
K
v ), · · · , HS(G

h
v )]

T (4)

where h (h  Lv) is the length of the shortest paths from v to other vertices in
G(V,E), GK

v (VK
v ; EK

v ) (K  h) is the K-layer expansion subgraph of G(V,E)
around v, and HS(G

K
v ) is the Shannon entropy of GK

v and is defined in Eq.(3).
The h-layer depth-based representation Dh

G(v) characterizes the depth-
based complexity of G(V,E) with regard to the vertex v in a h dimensional
feature space. It captures the rich depth-based complexity characteristics of
substructures around the vertex v in terms of the entropies of the K-layer
expansion subgraphs with K increasing from 1 to h. In contrast, the existing
graph kernels in the literatures [21,22] tend to compute similarities on global
subgraphs of limited sizes and can only capture restricted characteristics of
graphs.
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8 Zhang et al.

5 High-order graph matching for refining feature correspondences

between two EUS images

In order to combine the merits of first-order feature point matching method
and high-order feature matching method, we first extract feature points for
each EUS image using the SIFT algorithm [19] and characterize each graph
with the h-layer depth-based representation [7]. Then, we apply the first-
order feature point matching method previously developed in [28,29] to obtain
the initial matching results and hypergraphs based on the first-order feature
matching results. Then, we use the high order structural refinement to update
the initial matching results. Fig. 4 shows the framework of our hypergraph-
based feature correspondence refinement method for EUS image databases.

Fig. 4 The hypergraph matching framework for EUS images feature correspondences.

5.1 First-order Feature Point Matching

We develop a matching method similar to that introduced in [12] for point
set matching, which computes an affinity matrix in terms of the distances
between points. We thus obtain the initial matching results between two EUS
images. In our work, for a vertex p of G(V,E), we treat the h-layer depth-
based representations Dh

G(p) as the feature vector associated with p. We use
the Euclidean distance between the depth-based representations Dh

Gp
(pi) and

Dh
Gq

(qj) as the distance measure between the vertices pi and qj of graphs

Gp(Vp, Ep) and Gq(Vq, Eq), respectively. The affinity matrix element R(i, j) is
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defined as

R(i, j) =
q

[Dh
Gp

(pi)�Dh
Gq

(qj)]T [Dh
Gp

(pi)�Dh
Gq

(qj)]. (5)

where R is a |Vp|⇥ |Vq| matrix. The element R(i, j) represents the dissimilarity
between the vertex pi in Gp(Vp, Ep) and the vertex qj in Gq(Vq, Eq). The rows
of R(i, j) index the vertices of Gp(Vp, Ep), and the columns index the vertices
of Gq(Vq, Eq). If R(i, j) is the smallest element both in row i and in column
j, there should be a one-to-one correspondence between the vertex pi of Gp

and the vertex qj of Gq. We record the state of correspondence using the
correspondence matrix C 2 {0, 1}|Vp||Vq| satisfying

C(i, j) =

8
<
:

1 if R(i, j) is the smallest element
both in row i and in column j;

0 otherwise.
(6)

Eq.(6) implies that if C(i, j) = 1, the vertices pi and qj are matched. Note that,
in row i or column j there may be two or more elements satisfying Eq.(6). In
other words, for a pair of graphs, a vertex from a graph may have two or more
matched vertices from the other graph. To assign a vertex one matched vertex
at most, we update the matrix C by employing the Hungarian method that
is widely used for solving the assignment problem (e.g., the bipartite graph
matching problem) in polynomial time [30]. Here the matrix C 2 {0, 1}|Vp||Vq|

can be seen as the incidence matrix of a bipartite graph Gpq(Vp, Vq, Epq), where
Vp and Vq are the two partition sets and Epq is the edge set. By computing
the Hungarian algorithm on the incidence matrix C 2 {0, 1}|Vp||Vq| (i.e., the
correspondence matrix of Gp and Gq) of the bipartite graph Gpq, we assign
each vertex from Gp or Gq at most one matched vertex from the other graph
Gq or Gp. Unfortunately, the Hungarian algorithm usually requires expensive
computation and thus may lead to computational inefficiency for the depth-
based matching. To address this inefficiency, an alternative way or strategy is
to randomly assign each vertex an unique matched vertex through the corre-
spondence matrix C. In other words, in the correspondence matrix C, from
the first row and the first column or from the first column and the first row,
we will set each evaluating element of C to 0 if there has been an existing
element that is 1 either in the same row or the same column. This strategy
will not influence the effectiveness of our resulting kernel in Section 6, and the
kernel is more efficient than that using the Hungarian algorithm.

5.2 Hypergraph Matching Based on Coarse Feature Correspondences

The first-order feature matching that identifies the correspondence between
vertices of graphs does not reflect the information converged by the vertex
coordinates in the EUS images. As a result, it does not take into account the
relative position between vertices in the graphs in terms of the coordinates of
the EUS images. However, in the literature, coordinate information is usually
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10 Zhang et al.

important for precisely aligning vertex correspondences, i.e., one can identify
incorrect matches between graphs through coordinate information.

To address this problem, we seek to develop a high-order graph matching
framework (referred to as hypergraph matching) for refining feature correspon-
dences between two EUS images. Unlike first-order feature point matching
methods which neglect the spatial correlations of feature points, we encode
spatial proximity relations into hyperedges, so as to match the edges or trian-
gles between two graphs. This will better preserve the geometry within each
graph and as a result the matching results will be more stable. The high-order
graph matching method works under the translation, rotation, reflection and
even strong deformation of either graph. Therefore, it is more likely to identify
mismatches in the coarse matching results and recover meaningful matching
between graphs. Moreover, this method allows us to choose different potential
functions to incorporate prior knowledge of the graphs and easily generalizes
to higher order matching.

Based on the definitions in Eq.(4), Eq.(5) and Eq.(6), we compute the
correspondence matrix C. The correspondence matrix C records the matched
vertex pairs between EUS images. Supposed the M first-order feature points
are denoted as p1, . . . , pM in the EUS image1 which are matched with M
feature points denoted as q1, . . . , qM in the EUS image2, respectively. We
then use the hypergraph matching strategy to refine the feature matching
results obtained in Section 5.1. We use the set of M feature points in the
EUS image1 to form a uniform hypergraph HGp where the vertices represent
the feature points in the EUS image1 and the weight on its one hyperedge
measures the spatial relationship among K vertices. In our work, we use three
vertices (i.e., K=3) to form one hyperedge. Let A be the adjacency tensor for
the hypergraph HGp with its (i, j, k)th entry ai, j, k representing the weight
on the hyperedge is determined by

ai, j, k = U(pi, pj , pk) ·W (pi, pj , pk) (7)

where i, j, k are the indices of the vertices pi, pj , pk in the hypergraph HGp.
We define U(pi, pj , pk) and W (pi, pj , pk) of (7) respectively as

U(pi, pj , pk) = det([vi � vk, vj � vk]) (8)

and

W (pi, pj , pk) =
X

i,j,k

1p
||vi � vk|| · ||vj � vk||

(9)

where the two dimensional column vectors vi, vj , vk represent the coordinates
of the vertices pi, pj , pk. The relation in Eq.7 defines the high-dimensional sine
function for the multiple angles established by pi, pj and pk in the hyperplane
[8]. For a sole angle in a plane, Eq.7 reduces to the normal definition for sine.
Here we use the high-dimensional sine function to characterize the higher-order
correlation within an n-tuple. Furthermore, we use it as hyperedge features
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for measuring hyperedge similarity. If two n-tuples are structurally similar,
their high-dimensional sine function is supposed to be close. Therefore, the
value of ai, j, k equals to zero if there is no hyperedge encompassing pi, pj , pk.
According to Eq.7, the value of ai, j, k is large when the three vertices are close
geometrically, and is small if these vertices are geometrically different [17].

Fig. 5 shows the hypergraphs and the matching example for two EUS
images.

Fig. 5 Matching example for EUS images. Different shape of borders represent hyperedges
of each hypergraph. Additionally, the solid line and the dash line between feature points
represent correct match and incorrect match, respectively.

From the hypergraph HGp and HGq, we establish an association hyper-
graph HG, whose M vertices represent the possible matching pairs between
EUS images and the weight on its hyperedge measures the similarity of the
potential correspondences. We build the adjacency tensor S for HG with
(i, j, k)th entry Si, j, k representing the hyperedge weight, which is defined as
follows

Si, j, k = exp[�
kai, j, k � bi, j, kk

2

2

σ

] (10)

where σ is a scaling parameter. Fig. 6 shows the association hypergraph HG
for the hypergraph structures in Fig. 5.

According to (10), Si, j, k characterizes the similarity between one form
(i.e., a hyperedge encompassing feature points {pi, pj , pk}) in HGp and the
matched hyperedge encompassing the matched feature points {qi, qj , qk} in
HGq. Additionally, it characterizes the structural consistency between the
hypergraphs established based on EUS image1 and EUS image2 separately.

5.3 Structural Refinement for First-order Feature Point Matching Results

The task of structurally refining the first-order feature point matching results
can be transformed into removing outliers, i.e., the incorrect matching results,
from a tight cluster in the subspace spanned by the adjacency tensor S of
the association hypergraph HG. According to Ren et al. [16], we apply vari-
ations of dominant cluster analysis (DCA) for High Order Dominant Cluster
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12 Zhang et al.

Fig. 6 The association hypergraph for the hypergraphs in Fig. 5. Four round form in blue
represent the initial matching pairs and the one starlike form in gray represents the correct
matching pair which is not established.

Analysis (HO-DCA), removing outliers. We denote the column vector x to
record the matching score, whose nth entry xn (n=1, . . . , M) indicates the
degree of structural consistency for the potential matching pairs {pn, qn}. Let
T denote the subset of vertices in HG which represent the correctly matched
pairs of vertices from HGp and HGq. As a result, the nth entry xn of x

also represent the probability for the nth vertex in HG belong to T. For our
three-dimensional tensor by using these ingredients, the optimal model can be
formulated as

bx = argmax
x

MX

i=1

MX

j=1

MX

k=1

Si, j, k

Y

n=i,j,k

xn (11)

subject to the constraints 8n, xn � 0 and
PM

i=1
xi=1.

According to (11), if the initial matching pair {pn, qn} is an incorrect
matching pair of T, then the nth entry xn of x will much less than 1. We
refer to the nonzero value xn satisfying the optimality condition in (11) as the
association degree for the matching pair {pn, qn}. Therefore, the problem of
removing outliers can be posted as a constraint optimization problem.

According to [16], we adopt the following iterative formula to update xi to
convergence

xi(t+ 1) = xi(t)

PM

j=1

PM

k=1
Si, j, k

Q
n=j, kxn(t)

PM

i=1

PM

j=1

PM

k=1
Si, j, k

Q
n=i, j, kxn(t)

(12)

where t indicates the tth iteration. The remaining M -1 entries of x can be
computed in the same iterative formula (12).

We use (12) to update the score vector x until we reach convergence. At
convergence the score vector x is the optimal solution to (11) and the nonzero
elements in x corresponds to correct matches.
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5.4 Computational Complexity

We consider the problem of matching two K-uniform hypergraphs each having
N vertices. The existing hypergraph matching strategies establish an associa-
tion hypergraph with N2 vertices by enumerating all potential matching pairs
and CK

N2 hyperedges. Normally, these strategies are not feasible for practi-
cal applications, because they have the computational complexity O((NK)2).
This is especially when the value of N and K are large. In contrast, our hyper-
graph matching framework establishes an association hypergraph with only N
vertices and CK

N hyperedges. The computational complexity of our method is
O(NK). Key to this efficiency is that the feature-based matching establishes
coarse correspondences between the hypergraphs HGp and HGq, and thus sig-
nificantly reduces the enumeration of possible matching pairs. Thus, our hy-
pergraph matching framework improves the matching accuracy by discarding
outliers from the coarse matching results with low computational complexity.

6 A new high-order graph matching kernel for SVM classifier

We use the first-order and high-order graph matching strategies that are de-
scribed in previous sections, and define a new graph kernel function by count-
ing the number of matched vertex pairs. Consider Gp(Vp, Ep) and Gq(Vq, Eq)
as a pair of sample graphs. Based on the definitions in Eq.(10), Eq.(11) and
Eq.(12), we compute the score matrix x, where the nonzero elements in x

corresponds to correct matches. The resulting graph matching kernel value
k(Gp, Gq) between Gp(Vp, Ep) and Gq(Vq, Eq) is computed by counting the
number of nonzero elements of x.

For a graph dataset having N graphs, the kernel matrix can be computed
using the following computational steps: 1) For each graph, compute the h-
layer depth-based representation around each vertex; 2) Compute the initial
corresponding matrix C for each pair of graphs based on their depth-based
representations; 3) Refine the matching results by hypergraph matching; 4)
Compute the kernel value for each pair of hypergraphs based on the number
of nonzero elements in x. When the kernel matrix obtained, we can use it to
train a support vector machine (SVM) classifier.

7 Experiments and Comparisons

A 10-fold cross-validation strategy is employed to evaluate the classification
performance. Specifically, the entire sample is randomly partitioned into 10
subsets and then we choose one subset for test and use the remaining 9 for
training, and this procedure is repeated 10 times. The final accuracy is com-
puted by averaging of the accuracies from all experiments. We quantify clas-
sification performance using four statistical measures, i.e., accuracy, sensitiv-
ity, specificity, and the area under the receiver operating characteristic curve
(AUC).
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7.1 Cluster Evaluation
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Fig. 7 Distribution of samples of three types of esophageal EUS images using the leading
three principal components extracted from kernel ECA.

First, we evaluate the performance of our proposed kernel on graph clus-
tering problems. We also compare our kernel with several alternative state of
the art graph kernels. These graph kernels include 1) the Weisfeiler-Lehman
subtree kernel (WL) [38], 2) the shortest path graph kernel (SPGK) [39], and
3) the graphlet count graph kernel (GCGK) [40]. For our kernel, we set h as
10. For the WL kernel, we set the highest dimension (i.e. the highest height of
subtrees) of the Weisfeiler-Lehman isomorphism as 10. For the GCGK graph
kernel, we set the size of a graphlet as 3. For each kernel, we perform the
kernel entropy component analysis (kECA) [25] on the kernel matrix to em-
bed graphs into a 3-dimensional principal space. From Figure 7, it is clear
that our method demonstrates much clearer cluster structure than that by
other three alternative kernel methods, with relatively little overlap between
clusters. Form Figure 7(a), different dispersions were obtained for each clus-
ter, with the non lesions of esophageal EUS images giving the largest scat-
ter and the remaining two types of esophageal lesions (leiomyoma and early
carcinoma) yielding relatively compact clusters. Form Figure 7(a), there is a
separation of early esophageal carcinoma from leiomyoma of esophagus, with
early esophageal carcinoma tending toward the right of the figure and leiomay-
oma from left. However, there still exists some overlap between them, which
is largely a consequence of the projection of the data onto a three dimensional
space and could be minimized by considering a higher dimensional space.

7.2 Classification performances

The confusion matrix for the three groups, provided in Figure 8, shows that
the system performs very well on healthy images of the esophagus, since more

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Title Suppressed Due to Excessive Length 15

94.1%

5.7%

0.00

4.9%

89.4%

0.8%

1%

5.1%

99.2%

Leiom
yom

a of esophagus

Early esophageal cancer

N
orm

al esophagus

Leiomyoma of esophagus

Early esophageal cancer

Normal esophagus

Fig. 8 The confusion matrix for EUS image classification

than 99% of healthy images have been correctly classified. The false alarm rate,
i.e. healthy patients mistaken for early esophageal carcinomas, is quite small.
However, non-detection, i.e., early esophageal carcinoma subjects mistaken
for healthy ones, represent a greater risk than false alarms. This non-detection
rate, which reaches 5.1% for the early esophageal carcinoma group, leaves room
for improvement. In order to fully evaluate the proposed method for the early
detection of this type of disease in esophagus, the sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV) and the overall
diagnostic accuracy were calculated (see Table 1). Sensitivity measures the
proportion of actual positives which are correctly identified (e.g. the percent-
age of early esophageal carcinoma patients who are identified as having the
condition), and the specificity measures the proportion of negatives which are
correctly identified (e.g. the percentage of normal subjects who are identified
as none suffer from any esophageal disease). As shown in Table 1, the proposed
method yields an excellent testing performance of 93% accuracy on average,
for multiple computer runs of the new SVM model. Specifically, in the case of
early esophageal carcinoma, the classification had a sensitivity of 94% which
is clinically important for early and proper treatment. The specificity is 95%,
positive predictive value is 89% and negative predictive value of 97%. Figure
9 shows the corresponding bi-normal receiver operating characteristic (ROC)
curves for three cases. The diagonal reference line represents the outcome of a
test that offers no predictive benefit and has an area under the curve of 0.5.
The area under all the three ROC curves close to 1 indicating a very good
classification performance.

Table 1 Performance characteristics of the SVM classifier with new kernel

Sensitivity Specificity PPV NPV

Leiomyoma 94% 97% 94% 97%
Early carcinoma 94% 95% 89% 97%
Normal 94% 100% 99% 97%

Overall accuracy: 93%
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Fig. 9 Receiver operating characteristic (ROC) curve for differential diagnosis of leiomy-
oma, early esophageal carcinoma and normal esophagus by using a new SVM model

To provide a better evaluation of proposed approach, a comparison with
traditional texture analysis algorithm was performed. The algorithm for ref-
erence is Tamura [26]. Tamura gives five textural properties: Coarseness, Con-
trast, Directionality, Line-Likeness and Regularity. Coarseness basically relates
to the distance in gray levels of spatial variations, which is implicitly related
to the size of primitive elements forming the texture. Contrast measures dis-
tribution of graph levels that varies in an EUS image and to what extent its
distribution is biased to black or white. Directionality of an EUS image is
measures by the frequency distribution of oriented local edges against their
directional angles. Line-Likeness in an EUS image is average coincidence of di-
rection of edges that co-occurred in the pairs of pixels separated by a distance
along the edge direction in every pixel. Regularity measures a regular pattern
or similar that occurred in an EUS image. The experiment results are listed in
Table 2. From Table 1 and Table 2, we can conclude that our proposed method
is more competent than Tamura features in texture analysis no matter using
any values to figure the performance.

Table 2 Performance characteristics of the SVM classifier with Tamura texture

features

Sensitivity Specificity PPV NPV Accuracy

Tamura 82% 85% 75% 89% 65%

8 Discussion

The incidence of gastrointestinal malignant carcinoma is increasing with pop-
ulation, therefore the diagnosis of gastrointestinal carcinoma become very im-
portant for the prognosis of patients, this is especially for the patient with
erly gastrointestinal carcinoma. However, early diagnosis remains a signifi-
cant clinical challenge to medical doctors, in particularly in the setting of the
prognosis of gastrointestinal malignant carcinoma [34]. EUS is an important
medical method for the judgement of early gastrointestinal carcinoma, it can
provide accurate staging of associated lesions [35,36]. However, the decision of
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EUS are affected by many factors. Published studies reported that even with
the application of EUS-FNA and biopsy, the sensitivity in diagnosing gastroin-
testinal malignant carcinoma was still very low. When there is coexistence of
pancreas and gall bladder lesions or masses, leiomyoma, the sensitivity was
even lower. This decrease in sensitivity can be caused by many subjective or
objective variables associated with increased cytologic yield from EUS, such
as experience of doctors, the resolution ability of medical equipment, the tu-
mor size and staging. In addition, for the endoscopic ultrosonography (EUS)
physician, the ability to identify the different early gastrointestinal carcinoma
is also crucial. Interpretation of EUS images is inherently subjective and de-
pends on the endoscopist’s experience. If the biopsy results cannot provide
effective support, the medical process will be tough for both patients and doc-
tors. The image classification of early gastrointestinal carcinoma is the core of
diagnosis [37]. Although noninvasive US tissue characterization could address
this issue and reduce the need for repeated biopsies, this method still seems to
be limited by its poor quantification capability. To overcome these limitations,
we have attempted to derive more objective findings from EUS images.

A EUS image is composed of pixels, and its echo density is expressed in
brightness values from 0 (black) to 255 (white). The texture analysis of EUS
images is, in principle, a technique for evaluating the distribution and spatial
variation of the pixel intensities [31]. Texture features are helpful for clas-
sifying lesions in sonography [32], and the potential of sonographic texture
analysis to improve tumor diagnosis has already been demonstrated[2,3]. Be-
cause most of these diagnostic features are related to the textural properties
of the EUS images, they can be investigated in a quantitative and systematic
way via automated texture extraction and analysis directly from the digitized
EUS image. In our study, we present a novel method for extracting texture
information. If input EUS image is converted into an undirected graph whose
vertices correspond to the SIFT features. Then, we compute an h-layer depth-
based representation for a graph, which is effected by measuring the Shannon
entropies of a family of K-layer expansion subgraphs derived from a vertex
of the graph. The depth-based representations characterize graphs in terms
of high dimensional depth-based complexity information. This enables us to
perform a texture analysis which considers both micro and macro texture
information. The present study have proved that analysis of the texture in-
formation of EUS image allows the differentiation between early esophageal
carcinoma and leiomyoma of the esophagus with a good sensitivity, specificity,
and accuracy.

Kernel-based methods such as support vector machines (SVM) have been
used as a potential mechanism for the design of a classifier responsible for dif-
ferentiating between malignant and begin lesions[33]. Compared to alternativer
classifier paradigms, such as neural networks, fuzzy classifiers, or decision trees,
SVMs (which are based on the principle of structural risk minimization) offer
advantages, such as a convex objective function with efficient training algo-
rithms and good generalization properties. However, they are rather limited for
processing complex structured data such as EUS images when used with stan-
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dard kernels such as the Gaussian kernel applied to global features. The key
contribution of this paper is the definition of a new kernel for SVM approach
based on graph matching for EUS images. Our kernel keep the underlying
topological structure of graphs by describing them through the depth-based
representation and high-order graph matching. Moreover our kernel encom-
passes local information, by computing the depth-based representation around
a vertex by measuring a Shannon entropy for this expansion subgraph. It also
encapsulates global information, by gauging the Shannon entropy flow us-
ing the expansion subgraphs. It thus reflects the high dimensional complexity
characteristics of the graph around the vertex. This implies that our proposed
kernel matrix can encode more structured information from EUS images.

By computing the SVM classifier with a new kernel, we obtained a good
overall testing performance (93%), used for the differential diagnosis of early
esophageal carcinoma, leiomyoma of esophagus and normal esophagus. More-
over, the area under each ROC curve was close to 1, which indicated excellent
values of sensitivity, specificity, and accuracy for this imaging approach for the
differential diagnosis of early esophageal carcinoma, leiomyoma of esophagus
and normal esophagus. This is essential in borderline cases, in which the value
of EUS-FNA is limited by the low sensitivity. Because EUS-FNA in patients
with focal esophageal lesions has a low NPV, the utility of a neural computing
approach of EUS elastography recordings cannot be underestimated.

The establishing of gastrointestinal early carcinoma image classification
recognition system is just a starting of the understanding of all gastrointestinal
diseases by EUS. We have attempted to recognize the features of gastrointesti-
nal diseases from different perspective. According to its preliminary results of
testing, the image classification system is effective for diagnosis of early gas-
trointestinal carcinoma, however lots of further work still need to be done.
This includes increasing sample libraries, improving the identification accu-
racy of the image classification recognition system, and clinical application
testing are equally important for the modification, and if permitted, we may
also be able differentiated the Crohn’s disease, intestinal tuberculosis, White
plug’s diseases and the intestinal lymphoma using our system.

9 Conclusion

In this paper, a hypergraph matching framework for refining first-order fea-
ture correspondences has been proposed. The framework we presented jointly
considers both feature similarities and spatial feature layouts. Our frame-
work takes first-order feature point matching results as a coarse matching.
Then we have conducted hypergraph matching for rejecting mismatches and
thus obtained refined correspondences. Our framework has exhibited effec-
tiveness in differentiating between normal, leiomyoma of esophagus and early
esophageal carcinoma. Furthermore, our method is computationally efficient
because the association hypergraphs established based on coarse correspon-
dences have a considerable smaller number of vertices than hypergraph based
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matching methods without the coarse matching. Quantitative evaluation in
our experiments has shown that our method achieves high accuracy.
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