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Nonparametric circular quantile regression
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aDMQTE, Università di Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy.
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Abstract

We discuss nonparametric estimation of conditional quantiles of a circular distribution when the conditioning
variable is either linear or circular. Two different approaches are pursued: inversion of a conditional distribution
function estimator, and minimization of a smoothed check function. Local constant and local linear versions of both
estimators are discussed.

Simulation experiments and a real data case study are used toillustrate the usefulness of the methods.

Key words: Check Function, Circular Quantile, Circular DistributionFunction, Predictive Interval, Wind Turbine
2000 MSC:62G07 - MSC 62G08

1. Introduction

Quantile regression focuses on estimating either the conditional median or other quantiles of the response vari-
able. When compared with ordinary least squares regression, we can say that quantile estimates are: a) more robust
when the distributions of the covariates and/or error terms are heavy tailed; b) more easily interpretable if the con-
ditional distributions are asymmetric. However, quantileregression is typically used to gain insights on the whole
underlying conditional distribution through the estimation of various percentiles. Similarly, predictive intervals are
often determined by estimating pairs of extreme conditional quantiles.

Methods used for quantile regression range from fully parametric — in the simplest case, we have a normal
distributed response, along with linear quantile curves — to fully nonparametric, where local smoothing of observed
quantiles is carried out, see, for example, Jones and Hall (1990). Usually, either the quantile curves or response
distribution is estimated nonparametrically. Jones and Noufaily (2013) provide a critical account of the literature.

In practice, as it happens for the majority of circular statistics indices, a set of quantiles can be estimated for each
possible choice of the origin. In some situations there may be external information, or data could be confined to a
small arc of the circle (reproducing an euclidean-like scenario), but more generally (as in our example) we could
choose the origin according to aminimum widthcriterion. That is, for any specified quantile, the origin ischosen so
as to minimise the width corresponding to the estimated interval. In any case, we observe that a change of the origin
simply generates a linear shift on the cumulative distribution function (CDF) values, i.e. in the quantile order. Such
an equivariance form links estimates based on same data but with different origin.

Also, the definition, and then the estimation, of the circular CDF is not an obvious extension of the standard theory.
It is perhaps for these reasons that quantile regression seems unexplored in the circular setting, even from a parametric

perspective. The CDF of a random angleΘ having densityf is defined asF(θ) :=
∫ θ

−π f (u)du, θ ∈ [−π, π); this implies
thatF(−π) = 0 andF(π) = 1. Whenf is seen as a periodic function havingR as its support, then

lim
a→±∞

F(a) = ±∞,
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and for a quantile of orderc ∈ R, sayqc, and an integerk, we have

F(qc + k2π) = F(qc) + k.

Clearly, this real-valued representation is pretty unfamiliar and practically un-necessary because all of the infor-
mation is contained by its restriction over the interval of angles [−π, π). Although this circle representation introduces
an apparent discontinuity at the origin (F is not periodic), it implies a CDF assigning probabilities,and quantiles order
ranging in [0, 1].

In this paper, we propose estimators for circularconditionalquantiles. Other than the usual pros of the nonpara-
metric approach, notice that, because circular quantitiesare defined on a circle, boundary problems do not arise when
the predictor is circular. Surely, we could still conceive circular populations with densities that are either discontin-
uous or whose support is a subset of the circle, but after a little thought we would conclude that such data are well
represented also on the line, and conveniently studied using euclidean methods. For example, we could estimate the
CDF using the methods proposed by Berg and Politis (2009). Ingeneral, consider that if the baseline of euclidean
theory is a linear quantile function, a straight line is inadequate to interpolate quantiles whereas periodic functions are
the natural tool.

Specifically, we investigate two strategies for the above task: a) inversion ofdouble-kernelestimators of the
conditional distribution function; b) minimization of a smoothedcircular check function. We consider local constant
and local linear versions for both estimators, and derive their asymptotic properties.

Section 2 deals with local constant and local linear versions of double-kernel estimator of a conditional circular
distribution function, for both circular and linear conditioning cases. In Section 3 we define conditional quantile
estimators as inverses of conditional distribution function estimators, while, in Section 4, we follow the approach of
minimising a smoothed check function. In Section 5 we include a small simulation study to investigate and compare
the finite sample performance of our estimators. Finally, inSection 6 we illustrate some of the methods using an
application to aspects of wind turbine installation, by considering data on wind speed and direction at a particular
location.

2. Conditional circular distribution function estimator

Let (U,Θ) be aU × [−π, π)-valued random vector, whereU is a random variable taking values over a generic
domain, andΘ is a random angle. Letf (θ | u) denote the conditional density ofΘ givenU = u, at θ ∈ [−π, π). We
address the problem of nonparametrically estimatingF(θ | u) =

∫ θ

−π f (t | u)dt, for u ∈ U, in the cases whereU is the
unit circle orU = [0, 1], andF is absolutely continuous. Notice that settingU equal to the interval [0, 1], which is
common practice in nonparametric modeling, does not lead toany loss of generality.

In order to construct our estimator we start from the kernel estimator of f (θ | u), which can be conceived as the
ratio between the kernel estimator of the joint density and the kernel estimator of the marginal one. In particular,
letting (U1,Θ1), · · · , (Un,Θn) be independent copies of (U,Θ), for α ∈ [−π, π), we write

f̂λ,κ(α | u) =
f̂λ,κ(u, α)

f̂λ(u)
=

∑n
i=1 Qλ(u− Ui)Kκ(α − Θi)

∑n
i=1 Qλ(u− Ui)

with Kκ being acircular kernelwith concentration parameterκ ∈ (0,+∞), i.e. a non-negative function defined on the
unit circle, admitting an uniformly convergent Fourier series representationKκ(θ) = (2π)−1{1 + ∑∞

j=1 γ j(κ)cos( jθ)},
whereγ j(κ) is a strictly monotonic function ofκ. Moreover, whenU is the unit circle ([0, 1], resp.),Qλ is a circular
kernel (euclidean kernel supported on [−1, 1], resp.) with (scaled by a, resp.) smoothing factorλ ∈ (0,+∞).

Then, a smooth estimator forF(θ | u) can be defined as

F̂λ,κ(θ | u) =
∫ θ

−π
f̂λ,κ(α | u) =

∑n
i=1 Qλ(u− Ui){Wκ(θ − Θi) −Wκ(−π − Θi)}

∑n
i=1 Qλ(u− Ui)

, (1)

whereWκ(a) =
∫ a

−π Kκ(t)dt, for a ∈ R.

Remark 1. Notice that estimates produced by (1) arebona fidecircular CDFs values. Consider, in fact, that they are
nondecreasing, right-continuous, and have these properties
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a) F̂λ,κ(−π | u) = 0, F̂λ,κ(π | u) = 1,

b) lima→±∞F̂λ,κ(a | u) = ±∞,

c) F̂λ,κ(qc + k2π | u) = F̂λ,κ(qc | u) + k, c ∈ R.
Also, estimator (1) isequivariantin the sense that, when we rotate the origin, its values remain shifted by a

constant term. This property describes, obviously, also how circular quantiles estimates, defined as the inverse of (1),
change when the origin is rotated.

A general class ofdouble-kernel local polynomialestimators forF(θ | u), which includes estimator (1), can be
derived as follows. Let

m(θ,w) = E

[∫ θ

−π
f̂ (u | w)du

]

= E[Wκ(θ − Θi) −Wκ(−π − Θi) | U = w],

we know that, under the usual mild conditions,
∫ θ

−π f̂ (u | w)du is consistent forF(θ | w), thus for a big enoughκ we
can writem(θ,w) ∼ F(θ | w). Now consider the followingpth order series expansion ofF(θ | w) for w aroundu ∈ U,

F(θ | w) = F(θ | u) +
p

∑

j=1

F(0, j)(θ | u)Ψ j(w− u)
j!

+ o(Ψp+1(w− u)),

whereΨ(u) = sin(u) (u, respectively) whenU is the unit circle ([0, 1], resp.), and, for (i, j) ∈ N × N,

F(i, j)(θ | u) =
∂i+ j

∂ai∂b j
F(a | b)|θ,u,

Then, apth degree local polynomial estimator ofF(θ | u) can be defined as the solution forβ0 of

argmin
β0,··· ,βp

n
∑

i=1



















Wκ(θ − Θi) −Wκ(−π, π) −
p

∑

j=0

β jΨ
j(u− Ui)



















2

Qλ(u− Ui).

Clearly, whenp = 0, the solution forβ0 is given by estimator (1), whereas whenp = 1, such a solution defines a local
linear estimator ofF(θ | u), i.e.

F̂λ,κ(θ | u) =

∑n
i=1 Lλ(u− Ui){Wκ(θ − Θi) −Wκ(−π − Θi)}

∑n
i=1 Lλ(u− Ui)

, (2)

where

Lλ(u− Ui) = Qλ(u− Ui)
{

n
∑

j=1

Qλ(u− U j)Ψ2(u− U j) −Ψ(u− Ui)
n

∑

j=1

Qλ(u− U j)Ψ(u− U j)
}

.

It is possible, although rarely in practice, that a local linear estimate ofF(θ | u) is non-monotone, yieldingnon-bona-
fideestimates. Importantly, whenp = 1 the solution forβ1 of the above minimization problem is an estimator of the
conditional density. Although conditional density estimation in the circular-circular or linear-circular setting seems a
promising research field, we will not pursue it further in thepresent paper.

Remark 2. Interestingly, observe that the structure of the estimators remains the same in the case of a multidimen-
sional conditioning variable: it simply suffices to replace the one-dimensional kernels by multidimensional ones.

In what follows, we denote asg the density ofU, and assumeKκ to be a von Mises density with zero mean direction
and concentration parameter 0< κ < ∞, i.e. Kκ(θ) = {2πI0(κ)}−1 exp(κ cos(θ)), with I0(·) being the modified Bessel
function of the first kind and order 0.
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2.1. Conditioning on a circular variable
Here we consider the case in whichU is the unit circle, and denote the conditioning variable byΦ. Also, after

definingη j(Kκ) =
∫ π

−π Kκ(θ) sinj(θ)dθ, we say thatKκ is a sth sin-order circular kernel if and only ifη0(Kκ) = 1,
η j(Kκ) = 0 for each 0< j < s, andηs(Kκ) , 0.

In particular, we assume thatQλ is a second sin-order circular kernel, whose Fourier coefficients, sayγ j(λ), for
even j > 0, satisfy

lim
λ→∞
{1− γ j(λ)}/{1− γ2(λ)} = j2/4. (3)

This latter condition assures that, for evenj > 2, η j(Qλ) = o(η2(Qλ)), as clarified in the following

Remark 3. For a circular kernel Kκ, and even j> 0

η j(Kκ) =
1

2 j−1















(

j − 1
j/2

)

+

j/2
∑

s=1

(−1) j+s

(

j
j/2+ s

)

γ2s(κ)















.

If Kκ has second sin-order, thenη j(Kκ) = o(η2(Kκ)), for each even j> 2, if and only if γ2s(Kκ) = 1 for each
1 < s< j/2. Now, the fact thatlimκ→∞ γ j(κ) = 1 leads to condition(3).

Typical examples of densities which are second sin-order circular kernels and satisfy above condition are: von
Mises, wrapped normal and wrapped Cauchy.

Now, lettingR(Qλ) =
∫ π

−π Q2
λ(θ)dθ, for both local constant and local linear estimators ofF(θ | φ), we get

Theorem 1. Given the[−π, π) × [−π, π)-valued random sample(Φ1,Θ1), · · · , (Φn,Θn), if

i) the density g ofΦ is strictly positive, F(θ | φ) and g(φ) are twice continuously differentiable in some neighbor-
hoods ofθ ∈ [−π, π) andφ ∈ [−π, π), respectively;

ii) κ is such thatlimn→∞ κ
−1 = 0;

iii) λ increases with n, andlimn→∞ η2(Qλ) = 0 andlimn→∞ n−1R(Qλ) = 0;

then, for estimator (1) we have

E[F̂λ,κ(θ | φ)] − F(θ | φ) =
η2(Qλ)

2

{

F(0,2)(θ | φ) + 2
g′(φ)
g(φ)

F(0,1)(θ | φ)
}

+
1
2κ
{F(2,0)(θ | φ) − F(2,0)(−π | φ)} + o(η2(Qλ) + κ

−1),

while, for estimator (2) we have

E[F̂λ,κ(θ | φ)] − F(θ | φ) = η2(Qλ)
2

F(0,2)(θ | φ) + 1
2κ
{F(2,0)(θ | φ) − F(2,0)(−π | φ)} + o(η2(Qλ) + κ−1),

and, in both cases,

Var[F̂λ,κ(θ | φ)] =
R(Qλ)
ng(φ)

{

F(θ | φ)[1 − F(θ | φ)] − 1
√
πκ

[F(1,0)(θ | φ) + F(1,0)(−π | φ)]
}

+ o

(

R(Qλ)

n
√
κ

)

Proof. See appendix for Proof

Because the asymptotic variances are the same, a simple index showing the relative efficiency of the local constant
and local linear methods could be:

EFF(φ) =

∣

∣

∣

∣

∣

∣

∣

∣

F(0,2)(θ | φ)
F(0,2)(θ | φ) + 2g′(φ)

g(φ) F(0,1)(θ | φ)

∣

∣

∣

∣

∣

∣

∣

∣

, (4)

and we see that the quantityg′(φ)/g(φ) is zero if the design densityg is uniform, whereas it is proportional to sin(φ)
if g is von Mises or Wrapped Cauchy. In all of these cases, the behavior of local linear and local constant tend to be
nearly similar in the tails and identical at the critical points or flat portions of the design density.
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2.2. Conditioning on a linear variable

We now assumeU = [0, 1], and indicate the conditioning variable asX. Moreover, we setQλ(·) = λ−1Q(λ−1·),
λ > 0, with Q being a second order euclidean kernel supported on [−1, 1].

Then, lettingµ j(Q) =
∫ 1

−1
x j Q(x)dx, j ∈ N, andR(Q) =

∫ 1

−1
Q2(x)dx, for estimator (1), we get

Theorem 2. Given the[0, 1] × [−π, π)-valued random sample(X1,Θ1), · · · , (Xn,Θn), if assumptions i) and iii) of
Theorem 1 hold withλ < x < 1− λ in place ofφ, and

i) λ is such thatlimn→∞ λ = 0 and limn→∞ nλ = ∞;

then, for estimator (1) we have

E[F̂λ,κ(θ | x)] − F(θ | x) =
λ2µ2(Q)

2

{

F(0,2)(θ | x)+ 2
g′(x)
g(x)

F(0,1)(θ | x)
}

+
1
2κ
{F(2,0)(θ | x) − F(2,0)(−π | x)}+ o(λ2 + κ−1),

while, for estimator (2) we have

E[F̂λ,κ(θ | x)] − F(θ | x) =
λ2µ2(Q)

2
F(0,2)(θ | x) +

1
2κ

{

F(2,0)(θ | x) − F(2,0)(−π | x)
}

+ o(λ2 + κ−1),

and, in both cases,

Var[F̂λ,κ(θ | x)] =
R(Q)

nλg(x)

{

F(θ | x)[1 − F(θ | x)] − 1
√
πκ

[F(1,0)(θ | x) + F(1,0)(−π | x)]
}

+ o

(

1

nλ
√
κ

)

Proof. See appendix for Proof

Comparing the efficiency of local constant and local linear fits, we observe that here the situation could be quite
different from the circular conditioning case in the tails of thedesign density. In fact, it can easily be seen that ifg
belongs to the exponential family, then the corresponding index (4) can be made arbitrarily small for sufficiently big
x. For example, observe thatg′(x)/g(x) = −x for the standard normal density. When the tails are not exponentially
bounded the situation improves for the local constant method. For example, in the standard Cauchy case we have
g′(x)/g(x) = −2x/(1+ x2), such that lim|x|→∞ EFF(x) = 1 making the behaviors identical.

The above theorem does not address the estimation at theboundaryregion, defined as{x ≤ λ} ∪ {x ≥ 1 − λ}.
Although the boundary region is asymptotically vanishing,it is known that the estimation is less accurate there. We
do not present specific results on this because the usual theory applies with modifications exclusively due to the
structure of the circular cumulative distribution estimator.

3. Double-kernel estimator of circular quantiles

Denote asqα(u) theαth quantile of the conditional distribution ofΘ givenU = u, i.e. F−1(α | u), α ∈ (0, 1). As
the inverse ofF, the definition of a quantile for circular distributions is awkward due to the need of an arbitrary choice
of where to “cut”, the circle. Sensible choices includeθ0 = arg min f (θ) or θ0 = π + arg maxf (θ), but in general the
density f will be unknown. Avoiding this issue requires the estimation of a family of quantiles corresponding to each
possibleθ0 and interest may then lie in estimating anintervalwhich maximizes some quantity of interest.

We address the problem of nonparametrically estimatingqα(u) for the case whenU is either circular or linear.
A kernel estimator for the circular quantileqα(u), α ∈ (0, 1), can be defined as

q̂α,λ,κ(u) = F̂−1
λ,κ(α | u) (5)

Clearly the local constant (local linear, respectively) version of F̂λ,κ in Equation (5) ((2), resp.) gives a local constant
(local linear, resp.) version of the estimator ˆqα,λ,κ(u). However recall that, very occasionally, local linear gives non-
monotonic estimates ofF, and this would give non-unique quantile estimates that maynot increase with their order. As
a consequence, confidence intervals would no longer benested; this latter property assures that a confidence interval
containsany other one defined in the same way but with smaller coverage. However, this problem is practically
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solved by selecting the quantile solution which is the maximum solution of (5) ifα > 0.5 and the minimum solution
if α < 0.5.

Due to the angular nature of estimator (5), its performance can be assessed by the following accuracy measure

L[q̂α,λ,κ(u)] = E[2{1− cos(q̂α,λ,κ(u) − qα(u))}], (6)

which can be regarded as the circular counterpart of the meansquared error of alinear estimator, as clarified in the
following

Remark 4. Let p1 and p2 respectively denote the cartesian coordinates of anglesθ1 andθ2, i.e. pi = (cos(θi), sin(θi)),
for i ∈ {1, 2}. Then, using the fact that||p1|| = ||p2|| = 1, one has||p1 − p2||2 = 2(1− cos(θ1 − θ2)).

Specifically, letting

ξ(Qλ) =















η2(Qλ) if U is the circle,

λ2µ2(Q) if U = [0, 1],

and

ν(Qλ) =















R(Qλ) if U is the circle,

λ−1R(Q) if U = [0, 1],

for the local constant version of our estimator, in both linear and circular conditioning cases we get

Theorem 3. Given theU × [−π, π)-valued random sample(U1,Θ1), · · · , (Un,Θn), consider estimator(5) with F̂λ,κ
being defined in(1). If f (qα(u) | u) , 0, assumptions i) and iii) of Theorem 1 hold, and assumption ii) of Theorem 1
or assumption i) of Theorem 2 is satisfied whenU is the circle andU = [0, 1] respectively, then

L[q̂α,λ,κ(u)] =
{ξ(Qλ){F(0,2)(qα(u) | u) + 2g′(u)

g(u) F(0,1)(qα(u) | u)}
2 f (qα(u) | u)

+
F(2,0)(qα(u) | u) − F(2,0)(−π | u)

2κ f (qα(u) | u)

}2

+
ν(Qλ){α(1− α) − (πκ)−1/2[ f (qα(u) | u) + f (−π | u)]}

ng(u) f 2(qα(u) | u)
+ o

(

ξ2(Qλ) + κ
−2 + n−1(πκ)−1/2ν(Qλ)

)

Proof. See appendix for Proof

When local linear weights are employed in Equation (5), we obtain

Theorem 4. Given theU × [−π, π)-valued random sample(U1,Θ1), · · · , (Un,Θn), consider estimator (5) witĥFλ,κ
being defined in(2). Under the assumptions of Theorem 3, then

L[q̂α,λ,κ(u)] =

{

ξ(Qλ)F(0,2)(qα(u) | u)
2 f (qα(u) | u)

+
F(2,0)(qα(u) | u) − F(2,0)(−π | u)

2κ f (qα(u) | u)

}2

+
ν(Qλ){α(1− α) − (πκ)−1/2[ f (qα(u) | u) + f (−π | u)]}

ng(u) f 2(qα(u) | u)
+ o

(

ξ2(Qλ) + κ
−2 + n−1(πκ)−1/2ν(Qλ)

)

Proof. See appendix for Proof

As for links to previous work, Di Marzio et al. (2012) defined an estimator of a (unconditional) circular quantile
as the inverse of a kernel estimator of a circular distribution function. Here, the definition of a circular distribution
function implies the choice of a (finite) lower limit of integration, which yields a kernel estimator with an ‘extra term’
which depends on it. Clearly, accuracy (and optimal smoothing) for both circular distribution and circular quantile
estimators depend on this integration limit.

Concerning the optimal smoothing we treat separately the cases whereU is circular or linear. In particular, in
the first case we have that, since for a circular kernel the smoothing parameter is not a scale factor, the optimal
smoothing theory requires a specific form forQλ. Here, we assume thatQλ is a von Mises kernel with mean direction
0, and concentration parameterλ > 0. Hence, recalling that for this kernel, whenλ increasesη2(Qλ) ≈ λ−1, and
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R(Qλ) ≈ {λ/(4π)}1/2, when we chooseλ ≪ κ, we have that the leading term ofL[q̂α,λ,κ(φ)] essentially depends only
onλ, whose optimal value turns out to be

λ0 =

{

2B2(qα(φ) | φ)g(φ)nπ1/2

α(1− α)

}2/5

, (7)

where, foru ∈ U, B(qα(u) | u) = F(0,2)(qα(u) | u) + 2g′(u)
g(u) F(0,1)(qα(u) | u) in the local constant case, andB(qα(u) | u) =

F(0,2)(qα(u) | u) in the local linear one.
Conversely, whenU = [0, 1], choosingλ ≫ κ−1/2 leads to the following optimal value of the (interior) bandwidth

λ0 =











α(1− α)R(Q)

µ2
2(Q)B2(qα(x) | x)g(x)n











1/5

,

which corresponds to the optimal bandwidth of local double-kernel estimators ofeuclideanconditional quantiles when
the bandwidth in the dependent variable direction is assumed to be smaller than that in the direction of the conditioning
one.

Notice also that, asn increases, while the smoothing parameter in theΘ-direction goes to infinity, the smoothing
parameter in theU-direction goes to zero whenU is linear and to infinity whenU is a circular random variable. This
is the reason why we writeλ ≫ κ−1/2 andλ ≪ κ to indicate that in both cases there is asymptotically lowersmoothing
degree on the side ofκ.

The idea behind the above approach to optimal smoothing is that it is well known (see, for example, Yu and Jones
(1998)) that the value ofκ has not a very big impact in the quantile estimate (see also results in Figure 3) because it
concerns smoothing only at the level of distribution function, whereas the choice ofλ is the crucial one. Therefore,
we can rely on a few degrees of freedom in setting the value ofκ, in order to get an optimal (and simple) setting ofλ.
In particular, the choice of less smoothing within the CDF function estimate is theoretically argued by Li and Racine
(2008) in a very similar context.

4. Circular check function minimization

Theα-th quantile,α ∈ (0, 1), of the distribution ofΘ givenU = u can be also defined as the solution forβ ∈ (−π, π)
of the following minimization problem

argmin
β

E[ρα(Θ − β) | U = u] (8)

with
ρα(Θ − β) = α(Θ − β)1{0<Θ−β<π−β} − (1− α)(Θ − β)1{−π−β<Θ−β<0}, (9)

where1{A} is the indicator function of eventA.
Notice that the loss in Equation (8) is the expected value of thecheck functionfor a circular quantile. This check

function depends on the finite lower (upper) limit of integration of a circular CDF throughout the eventA in 1A.
Hence, a kernel estimator forqα(u), u ∈ U, can be defined as

q̂α,λ(u) = argmin
β

1
n

n
∑

i=1

Qλ(Ui − u)ρα(Θi − β), (10)

where, forU being the circle ([0, 1], respectively)Qλ stands for a circular (euclidean, resp.) kernel with smoothing
factorλ > 0. The accuracy measure (6) for the above estimator is derived in the following

Theorem 5. Given theU× [−π, π)-valued random sample(U1,Θ1), · · · , (Un,Θn), consider estimator (10). If f(qα(u) |
u) , 0, assumptions i) and iii) of Theorem 1 hold, and assumption ii) of Theorem 1 or assumption i) of Theorem 2 is
satisfied whenU is the circle andU = [0, 1] respectively, then

L[q̂α,λ(u)] =
ξ2(Qλ)

4

{

F(0,2)(qα(u) | u)
f (qα(u) | u)

+
2F(0,1)(qα(u) | u)g′(u)

f (qα(u) | u)g(u)

}2

+
α(1− α)ν(Qλ)

ng(u) f 2(qα(u) | u)
+ o(η(Qλ) + n−1ν(Qλ)) (11)

7



Proof. See appendix for Proof

Now, considering the following series expansion ofqα(U) for U aroundu,

qα(U) ≃ qα(u) + Ψ(U − u)q′α(u),

a local linear version of estimator (10) can be obtained as the solution forβ of the following minimization problem

argmin
(β,ω)

1
n

n
∑

i=1

Qλ(Ui − u)ρα(Θi − β −Ψ(Ui − u)ω) (12)

Now, for the resulting estimator, we get

Theorem 6. Given theU×[−π, π)-valued random sample(U1,Θ1), · · · , (Un,Θn), let q̃α,λ(u), u ∈ U, be the solution for
β of the minimization problem (12). If the assumptions of Theorem 5 hold, and qα(·) has continuous second derivative
at u ∈ U, then

L[q̃α,λ(u)] =
ξ2(Qλ)

4
{q′′α (u)}2 + ν(Qλ)α(1− α)

ng(u) f 2(qα(u) | u)
+ o(η(Qλ) + n−1ν(Qλ))

Proof. See appendix for Proof

Notice that the asymptotic versions of loss (6) for local constant and local linear fits differ only in the bias part.
Here, as it happens in the standard setting, the asymptotic biases differ even when the design density is uniform. They
are the same when, for example,q′α(u) = 0, or when bothg(u) and f (qα(u) | u) are uniform onU, this can be seen
using the formulation ofF(0,2)(qα(u) | u)/ f (qα(u) | u).

As a consequence of Theorems 5 and 6, whenU is the circle andQλ is a von Mises kernel, the value ofλ which
minimises the leading term of Equation (11) is essentially the same as the value in Equation (7) obtained for the
corresponding local constant and local linear versions of inverse-cumulative distribution estimator withλ ≪ κ. The
same result, with due modifications, holds for the caseU = [0, 1]. This is because under the said conditions the
respective losses are asymptotically equivalent.

5. Simulations

In this section, we explore and compare the performance of our estimators through simulations. Specifically, in
Section 5.1 we compare the double-kernel estimator with theestimator based on the circular check function, and then
in Section 5.2 we compare the local linear estimator with thelocal constant in the case that the explanatory variable
may have finite support. In both cases we suppose that the explanatory variable is circular.

5.1. Double-kernel and check function estimators

We compare the double-kernel estimator given by (5) and the estimator based on the circular check function,
given by (10) in the case thatU is the unit circle, andf (θ | u) is a von Mises density with concentrationκ = 10 and
conditional mean

atan2 [sin(u− 1) , 1+ 0.8 cos(u− 1)] (13)

where atan2[y, x] is the angle between thex-axis and the vector from the origin to (x, y). We will estimate quantiles
of orders 0.01, 0.05, 0.95,0.99 in correspondence of these three values of the conditioning variable:−2.2,−1.5, 1.5.
These latter values are chosen to consider a variety of slopes. A single example is given in Figure 1 for sample size
n = 100, which shows the estimates at the given design points together with the theoretical quantiles, which are of
constant width.

We note that the estimator (5) depends on a pair of smoothing parameters (say (κ, λ1)), whereas (10) depends only
on one (sayλ2) which would suggest that the double-kernel estimator willprovide more flexibility, at the expense of
potential difficulty in using cross-validation to select appropriate values.

As a second simulation experiment, for eachn ∈ {50, 100, 500} we simulated 100 samples. In each case we
obtained quantile estimates, corresponding to the same orders and conditioning variable values as the first experiment,
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using (5) for a grid of values of (κ, λ1) and (10) for a grid of values ofλ2. The results from the simulations were
combined by using a sample version of the accuracy measure (6).

Three sets of results are shown. In the first set we fixn = 100 andu = 1.5 and considerα ∈ {0.01, 0.05, 0.95, 0.99},
In the second set, we taken = 100 andα = .05 and consideru ∈ {−2.2,−1.5, 1.5}. In the third set, we takeα = 0.05
andu = 1.5 and considern ∈ {50, 100, 250, 500}. In each set we report: the values of (κ, λ1) which maximize the
accuracy for estimator (5), together with the corresponding loss, and the value ofλ2 which maximizes the accuracy
for (10), with its corresponding loss. The results are presented in Table 1.
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quantile estimation for simulated data: example

u

θ

−

−

−

− −

−

Figure 1: Theoretical quantiles (lines) forα ∈ {0.01, 0.05, 0.95, 0.99} for the von Mises model with conditional mean given by (13) and κ = 10.
n = 100 points are generated from this model, in whichu is uniform on the circle. As an illustration, the check quantile estimates (10) are shown
for α{0.01, 0.99} (continuous) andα{0.05, 0.95} (dashed) at locationsu ∈ {−2.2,−1.5, 1.5}. In this illustration we have chosenλ = 100.

Firstly we note that, as expected, estimator (5) is a little better than (10) in all settings. However, the improvement
comes at a computational price. The first set of results showsa similar performance for each of the quantile estimates.
In the second set, we can see that estimating quantiles atu = −2.2 is more difficult than either of the other locations.
At this position there is a steep gradient over a small interval, and so little information is available. Correspondingly,
much larger values ofλ1 andλ2 are selected at this position. Finally, the dependence on sample size is also much as
expected; there is improving accuracy withn and a general increase in concentration parameters.

5.2. Local constant and local linear estimators

We use similar settings as in the third block of Table 1 in thatwe consideru = 1.5 andα = 0.05 for various values
of n, and continuing to use the same conditional mean function (eq:simmean). Here, we also consider the same local
constant estimator (5) but now we compare this to the corresponding local linear estimator, based on (2), in the case
that the explanatory variable is uniform on the circle (as before), and in the case when it is uniform on (−1.5, 1.5) so
that we are estimating the quantile at the boundary of the sample space. The results are shown in Table 2.
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positionu = 1.5 and sample sizen = 100
quantile estimator (5) estimator (10)

α (κ, λ1) loss λ2 loss
0.01 (33,31) 0.028 16 0.049
0.05 (48,20) 0.025 10 0.032
0.95 (116,11) 0.022 10 0.026
0.99 (11,18) 0.022 7 0.027

quantileα = 0.05 and sample sizen = 100
position estimator (5) estimator (10)

u (κ, λ1) loss λ2 loss
−2.2 (43,300) 0.082 194 0.094
−1.5 (29,17) 0.025 6 0.037

1.5 (57,17) 0.030 11 0.037

quantileα = 0.05 and positionu = 1.5
size estimator (5) estimator (10)

n (κ, λ1) loss λ2 loss
50 (34,13) 0.030 9 0.039

100 (175,10) 0.026 9 0.030
250 (210,13) 0.011 12 0.011
500 (246,19) 0.009 13 0.011

Table 1: Results of three simulation sets from model (13), for various settings of sample sizen, locationu and quantilesα (see Figure 1 for an
example). In each setting, we report the optimal pair (κ, λ1) or λ2 for estimators (5) & (10), respectively with correspondingminimized loss (6).
Results were obtained from 100 samples in each setting.

α = 0.05 and positionu = 1.5. U(−π, π)
size local constant local linear

n (κ1, λ1) loss (κ2, λ2) loss
50 (76,13) 0.032 (164,11) 0.032

100 (112,13) 0.026 (74,14) 0.026
250 (148,13) 0.013 (217,14) 0.012
500 (434,17) 0.010 (325,21) 0.010

α = 0.05 and positionu = 1.5. U(−1.5, 1.5)
size local constant local linear

n (κ1, λ1) loss (κ2, λ2) loss
50 (199,22) 0.034 (68,0.7) 0.010

100 (231,26) 0.024 (52,1.2) 0.005
250 (199,38) 0.023 (68,1.0) 0.002
500 (515,38) 0.016 (84,1.1) 0.001

Table 2: Results of two simulation sets from model (13), for various settings of sample sizen. In each row, we report the optimal pair (κ, λ) for the
estimator (5) based on (1) and (2), respectively with corresponding minimized loss (6). Results were obtained from 100 samples in each setting. In
the top block the explanatory variable is uniform on the circle (and a repeat of the last block of Table 1) and in the second block, U is uniform on
(−1.5, 1.5).
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We can see that the performance is quite similar between the local constant and the local linear in the case that
the quantile is estimated at an interior point. However, in the case that the explanatory variable has limited support
and the quantile is estimated at a boundary, then the local linear estimator performs much better, and the improvement
increases with sample size. This is as expected.

We note that in all double-kernel experiments, the choice ofλ was much more important than the choice ofκ.

6. Application

We illustrate the estimation of a conditional circular distribution function using some data on wind speed and wind
directions. The data, which is taken from an observation station close to the Florida coastline and was collected by
the National Data Buoy Center of the NOAC, is intended to illustrate the potential uses of the methodology.

The first part of our analysis concerns finding an “optimal” direction corresponding to wind speeds near to a
specified value. Then we consider conditional quantile estimation, and assess its coverage. Note that any concern
about where to “cut” the circle is not an issue in the questions we address here.

6.1. Estimation of optimal direction

A wind rose is often used to display information about the direction of particular wind speeds, and Figure 2 shows
some sample rose diagrams revealing the distribution of wind directions corresponding to wind speeds 9m/s and 12
m/s. We initially note that our method is not hampered by an arbitrary, equi-spaced partition of the circle as rose
diagrams are.

wind directions for speed 9

90

270

180 0

wind directions for speed 12

90

270

180 0

Figure 2: Rose diagrams for wind directions corresponding to the observed wind speeds (m/s) in the range (8, 10) (left) and (11, 13) (right).

This type of data is highly relevant to the analysis of proposed wind turbine installations. The energy (and revenue)
generated by a wind turbine is crucially dependent on the wind speed; different turbines may have different (energy–
wind speed) response rates. Locations with little wind willoften be uneconomic, and locations with very high wind
speeds will cause different problems. By considering the wind speed and wind direction distributions, the anticipated
energy may be calculated. Our dataset consists of wind speedand wind directions at a specific location so in this
illustrationU, which represents the wind speed, is linear, andθ ∈ [−π, π) is the direction.

We will suppose that the energy output for a proposed turbineis highest for wind speeds close to somew m/sand
we are interested to know thedirectionof the turbine which will “optimize” the energy. If we suppose that the turbine
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will function within an angle ofπ/4 radians of the wind, then we need to find a directionθ = θ(w) to maximize

F(θ(w) + π/4 | u = w) − F(θ(w) − π/4 | u = w).

We can estimate this using Equation (1), in which the weightsL can be based on either a local constant, or local
linear estimate. One way to select the smoothing parameters(λ andκ) is to consider the mean squared error of the
estimates, and then use the results of Theorems 3 and 4. This would require suitable plug-in methods, similar to
those of Yu and Jones (1998), who deal with analogous linear methods. Bandwidth selection for simple directional
density estimation as, for example, in Garcı́a-Portugués(2013), would be inappropriate in this setting. However, in
our application the choice ofλ is practically determined by consideration of the fact thatwe actually want to estimate
F(θ(w) + π/4 | u ≈ w) − F(θ(w) − π/4 | u ≈ w) and so (this will often depend on the operating characteristics of the
specific turbine) we have consideredλ = 0.6 andλ = 1.2 in our calculations with a normal kernel forKλ (soλ is the
standard deviation). Given the choice of normal kernel, these choices ofλ were chosen to focus on a range of wind
speeds of about±2λ. Our illustrative data consists of 17,480 observations, with wind speeds which range from 0.1
m/s to 18m/s (mean 5.9).
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Figure 3: Wind turbine direction to maximize output using anestimate of the conditional CDF based on Equation (1). Four smoothed estimates
(dependent onλ andκ) are shown, as well as a naive estimate, for each of local constant (left) and local linear (right) estimation.

Some results are presented in Figure 3, where the dependenceof the optimal direction on the wind speed can be
clearly seen. The dependence onκ is small, as is the effect ofλ on the result. For ease of interpretation, we have used
angles mod(2π) to avoid “wrapping”. We have also considered a naive approach for comparison. In this case, we
chose the angle (θ0 = θ0(w)) to maximize

∑

{i:wi∈(w−1,w+1)}
1{cos(θ0−θi)>1/

√
2},

and the result is shown on both plots. This naive estimate is more akin to a histogram, though the resulting values of
θ0 are still quite smooth, with all estimates showing a similaroverall structure. Figure 3 shows a marked difference in
the optimal direction between wind speeds 9m/s (where the optimal direction is about 3.5 radians) and 12m/s (with
optimal direction about 5.3 radians).

6.2. Conditional quantile estimation
Estimation of specific quantiles will depend on the choice of”cut point” on the circle, so we avoid this arbitrary

selection by considering the estimation of confidence intervals conditional on wind speed, and investigate the potential
12



to chooseλ andκ by cross-validation. Ideally, this should be considered with respect to a loss function which measures
the coverage accuracy for a specific set of quantiles. However, since the coverage is discrete, this typically results ina
cross-validation function which is piecewise constant, and harder to optimize. Instead, we again consider estimation
of the conditional CDF as a means to get suitable smoothing parameters, and we use an adaptation of Equation (2) in
Di Marzio et al. (2012), so thatλ andκ are chosen to minimise

CV(κ, λ | u) =
∑

i:Ui≈u

∫ π

−π

{

1{θ≥θi} − F̂(i)
λ,κ

(θ | u)
}2

dθ (14)

whereF̂(i)
λ,κ

(·) is the smoothed estimate (1) of the conditional CDF using all the data except theith observation, with
smoothing parametersκ andλ. There are two points to note here. Firstly, the smoothing parameter selection does
not take any account of the quantile(s) to be estimated, although the parameters do depend on the wind speed (u).
Secondly, there is a need to make precise what “≈” means in the limit of the summation in Equation (14). In our
example, the wind speeds are recorded to one decimal place, but in general one will require a sufficient number of
observations in order to achieve stable results.

For given wind speeds, we first find the smoothing parameters by using Equation (14) for both local linear and
local constant estimators. Then, using these smoothing parameters we compute (1). Finally, for givenα we choose an
“origin” to minimise the width of the interval, which leads to estimates of the “lower” and “upper” endpoints. This
final step is used to avoid the somewhat arbitrary choice of origin, or ”cut point” for data which lie on a circle. In
Figure 4 we show the 80% confidence intervals corresponding to the distribution of the direction conditional on wind
speed. Also on this plot, we give the actual coverage, as a percentage, for both the local constant, and local linear
estimates. Although the coverages are mostly close to 80% (as desired) it should be remembered that the data is not
independent of the cross-validation data. The intervals (and coverage) are quite similar for the two methods, except
for wind speed 13m/s; the estimates of the conditional CDFs for this wind speed are also shown.
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Figure 4: Left: 80% confidence interval estimates of direction conditional on wind speed for local linear (lines) and local constant (dashed). The
numbers give actual coverage for each method; the larger font is used for local linear, and the smaller for local constant. Note that the intervals are
shown by vertical lines (not by the gaps). Right: the estimated conditional CDF for wind speed 13m/s for local linear (lines) and local constant
(dashed).
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7. Discussion

We should stress that in any practical application the choice of origin (“cut-point”) should be chosen dependent
on u to minimise the width of the interval to be estimated. This adjustment is important to obtain meaningful inter-
pretations, especially if the conditional mean can take values close toπ. We note that the double-kernel estimator has
two tuning parameters (λ andκ) whereas the circular check function estimator has only one. Maybe, it is for this rea-
son that, in some simulation experiments with small samples, we have observed a slightly better performance for the
double-kernel estimator in most settings. However, this comes with the cost of more computational effort, as well as
the need to select good smoothing choices. This effort can be reduced by first selecting a good value ofλ in the check
function, and then using this value, together with an appropriateκ, in the double-kernel estimator. Cross-validation
can be used in this process, though we have found a joint selection of bothκ andλ to be problematic.
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Appendix

Proof of Theorem 1 Observing that estimators (1) and (2) can be respectively regarded as a local constant and local
linear estimators of

m(θ, φ) = E[Wκ(θ − Θ) −Wκ(−π − Θ) | Φ = φ],
in virtue of assumptions i) and iii), Theorem 4 of Di Marzio etal. (2009) gives

E[F̂λ,κ(θ | φ)] −m(θ, φ) =















η2(Qλ)
2

{

m(0,2)(θ, φ) + 2g′(φ)
g(φ) m(0,1)(θ, φ)

}

+ o(η2(Qλ)), f or estimator(1);
η2(Qλ)

2 m(0,2)(θ, φ) + o(η2(Qλ)), f or estimator(2);

and, for both estimators,

Var[F̂λ,κ(θ | φ)] =
R(Qλ)s2(φ, θ)

ng(φ)
+ o(η2(Qλ)),

wheres2(θ, φ) = Var[Wκ(θ − Θ) −Wκ(−π − Θ) | Φ = φ].
Now, notice thatm(θ, φ) ands2(θ, φ) respectively amount to expectation and variance of the circular CDF estimator

provided by Di Marzio et al. (2012), conditional onΦ = φ. Thus, an adaptation of the results stated in Theorem 2.1
of Di Marzio et al. (2012), for the unconditional case, alongwith assumption ii), yield

m(θ, φ) = F(θ | φ) + 1
2k
{F(2,0)(θ | φ) − F(2,0)(−π | φ)} + o(κ−1), (15)

and

s2(θ, φ) = F(θ | φ){1− F(θ | φ)} − 1
√
πk
{F(1,0)(θ | φ) − F(1,0)(−π | φ)} + o(κ−1/2). (16)
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Hence, by plugging (15) and (16) in the expectations and variance expressions, the results follow.
�

Proof of Theorem 2 The results follow by using the same arguments as in the proofof Theorem 1, once observed
that, in virtue of assumption i), euclidean local polynomial fitting theory gives

E[F̂λ,κ(θ | x)] −m(θ, x) =















λ2µ2(Q)
2

{

m(0,2)(θ, x) + 2g′(x)
g(x) m(0,1)(θ, x)

}

+ o(λ2), f or estimator(1);
λ2µ2(Q)

2 m(0,2)(θ, x) + o(λ2), f or estimator(2);

and, for both estimators,

Var[F̂λ,κ(θ | x)] =
R(Q)s2(x, θ)

nλg(x)
+ o

(

1
nλ

)

.

�

Proof of Theorem 3 First observe that, by standard Taylor series arguments, wecan write

E[2{1− cos(q̂α,λ,κ(u) − qα(u))}] ≈E[{q̂α,λ,κ(u) − qα(u)}2]
={E[q̂α,λ,κ(u) − qα(u)]}2 + E[{q̂α,λ,κ(u) − E[q̂α,λ,κ(u)}2]

Now, using the approximation

q̂α,λ,κ(u) − qα(u) ≃ −
F̂λ,κ(qα(u) | u) − F(qα(u) | u)

f (qα(u) | u)
,

Theorem 1 whenu = φ and Theorem 2 whenu = x, along withF(qα(u) | u) = α, yield the result. �

Proof of Theorem 4 The result directly follows by using the same arguments as inthe proof of Theorem 3, along
with results of Theorem 1 whenu = φ, and Theorem 2 whenu = x. �

Proof of Theorem 5 Reasoning as in Jones and Hall (1990), define

Hα(u) =
1
n

n
∑

i=1

Qλ(Ui − u){α1{β<Θi<π} − (1− α)1{−π<Θi<β}},

obtaining that

E[Hα(u) | U1, · · · ,Un] =
1
n

n
∑

i=1

Qλ(u− Ui){α − F(β | Ui)}.

Now, expandingF(β | Ui) in Taylor series, for (β,Ui) around (qα(u), u), it results

F(β | Ui) ≈ F(qα(u) | u) + {β − qα(u)} f (qα(u) | u) + Ψ(Ui − u)F(0,1)(qα(u) | u) +
1
2
Ψ2(Ui − u)F(0,2)(qα(u) | u),

and using similar approximations as those used in the proof of Theorem 3, we finally get

E[Hα(u)] = −{β − qα(u)} f (qα(u) | u)g(u) − ξ(Qλ)
2

{

2F(0,1)(qα(u) | u)g′(u) + F(0,2)(qα(u) | u)g(u)
}

+ o(ξ(Qλ))

Moreover, reasoning again as in Jones and Hall (1990), we have

Var[Hα(u)] =
ν(Qλ)g(u)

n
α(1− α) + o

(

ν(Qλ)
n

)

.

Now, use the fact that{Var[Hα(u)]}−1/2{Hα(u) − E[Hα(u)]} converges to a standard normal distribution, and that
estimator (9) is the solution forβ of Hα(θ) − E[Hα(u)] = −E[Hα(u)]. �

Proof of Theorem 6 Whenu ∈ [0, 1], the result directly follows by using Theorem 3 in Fan et al. (1994), withλ in
place ofh. Whenu is an angle, the same result holds, with due modifications, byusing the assumptions in Theorem
5. �
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