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Abstract

We discuss nonparametric estimation of conditional qlemtf a circular distribution when the conditioning
variable is either linear or circular. Two fiérent approaches are pursued: inversion of a conditiosdilalition
function estimator, and minimization of a smoothed checlcfion. Local constant and local linear versions of both
estimators are discussed.

Simulation experiments and a real data case study are ufkdtmte the usefulness of the methods.
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1. Introduction

Quantile regression focuses on estimating either the tiondi median or other quantiles of the response vari-
able. When compared with ordinary least squares regressmpan say that quantile estimates are: a) more robust
when the distributions of the covariates gderror terms are heavy tailed; b) more easily interpretéftthe con-
ditional distributions are asymmetric. However, quantégression is typically used to gain insights on the whole
underlying conditional distribution through the estinoatiof various percentiles. Similarly, predictive inteivalre
often determined by estimating pairs of extreme condifignantiles.

Methods used for quantile regression range from fully pataicn— in the simplest case, we have a normal
distributed response, along with linear quantile curveso-fully nonparametric, where local smoothing of observed
guantiles is carried out, see, for example, Jones and H&PRQ)L Usually, either the quantile curves or response
distribution is estimated nonparametrically. Jones andfaity (2013) provide a critical account of the literature.

In practice, as it happens for the majority of circular stits indices, a set of quantiles can be estimated for each
possible choice of the origin. In some situations there magxiernal information, or data could be confined to a
small arc of the circle (reproducing an euclidean-like se&r), but more generally (as in our example) we could
choose the origin according tonainimum widttcriterion. That is, for any specified quantile, the origirtiosen so
as to minimise the width corresponding to the estimatedmateln any case, we observe that a change of the origin
simply generates a linear shift on the cumulative distidsufunction (CDF) values, i.e. in the quantile order. Such
an equivariance form links estimates based on same datathudiierent origin.

Also, the definition, and then the estimation, of the circ@BF is not an obvious extension of the standard theory.
Itis perhaps for these reasons that quantile regressiomssa@eexplored in the circular setting, even from a parametri
perspective. The CDF of a random an@liéaving densityf is defined as(6) := f_i f(u)du, 6 € [-x, 7); this implies
thatF(-x) = 0 andF(r) = 1. Whenf is seen as a periodic function haviRgs its support, then

lim F(a) = oo,

a—+oo
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and for a quantile of ordare R, sayqc, and an integek, we have
F(qc + k27) = F(qc) + k.

Clearly, this real-valued representation is pretty unfeamand practically un-necessary because all of the infor-
mation is contained by its restriction over the interval ofkes -, 7). Although this circle representation introduces
an apparent discontinuity at the origi {s not periodic), it implies a CDF assigning probabilitiead quantiles order
ranging in [Q 1].

In this paper, we propose estimators for circdanditionalquantiles. Other than the usual pros of the nonpara-
metric approach, notice that, because circular quangtieslefined on a circle, boundary problems do not arise when
the predictor is circular. Surely, we could still conceiveealar populations with densities that are either disgent
uous or whose support is a subset of the circle, but aftetla fitought we would conclude that such data are well
represented also on the line, and conveniently studiedjusiclidean methods. For example, we could estimate the
CDF using the methods proposed by Berg and Politis (2009yetreral, consider that if the baseline of euclidean
theory is a linear quantile function, a straight line is iagdate to interpolate quantiles whereas periodic funstza
the natural tool.

Specifically, we investigate two strategies for the abowgk:taa) inversion ofdouble-kernekstimators of the
conditional distribution function; b) minimization of a smthedcircular check functionWe consider local constant
and local linear versions for both estimators, and derie& gsymptotic properties.

Section 2 deals with local constant and local linear vesimindouble-kernel estimator of a conditional circular
distribution function, for both circular and linear conditing cases. In Section 3 we define conditional quantile
estimators as inverses of conditional distribution funictestimators, while, in Section 4, we follow the approach of
minimising a smoothed check function. In Section 5 we inelacdsmall simulation study to investigate and compare
the finite sample performance of our estimators. FinallySéttion 6 we illustrate some of the methods using an
application to aspects of wind turbine installation, by sidering data on wind speed and direction at a particular
location.

2. Conditional circular distribution function estimator

Let (U,®) be aU x [-r, n)-valued random vector, wheté is a random variable taking values over a generic
domain, and® is a random angle. Left(6 | u) denote the conditional density &f givenU = u, at6 € [-x, 7). We
address the problem of nonparametrically estimakifg| u) = f_gn f(t | u)dt, foru e U, in the cases wher¥ is the
unit circle orU = [0, 1], andF is absolutely continuous. Notice that settidgequal to the interval [AL], which is
common practice in nonparametric modeling, does not leasiydoss of generality.

In order to construct our estimator we start from the kerséheator of f(6 | u), which can be conceived as the
ratio between the kernel estimator of the joint density drelkernel estimator of the marginal one. In particular,
letting U1, ®1), - - - , (Un, ®y) be independent copies di(®), for a € [-x, 7r), we write

Tt @) 3y Quu— UK (a - ©)

f(u) Yt Qu(u—-Uy)
with K, being acircular kernelwith concentration parametere (0, +0), i.e. a non-negative function defined on the
unit circle, admitting an uniformly convergent Fourierissrrepresentatiol,(6) = (2r)"}{1 + Z‘j";l yi(k)coqjo)},
wherey;(k) is a strictly monotonic function of. Moreover, wherl is the unit circle ([01], resp.),Q, is a circular

kernel (euclidean kernel supported efl] 1], resp.) with (scaled by a, resp.) smoothing fadtar (0, +0).
Then, a smooth estimator f&(6 | u) can be defined as

S Qu(u— U{We(6 - ©) — Wy (—x — )}
Yty Qu(u—-Uy) ’

f;l,x(a' | U) =

0
Bu0]u) = f falu) = )

whereW,(a) = f_i K.(t)dt, forae R.

Remark 1. Notice that estimates produced by (1) é@na fidecircular CDFs values. Consider, in fact, that they are
nondecreasing, right-continuous, and have these progerti
2



a) Fu(-mlu)=0, Fi(rlu=1,
b) liMassseoF k(@] U) = o0,
c) Ficge+k2m | u) = F (g |u)+k ceR

Also, estimator (1) isequivariantin the sense that, when we rotate the origin, its values rarshifted by a
constant term. This property describes, obviously, alse tiecular quantiles estimates, defined as the inverse of (1)
change when the origin is rotated.

A general class oflouble-kernel local polynomiastimators fo=(6 | u), which includes estimator (1), can be
derived as follows. Let

0
m(e,w) = E U f(ul W)dU] = E[Wi(6 — ©)) = W (-7 - ©)) | U = w],
we know that, under the usual mild conditimf_gﬁ f(u | w)duis consistent fo- (6 | w), thus for a big enoughk we

can writem(d, w) ~ F(6 | w). Now consider the followingpth order series expansion B{6 | w) for w aroundu € U,

P -
FOIW =F@Iu+ ) FOY@| Uj)|\PI(W u)
=t !

+o(PPH(w — u)),

whereW¥(u) = sinu) (u, respectively) whefy is the unit circle ([01], resp.), and, fori(j) € N x N,
i+]

faiobi

FED@ | u) = F(al b)lou

Then, apth degree local polynomial estimator {6 | u) can be defined as the solution &y of

BorBp 4=7

2
n p

argminZ {WK(G — 0;) — W(~m,7) - Z,B,—‘I’j(u - Ui)} Qu(u-Uj).
0

Clearly, whenp = 0, the solution fop, is given by estimator (1), whereas whenr- 1, such a solution defines a local
linear estimator of (0 | u), i.e.

Yt La(u = U){W(6 - B;) = W, (-7 — 6y)}

Faudflu) = Yt Lau—-Uj) ’

(2)

where

Lau=Up = Qu(u=U){ ) Qulu= Up¥a(u-Up) - P(u-U) ) Qu(u=-Up¥(u- U}
=1 j=1

It is possible, although rarely in practice, that a locatinestimate o (¢ | u) is non-monotone, yieldingon-bona-
fideestimates. Importantly, whem= 1 the solution fop; of the above minimization problem is an estimator of the
conditional density. Although conditional density esttioa in the circular-circular or linear-circular settingeans a
promising research field, we will not pursue it further in firesent paper.

Remark 2. Interestingly, observe that the structure of the estinmtemains the same in the case of a multidimen-
sional conditioning variable: it simply gfices to replace the one-dimensional kernels by multidinoeasones.

In what follows, we denote ggthe density ofJ, and assumk, to be a von Mises density with zero mean direction
and concentration parametex( < oo, i.e. K,(6) = {277(x)} ! expk cos@)), with To(-) being the modified Bessel
function of the first kind and order O.



2.1. Conditioning on a circular variable

Here we consider the case in whithis the unit circle, and denote the conditioning variabledbyAlso, after
definingn;(K,) = f_’; K.(6) sin'(6)de, we say thak, is a sth sin-order circular kernel if and only ifo(K,) = 1,
nj(Ki) = 0 foreach O< j < s, andns(K,) # 0.

In particular, we assume th@}, is a second sin-order circular kernel, whose Fourieffuments, sayy;(1), for
evenj > 0, satisfy

lim (1= (/11 - y2()} = /4. (3)

This latter condition assures that, for evies 2, 77;(Q.) = 0(772(Qx)), as clarified in the following

Remark 3. For a circular kernel K, and even 0

mK) = 2,1{( o) f( (S S)yZS(K)}

If K. has second sin-order, thefj(K,) = o(r2(Ky)), for each even j> 2, if and only ify>5(K,) = 1 for each
1 < s< j/2. Now, the fact thalim,_. yj(«x) = 1 leads to conditior{3).

Typical examples of densities which are second sin-ordetlgr kernels and satisfy above condition are: von
Mises, wrapped normal and wrapped Cauchy.
Now, lettingR(Q,) = f_’; Qﬁ(e)de, for both local constant and local linear estimatorg¢f | ¢), we get

Theorem 1. Given the—x, n) X [-x, r)-valued random sampl@q, ®1), - - - , (Dn, Op), if

i) the density g ofb is strictly positive, K6 | ¢) and (¢) are twice continuously gierentiable in some neighbor-
hoods 0¥ € [-n, ) and¢ € [—n, ), respectively;

i) «is such thatim, .« =0;
iii) A increases with n, antim_., 72(Q,) = 0 andlim,_,., n"'R(Q,) = 0

then, for estimator (1) we have

2 3 _ n2(Q) £(02) g'(9) FOD
EFLO10]1-FO19) = TE2FO%010)+ 20 SFCY019)

1
+5AFE001 ¢) — FEO(=m | 9)) + 0(12(Qu) + «71),
while, for estimator (2) we have

ELF 101 9)] - (91 ) = T2

and, in both cases,

FO201 g) + 5 (FE0 1 9) — 2| )+ 0(ra(Q) + 47,

VarF (0] )] = ) R(Qﬂ))

ng(¢) nvk

Proof. See appendix for Proof O

(FO100-F01 01 - =IFO0010)+ FOOr )]} +of

Because the asymptotic variances are the same, a simpleshdeing the relativeféiciency of the local constant
and local linear methods could be:

FO201 9)

EFF@) = , ,
FO(g| g) + ZEFCD(G | )

(4)

and we see that the quantii(¢)/g(¢) is zero if the design densityis uniform, whereas it is proportional to si#)(
if gis von Mises or Wrapped Cauchy. In all of these cases, thevimtat local linear and local constant tend to be
nearly similar in the tails and identical at the critical pisi or flat portions of the design density.
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2.2. Conditioning on a linear variable

We now assumé& = [0, 1], and indicate the conditioning variable s Moreover, we seQ;(-) = 171Q(1™1),
A > 0, with Q being a second order euclidean kernel supported-an].

Then, lettings;(Q) = [ xIQ(X)dx, j € N, andR(Q) = [ Q¥(x)dx, for estimator (1), we get

Theorem 2. Given the[0, 1] x [-x, 7)-valued random sampléXy, ®1), - - - , (Xn, ®y), if assumptions i) and iii) of
Theorem 1 hold withil < x < 1 — 1 in place ofgp, and

i) Ais such thatimp. 4 = 0andlimp_,e NA = oo;

then, for estimator (1) we have

- _ P2Q (o2 I o 1 Feo 20) -
ELF (01 0] = F(91 %) = LZ2{FO2(01 0+ 20 SO0 1) + 5 FEO01 )~ FEOr )+ o4 7,

while, for estimator (2) we have

2
E[F.(01X)] - F(0] %) = M‘%(Q)

1
FOI@g | x) + 2—{F<2-°>(9 | X) = F@O(—n | ¥)} + 0(2% + «71),
K

and, in both cases,

: _ RQ _ 1 ceo w0y _ ( L )
VailFu01 9] = s {FO O = FO101 = = FH901 9 + FA9r 01+ o o
Proof. See appendix for Proof O

Comparing the iciency of local constant and local linear fits, we observe lieae the situation could be quite
different from the circular conditioning case in the tails of tlesign density. In fact, it can easily be seen that if
belongs to the exponential family, then the correspondidgx (4) can be made arbitrarily small forfBciently big
x. For example, observe thgt(x)/g(x) = —x for the standard normal density. When the tails are not exptially
bounded the situation improves for the local constant ntetleor example, in the standard Cauchy case we have
g'(x)/g(x) = —2x/(1 + x?), such that liny_., EFF(X) = 1 making the behaviors identical.

The above theorem does not address the estimation dotiredaryregion, defined agx < A} U {x > 1 — A}.
Although the boundary region is asymptotically vanishiihig known that the estimation is less accurate there. We
do not present specific results on this because the usualythpplies with modifications exclusively due to the
structure of the circular cumulative distribution estiorat

3. Double-kernel estimator of circular quantiles

Denote asy,(u) the ath quantile of the conditional distribution &f givenU = u, i.e. F(a | U), @ € (0,1). As
the inverse of, the definition of a quantile for circular distributions islavard due to the need of an arbitrary choice
of where to “cut”, the circle. Sensible choices include= arg minf(6) or 6, = = + arg maxf (6), but in general the
densityf will be unknown. Avoiding this issue requires the estimatid a family of quantiles corresponding to each
possibledy and interest may then lie in estimating iaterval which maximizes some quantity of interest.

We address the problem of nonparametrically estimaiiig) for the case wheb is either circular or linear.

A kernel estimator for the circular quantig(u), « € (0, 1), can be defined as

Ooai(U) = Frk(a | u) (5)

Clearly the local constant (local linear, respectively)sien oflf“ in Equation (5) ((2), resp.) gives a local constant
(local linear, resp.) version of the estimatpr, . (u). However recall that, very occasionally, local linearagwnon-
monotonic estimates &f, and this would give non-unique quantile estimates thatnoajncrease with their order. As
a consequence, confidence intervals would no longeelseed this latter property assures that a confidence interval
containsany other one defined in the same way but with smaller coveragaveler, this problem is practically
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solved by selecting the quantile solution which is the maximsolution of (5) ife > 0.5 and the minimum solution
if @ <0.5.
Due to the angular nature of estimator (5), its performaacebe assessed by the following accuracy measure

L[CIQ,A,K(U)] = E[2{1 - COS@Z,),K(U) - qa(u))}]’ (6)

which can be regarded as the circular counterpart of the regaared error of einear estimator, as clarified in the
following

Remark 4. Let pp and p, respectively denote the cartesian coordinates of angjlendd,, i.e. p = (cos@,), sin()),
fori € {1,2}. Then, using the fact théi|| = |||l = 1, one hag|p; — pll* = 2(1 - cos@y — 62)).

Specifically, letting

_|m2(Qy) if Uisthecircle
Q)= {A%(Q) it U=10,1],
and
Q) = R(Q,) if Uis thecircle
YRV ERQ) i U= [0, 1],

for the local constant version of our estimator, in bothdinand circular conditioning cases we get

Theorem 3. Given theU x [-r, 7)-valued random sampl@Jy, ©1), - -, (Un, ©), consider estimato(5) with F
being defined irf1). If f(q,(u) | u) # 0, assumptions i) and iii) of Theorem 1 hold, and assumptipafiTheorem 1
or assumption i) of Theorem 2 is satisfied wiieis the circle andU = [0, 1] respectively, then

n f(Q/l){F(OYZ)(Q(k(u) | U) + Z%F(OJ)(QQ(U) | U)} F(Z’O)(qa(U) | u) — F(Z,O)(_ﬂ. | U) 2
2180101 = NI ¥ 2 () 10 }
. Qa1 ~ 0) ~ (m) A (G, 1) + (o W)

 OIECIOI

Proof. See appendix for Proof O

+0(£2(Qu) + 72 + (k) 2(Qu))

When local linear weights are employed in Equation (5), wiaiob

Theorem 4. Given theU x [-r, 7)-valued random sampl@Jy, ©1), - - , (Un, ©y), consider estimator (5) with ,
being defined iff2). Under the assumptions of Theorem 3, then

i _ [E(QU)FOD(gu(u) | U) F<2f’>(qw(u>|u)—F<2~°>(—7r|u)}2
L[q”’”’”(“)]‘{ M@y 2 (@@ 10

L YQute(1-a) - ()2 1 (Ga(U) | W) + f(=n | U)])
ng(u) F2(0e () | u)

Proof. See appendix for Proof O

+0(£4(Qu) + k72 + nHm) V(Q))

As for links to previous work, Di Marzio et al. (2012) defined estimator of a (unconditional) circular quantile
as the inverse of a kernel estimator of a circular distrdoufunction. Here, the definition of a circular distribution
function implies the choice of a (finite) lower limit of integgion, which yields a kernel estimator with an ‘extra term’
which depends on it. Clearly, accuracy (and optimal smagghfor both circular distribution and circular quantile
estimators depend on this integration limit.

Concerning the optimal smoothing we treat separately tsescaherdJ is circular or linear. In particular, in
the first case we have that, since for a circular kernel theogimmy parameter is not a scale factor, the optimal
smoothing theory requires a specific form @y. Here, we assume th@, is a von Mises kernel with mean direction
0, and concentration parameter> 0. Hence, recalling that for this kernel, wherincreases;»(Q,) ~ 171, and

6



R(Q,) =~ {1/(4n)}Y?, when we choosg < «, we have that the leading term 6{d,....(¢)] essentially depends only
on 4, whose optimal value turns out to be

lo = {282(%(4&) | ¢)g(¢)n7r1/2}2/5
0~ a(l-a) ’

(7)

where, foru € U, B(gu(u) | U) = FO(q,(u) | u) + 228 FOY(q,(u) | u) in the local constant case, aBfg,(u) | u) =
F©2)(q,(u) | u) in the local linear one.
Conversely, whel) = [0, 1], choosingl > /2 leads to the following optimal value of the (interior) baridti

{ a(1- 9)R(Q) }”5
=1 2 ’
12(Q)B(qu(x) | )g(x)n

which corresponds to the optimal bandwidth of local doutdenel estimators aduclidearconditional quantiles when
the bandwidth in the dependent variable direction is assitmee smaller than that in the direction of the conditioning
one.

Notice also that, as increases, while the smoothing parameter in@aéirection goes to infinity, the smoothing
parameter in th&J-direction goes to zero whei is linear and to infinity wherlJ is a circular random variable. This
is the reason why we writé > « /2 and1 < « to indicate that in both cases there is asymptotically lcsmeoothing
degree on the side af

The idea behind the above approach to optimal smoothingtsttis well known (see, for example, Yu and Jones
(1998)) that the value of has not a very big impact in the quantile estimate (see aldtsein Figure 3) because it
concerns smoothing only at the level of distribution fuaotiwhereas the choice dfis the crucial one. Therefore,
we can rely on a few degrees of freedom in setting the valugiaforder to get an optimal (and simple) settinglof
In particular, the choice of less smoothing within the CDRdiion estimate is theoretically argued by Li and Racine
(2008) in a very similar context.

4. Circular check function minimization

Thea-th quantilea € (0, 1), of the distribution of® givenU = u can be also defined as the solutiongas (-, 7)
of the following minimization problem

argminE[p.(® - 8) | U = U] (8)
B

with
(O = B) = (0 - B)Lioco-p<r-p — (1 — @)(© — B)L_r—p<0-p<0}> 9
wherel,, is the indicator function of evers.
Notice that the loss in Equation (8) is the expected valu@@€theck functiorfor a circular quantile. This check

function depends on the finite lower (upper) limit of integwa of a circular CDF throughout the evefin 1,.
Hence, a kernel estimator fqy(u), u € U, can be defined as

) = argmin 3 Qu(U; - Wp.(©1 - ). (10
i=1

where, forU being the circle ([01], respectively)Q, stands for a circular (euclidean, resp.) kernel with smiogth
factord > 0. The accuracy measure (6) for the above estimator is dkirivdne following

Theorem 5. Given thel x[-r, r)-valued random samplgJ1, ©1), - - - , (Un, ®y), consider estimator (10). If(§,(u) |
u) # 0, assumptions i) and iii) of Theorem 1 hold, and assumptipafiTheorem 1 or assumption i) of Theorem 2 is
satisfied whef is the circle andU = [0, 1] respectively, then

£(Q) {F<°~2>(qq(u> W), 2FON(() | u)g'(u)}2 , _al-a)(Q)
& U @Oy @O hel) [ ngW e
7

L[Gaa(u)] = +0((Q) + n'v(Q) (11)




Proof. See appendix for Proof O

Now, considering the following series expansiomgfU) for U aroundu,

qa(U) = q(x(U) + LII(U - u)q(,l(u)’
a local linear version of estimator (10) can be obtained estiution for3 of the following minimization problem
n
.1
argmir. D QuUi — Wpa(©1 - B~ B(Ui - U)w) (12)
o i=1
Now, for the resulting estimator, we get

Theorem 6. Given theU x[—n, 7)-valued random sampl@), ©1), - - - , (Un, ®p), letd, 1(u), u € U, be the solution for
B of the minimization problem (12). If the assumptions of Téeb hold, and g(-) has continuous second derivative
atue U, then

£(Qu)

4

v(Qu)a(l - @)
ng(u) f2(qq(u) | u)

Proof. See appendix for Proof O

L[Gea(W)] = o () + +0(n(Qu) +n"(Qu)

Notice that the asymptotic versions of loss (6) for localstant and local linear fits fier only in the bias part.
Here, as it happens in the standard setting, the asymptatedditer even when the design density is uniform. They
are the same when, for exampég(u) = 0, or when bottg(u) and f(q,(u) | u) are uniform onU, this can be seen
using the formulation oF ©2)(q,(u) | u)/ f(q.(u) | u).

As a consequence of Theorems 5 and 6, whigs the circle and, is a von Mises kernel, the value a@fwhich
minimises the leading term of Equation (11) is essentidily same as the value in Equation (7) obtained for the
corresponding local constant and local linear versionsagrise-cumulative distribution estimator with« «. The
same result, with due modifications, holds for the clise [0, 1]. This is because under the said conditions the
respective losses are asymptotically equivalent.

5. Simulations

In this section, we explore and compare the performance i0éstimators through simulations. Specifically, in
Section 5.1 we compare the double-kernel estimator witkegtienator based on the circular check function, and then
in Section 5.2 we compare the local linear estimator withldleal constant in the case that the explanatory variable
may have finite support. In both cases we suppose that tharepky variable is circular.

5.1. Double-kernel and check function estimators

We compare the double-kernel estimator given by (5) and stienator based on the circular check function,
given by (10) in the case thét is the unit circle, and (6 | u) is a von Mises density with concentratier= 10 and
conditional mean

atan2[sifu—1),1+ 0.8 cogu — 1)] (13)

where atan3], X] is the angle between theaxis and the vector from the origin t&,{). We will estimate quantiles
of orders 001, 0.05,0.95,0.99 in correspondence of these three values of the conditjordriable:—-2.2,-1.5, 1.5.
These latter values are chosen to consider a variety of slopsingle example is given in Figure 1 for sample size
n = 100, which shows the estimates at the given design pointthegwith the theoretical quantiles, which are of
constant width.

We note that the estimator (5) depends on a pair of smootlaranpeters (sayk{11)), whereas (10) depends only
on one (saylz) which would suggest that the double-kernel estimator pritivide more flexibility, at the expense of
potential dificulty in using cross-validation to select appropriate galu

As a second simulation experiment, for eacte {50, 100 500 we simulated 100 samples. In each case we
obtained quantile estimates, corresponding to the saneesathd conditioning variable values as the first experiment
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using (5) for a grid of values of(1;) and (10) for a grid of values of,. The results from the simulations were
combined by using a sample version of the accuracy measjre (6

Three sets of results are shown. In the first set wa x100 andu = 1.5 and considex € {0.01, 0.05,0.95, 0.99},
In the second set, we take= 100 andax = .05 and consideun € {-2.2, —1.5, 1.5}. In the third set, we take = 0.05
andu = 1.5 and considen € {50,100 250 500}. In each set we report: the values ef {;) which maximize the
accuracy for estimator (5), together with the correspogdttiss, and the value of; which maximizes the accuracy
for (10), with its corresponding loss. The results are presgin Table 1.

guantile estimation for simulated data: example

1.0 15

0.5
1

-0.5
|

Figure 1: Theoretical quantiles (lines) faere {0.01, 0.05, 0.95, 0.99} for the von Mises model with conditional mean given by (13) an= 10.
n = 100 points are generated from this model, in whids uniform on the circle. As an illustration, the check quiantstimates (10) are shown
for @{0.01, 0.99} (continuous) and({0.05, 0.95} (dashed) at locations € {-2.2, -1.5,1.5}. In this illustration we have choseh= 100.

Firstly we note that, as expected, estimator (5) is a littHtdy than (10) in all settings. However, the improvement
comes at a computational price. The first set of results shairsilar performance for each of the quantile estimates.
In the second set, we can see that estimating quantiles-at2.2 is more dificult than either of the other locations.
At this position there is a steep gradient over a small irieiand so little information is available. Correspondingl
much larger values of; and; are selected at this position. Finally, the dependence mplgesize is also much as
expected; there is improving accuracy witand a general increase in concentration parameters.

5.2. Local constant and local linear estimators

We use similar settings as in the third block of Table 1 in thatonsideu = 1.5 anda = 0.05 for various values
of n, and continuing to use the same conditional mean functigisif@mean). Here, we also consider the same local
constant estimator (5) but now we compare this to the cooredipg local linear estimator, based on (2), in the case
that the explanatory variable is uniform on the circle (afot®), and in the case when it is uniform orl(5, 1.5) so
that we are estimating the quantile at the boundary of theokaspace. The results are shown in Table 2.
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positionu = 1.5 and sample size = 100
guantile| estimator (5) | estimator (10)
a | (k,A171) loss| A2 loss
0.01| (33,31) 0.028 16 0.049
0.05| (48,20) 0.025/ 10 0.032
0.95| (116,11) 0.022 10 0.026
0.99| (11,18) 0.022] 7 0.027

guantilee = 0.05 and sample size= 100
position estimator (5) | estimator (10)
ul (x11) loss| A2 loss
-2.2 | (43,300) 0.082 194 0.094
-151| (29,17) 0.025] 6 0.037
15| (57,17) 0.030] 11 0.037

guantilee = 0.05 and positioru = 1.5
size estimator (5) | estimator (10)
n{ (x41) loss| A2 loss
50 | (34,13) 0.030] 9 0.039
100 | (175,10) 0.026 9 0.030
250 | (210,13) 0.011 12 0.011
500 | (246,19) 0.009 13 0.011

Table 1: Results of three simulation sets from model (13)yvéwious settings of sample sire locationu and quantilesr (see Figure 1 for an
example). In each setting, we report the optimal pain{) or 1, for estimators (5) & (10), respectively with correspondm@nimized loss (6).
Results were obtained from 100 samples in each setting.

a = 0.05 and positiou=1.5. U(-x,7x)
size | local constant local linear

n| (kg,41) loss | (k2,42) loss
50| (76,13) 0.032 (164,11) 0.032
100 | (112,13) 0.026] (74,14) 0.026
250 | (148,13) 0.013 (217,14) 0.012
500 | (434,17) 0.010 (325,21) 0.010
a = 0.05 and positiou = 1.5. U(-15,1.5)
size | local constant local linear

n| (kg,41) loss | (k2,412) loss
50 | (199,22) 0.034 (68,0.7) 0.010
100 | (231,26) 0.024 (52,1.2) 0.005
250 | (199,38) 0.023 (68,1.0) 0.002
500 | (515,38) 0.016| (84,1.1) 0.001

Table 2: Results of two simulation sets from model (13), faniaus settings of sample sineln each row, we report the optimal pais; {) for the
estimator (5) based on (1) and (2), respectively with cpoading minimized loss (6). Results were obtained from Hfiles in each setting. In
the top block the explanatory variable is uniform on thelei@and a repeat of the last block of Table 1) and in the sectoukpU is uniform on
(-15,1.5).
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We can see that the performance is quite similar betweerotteg tonstant and the local linear in the case that
the quantile is estimated at an interior point. Howeverhim ¢ase that the explanatory variable has limited support
and the quantile is estimated at a boundary, then the lowsiiestimator performs much better, and the improvement
increases with sample size. This is as expected.

We note that in all double-kernel experiments, the choicewés much more important than the choicexof

6. Application

We illustrate the estimation of a conditional circular dimition function using some data on wind speed and wind
directions. The data, which is taken from an observatiotiostalose to the Florida coastline and was collected by
the National Data Buoy Center of the NOAC, is intended tcsilate the potential uses of the methodology.

The first part of our analysis concerns finding an “optimaledtion corresponding to wind speeds near to a
specified value. Then we consider conditional quantilerestibn, and assess its coverage. Note that any concern
about where to “cut” the circle is not an issue in the questiwa address here.

6.1. Estimation of optimal direction

A wind rose is often used to display information about theclion of particular wind speeds, and Figure 2 shows
some sample rose diagrams revealing the distribution ofl wirections corresponding to wind speed®/& and 12
m/s. We initially note that our method is not hampered by an eabjt equi-spaced partition of the circle as rose
diagrams are.

wind directions for speed 9 wind directions for speed 12
90 90
18 0 1 0
270 2

Figure 2: Rose diagrams for wind directions correspondintpé¢ observed wind speeds/(s) in the range (810) (left) and (1113) (right).

This type of data is highly relevant to the analysis of pragabsind turbine installations. The energy (and revenue)
generated by a wind turbine is crucially dependent on th&wpeed; dterent turbines may haveftirent (energy—
wind speed) response rates. Locations with little wind wften be uneconomic, and locations with very high wind
speeds will cause fierent problems. By considering the wind speed and wind tiiredistributions, the anticipated
energy may be calculated. Our dataset consists of wind spreeédvind directions at a specific location so in this
illustrationU, which represents the wind speed, is linear, &éed —r, r) is the direction.

We will suppose that the energy output for a proposed turisihgghest for wind speeds close to somey sand
we are interested to know tlurectionof the turbine which will “optimize” the energy. If we suppothat the turbine
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will function within an angle ofr/4 radians of the wind, then we need to find a directind(w) to maximize
FOW) + /4| u=w) — F(O(W) — /4| u=w).

We can estimate this using Equation (1), in which the weightsan be based on either a local constant, or local
linear estimate. One way to select the smoothing paramgtexsdx) is to consider the mean squared error of the
estimates, and then use the results of Theorems 3 and 4. Dhisl wequire suitable plug-in methods, similar to
those of Yu and Jones (1998), who deal with analogous linedihods. Bandwidth selection for simple directional
density estimation as, for example, in Garcia-Portug(#xlL3), would be inappropriate in this setting. However, in
our application the choice dfis practically determined by consideration of the fact thatactually want to estimate
F@OW) + /4| u= w) — F(6(w) — 7/4 | u~ w) and so (this will often depend on the operating charadiesisf the
specific turbine) we have considergd- 0.6 andA = 1.2 in our calculations with a normal kernel f& (soA is the
standard deviation). Given the choice of normal kernelk¢hghoices oft were chosen to focus on a range of wind
speeds of about21. Our illustrative data consists of 17,480 observationsh wiind speeds which range from 0.1
m/sto 18m/s(mean 5.9).

optimal turbine direction (NW estimate) optimal turbine direction (LL estimate)

5.0
5.0

4.5
45

4.0
Il

optimal direction (mod 2m)
optimal direction (mod 2m)
4.0
Il

35
Il

35
Il

3.0
Il

3.0
Il

25
|
25

wind speed (w) wind speed (w)

Figure 3: Wind turbine direction to maximize output usingemtimate of the conditional CDF based on Equation (1). Fowathed estimates
(dependent ol andk) are shown, as well as a naive estimate, for each of locataongeft) and local linear (right) estimation.

Some results are presented in Figure 3, where the dependetieeoptimal direction on the wind speed can be
clearly seen. The dependencexas small, as is theféect of 2 on the result. For ease of interpretation, we have used
angles mod(2) to avoid “wrapping”. We have also considered a naive apgrdar comparison. In this case, we
chose the angl&d§ = 9o(w)) to maximize

Licospo-a)>1/v2)
{i:wie(w—1,w+1)}
and the result is shown on both plots. This naive estimateoierakin to a histogram, though the resulting values of
0o are still quite smooth, with all estimates showing a siniteerall structure. Figure 3 shows a markefietience in
the optimal direction between wind speed$ 8 (where the optimal direction is about 3.5 radians) andnl 8 (with
optimal direction about 5.3 radians).

6.2. Conditional quantile estimation
Estimation of specific quantiles will depend on the choicécot point” on the circle, so we avoid this arbitrary
selection by considering the estimation of confidence viaierconditional on wind speed, and investigate the paknti
12



to choosel andk by cross-validation. Ideally, this should be considereithwaspect to a loss function which measures
the coverage accuracy for a specific set of quantiles. Howsivee the coverage is discrete, this typically resulss in
cross-validation function which is piecewise constant] harder to optimize. Instead, we again consider estimation
of the conditional CDF as a means to get suitable smoothireppeters, and we use an adaptation of Equation (2) in
Di Marzio et al. (2012), so that andk are chosen to minimise

CV(k,A| U) = Z f " {Lig0) — FO.(01 u)}2d0 (14)

iUjzuv 7"

WherelfS?K(~) is the smoothed estimate (1) of the conditional CDF usihthal data except thigh observation, with
smoothing parameteksandA. There are two points to note here. Firstly, the smoothingipater selection does
not take any account of the quantile(s) to be estimatedouadth the parameters do depend on the wind spaed (
Secondly, there is a need to make precise whdtrieans in the limit of the summation in Equation (14). In our
example, the wind speeds are recorded to one decimal plate& general one will require a flicient number of
observations in order to achieve stable results.

For given wind speeds, we first find the smoothing parameterssing Equation (14) for both local linear and
local constant estimators. Then, using these smoothiragpeters we compute (1). Finally, for giverwe choose an
“origin” to minimise the width of the interval, which leads estimates of the “lower” and “upper” endpoints. This
final step is used to avoid the somewhat arbitrary choice igirgror "cut point” for data which lie on a circle. In
Figure 4 we show the 80% confidence intervals corresponditigetdistribution of the direction conditional on wind
speed. Also on this plot, we give the actual coverage, as@ptge, for both the local constant, and local linear
estimates. Although the coverages are mostly close to 88%dsired) it should be remembered that the data is not
independent of the cross-validation data. The intervald @verage) are quite similar for the two methods, except
for wind speed 13n/s; the estimates of the conditional CDFs for this wind speedadso shown.

80% conditional confidence intervals estimates of CDF for wind speed 13
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Figure 4: Left: 80% confidence interval estimates of dimtitonditional on wind speed for local linear (lines) andalowonstant (dashed). The
numbers give actual coverage for each method; the largeiSaised for local linear, and the smaller for local constiute that the intervals are
shown by vertical lines (not by the gaps). Right: the estidatonditional CDF for wind speed 18/s for local linear (lines) and local constant
(dashed).
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7. Discussion

We should stress that in any practical application the @hofoorigin (“cut-point”) should be chosen dependent
onu to minimise the width of the interval to be estimated. Thigiatinent is important to obtain meaningful inter-
pretations, especially if the conditional mean can takaesktlose ta. We note that the double-kernel estimator has
two tuning parametersl(@ndx) whereas the circular check function estimator has only de/be, it is for this rea-
son that, in some simulation experiments with small sampleshave observed a slightly better performance for the
double-kernel estimator in most settings. However, thime®with the cost of more computation#lcet, as well as
the need to select good smoothing choices. Thimecan be reduced by first selecting a good valug iofthe check
function, and then using this value, together with an appatgx, in the double-kernel estimator. Cross-validation
can be used in this process, though we have found a jointtesiexf bothkx andA to be problematic.
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Appendix

Proof of Theorem 1 Observing that estimators (1) and (2) can be respectivglgroed as a local constant and local
linear estimators of

m(6, ¢) = E[W(6 — ©) — W(-7 — B) | ® = ¢],
in virtue of assumptions i) and iii), Theorem 4 of Di Marzioat (2009) gives

200 [1r{02)(6, ) + 228 MO0, )} + 0(12(Qa)),  for estimator(1);

ElF(@19)] =m(6.¢) = {@m@@(e, ) + 0(112(Q)), for estimator(2);

and, for both estimators,
R(Q)S(#.6)

varlF (6| 9)] = ng(¢)

+0(72(Qn)),
wheres?(6, ¢) = Var[W, (6 — ©) — W,(-7 - @) | ® = ¢].

Now, notice thatn(g, ¢) ands?(6, ¢) respectively amount to expectation and variance of theaitir CDF estimator
provided by Di Marzio et al. (2012), conditional dn= ¢. Thus, an adaptation of the results stated in Theorem 2.1
of Di Marzio et al. (2012), for the unconditional case, alavith assumption ii), yield

M6.6) = F(@19) + 2 (FEI01 ) - FEO(r | ) + o), (15
and 1
S0,¢)=F@1){1-F@19¢)} - —(FO@ | ¢) - FEO(=n | ¢)} + ok ). (16)
ik
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Hence, by plugging (15) and (16) in the expectations andwag expressions, the results follow.
U

Proof of Theorem 2 The results follow by using the same arguments as in the mbdheorem 1, once observed
that, in virtue of assumption i), euclidean local polynokfitiing theory gives

L1249 (mf02)(9, x) + 2ZXmO(9, )} + 0(42),  for estimator(1);

E[F (6 1¥)] = m(6,%) =1
[Fad@ 1] = m(6. ) {“Tmnw(oz)(e, X) + 0(12), for estimator(2);

and, for both estimators,

VarF,.(01X)] = RQS(x6) + o(i).

nAg(x) nAi
O
Proof of Theorem 3 First observe that, by standard Taylor series argumentsawevrite
E[2(1 - oS 1.(U) = Qu(W))] *E[{80,14(U) — Gu(U)}’]
:{E[qa,/l,K(u) - qoz(u)] }2 + E[{QG,A,K(U) - E[qa,/l,K(u)}Z]
Now, using the approximation
~ FA/LK(Q@(U) | U) - F(Q(l(u) | U)
o, 1,.6(U) — Qo (U) = — )
o) =610 @@
Theorem 1 whem = ¢ and Theorem 2 when = x, along withF(qg,(u) | u) = «, yield the result. d

Proof of Theorem 4 The result directly follows by using the same arguments d@kerproof of Theorem 3, along
with results of Theorem 1 whamn= ¢, and Theorem 2 whem= x. O

Proof of Theorem 5 Reasoning as in Jones and Hall (1990), define
1 n
H, (u) = a ; Qi(Ui —ullalpco<n — (1 — @)L_ro<p)s

obtaining that
E[H,( | Us, U = £ 37 Quu- Ula— F81 U))
@ 1, el =4 - Qu inha i)s-

Now, expandind-(8 | U;) in Taylor series, forg, U;) around €, (u), u), it results

1
F(B1U) ~ F(da(U) | 1) + B = Ga(W}f(G(U) | ) + ¥(Us = FOD(G(U) | 0) + S¥2(Us - FCA(au(W) | U),
and using similar approximations as those used in the priobfieorem 3, we finally get

ETH, (] = ~16 ~ 6} F(0(0) [ 9(e) ~ S 2P0, )| g (1) + FO(, (1) 1 W) + o(E(Q)

Moreover, reasoning again as in Jones and Hall (1990), we hav

YQgw)
n

Var[H.(u)] = 1l-a)+ 0(

v(Qa)
- |

Now, use the fact thgiv ar[H, (u)]}~*?{H,(u) — E[H.(u)]} converges to a standard normal distribution, and that
estimator (9) is the solution fgr of H,(6) — E[H,(u)] = —E[H,(u)]. O

Proof of Theorem 6 Whenu € [0, 1], the result directly follows by using Theorem 3 in Fan et €1994), withA in
place ofh. Whenu is an angle, the same result holds, with due modificationsisiiyg the assumptions in Theorem
5. O
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