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Object Classification in 3-D Images Using
Alpha-Trimmed Mean Radial

Basis Function Network
Adrian G. Borş and Ioannis Pitas, Senior Member, IEEE

Abstract—We propose a pattern classification based approach
for simultaneous three-dimensional (3-D) object modeling and
segmentation in image volumes. The 3-D objects are described
as a set of overlapping ellipsoids. The segmentation relies on
the geometrical model and graylevel statistics. The characteristic
parameters of the ellipsoids and of the graylevel statistics are
embedded in a radial basis function (RBF) network and they are
found by means of unsupervised training. A new robust training
algorithm for RBF networks based on �-trimmed mean statistics
is employed in this study. The extension of the Hough transform
algorithm in the 3-D space by employing spherical coordinate
system is used for ellipsoidal center estimation. We study the
performance of the proposed algorithm and we present results
when segmenting a stack of microscopy images.

Index Terms—Alpha-trimmed mean, radial basis function net-
works, 3-D Hough transform.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D) modeling and segmen-

tation are important tasks in scene processing, under-

standing and visualization [1]–[3]. Several approaches have

been adopted in this field and in the following we mention

only a few of them. A volumetric image can be seen as

an array of voxels at the sites of a 3-D lattice. The main

approaches in 3-D object identification consist of representing

each object either by a global model description or as a

set of component elements. The global description of a 3-D

object was considered by using the generalized cylinder model

[4] or by minimizing an energy function [5], [6]. Modeling

3-D objects by tracking each slice in a stack of images was

employed in [7] and [8]. The object is represented as a set

of generalized cylinders in [6] and [8] or as a deformable

surface model [9]. The 3-D segmentation in [10] employs

a 3-D connectivity algorithm, after appropriate thresholding.

Mathematical morphology [11] was used in 3-D domain

for segmenting pulmonary trees [12] and brain tissue [13].

Various model-based supervised classifiers have been tested

in segmenting 3-D brain images in [14], [15]. Each region
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is associated with a multivariate Gaussian mixture density in

[15]. 3-D modeling from range images using self-organizing

maps [16] was employed in [17]. Radial basis functions

(RBF’s) were used for 3-D iterative image reconstruction

from projection data in [18] and in 3-D shape from shading

reconstruction [19].

In this study, we employ an unsupervised classification pro-

cedure by using an RBF network for modeling the 3-D scene.

The RBF network has a two-layer feed-forward topology and

has been successfully employed for functional modeling and

pattern classification [20]–[22]. In RBF networks, a function

is approximated by a mixture of kernels implemented by

the hidden units. The RBF approximation capabilities have

been extensively studied [22]–[25]. Due to their functional

approximation and localization properties, RBF’s were found

attractive for use in computer vision and image processing

[26], [27]. Gaussian functions, which geometrically model

ellipsoids in 3-D, are used as RBF hidden unit activation

functions in the approach described in this study. Mixtures

of Gaussian functions have been considered for modeling in

many scientific fields. In this approach graylevel and shape are

jointly modeled with a set of overlapping Gaussian functions.

The input space consists of four features, denoting the voxel

coordinates and the graylevel. The parameters of the ellipsoids

can be estimated using the normalized first- and second-order

moments [28]. The calculation of the ellipsoid parameters by

using an approach based on moments corresponds to a classical

statistical formulation. Their estimation can be performed by

means of the -means clustering algorithm or its adaptive

implementation represented by the learning vector quantizer

(LVQ) algorithm [16].

A classical training algorithm for RBF networks employs

the LVQ algorithm for estimating the Gaussian function pa-

rameters [29]. Variants of this algorithm have been derived in

order to increase its efficiency in modeling data distributions

[26], [30]. An algorithm based on median estimation called

median radial basis function (MRBF) was proved to provide

better data classification when compared to the classical al-

gorithm [21]. The classical moment algorithms are sensitive

when data are contaminated by noise. In this study we propose

a new RBF training algorithm based on the -trimmed mean

statistics. This algorithm orders the data samples associated

with a basis function and eliminates a certain percentage

of those situated at the extremes of the distribution. The

remaining data is averaged. The -trimmed mean algorithm

1057–7149/99$10.00  1999 IEEE
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has been proved a good location estimate in the case when

data is contaminated with medium and long tailed distributions

[31] and has been employed for image filtering [11], [32]. In

the approach considered in this study, the number of samples

trimmed away from the given distribution depends on the

data statistics [33]. The classical RBF and MRBF training

algorithms are particular cases of the proposed algorithm.

We prove that alpha-trimmed mean RBF algorithm provides

unbiased estimates for the ellipses center and this result can be

extended for ellipsoids. A trimming algorithm which discards

data samples with large Mahalanobis distances from the center

is used for covariance matrix estimation [34]. The use of this

algorithm for ellipsoid covariance matrix estimation is studied.

Experimental results suggest that the proposed algorithm is

efficient in estimating parameters of overlapping ellipsoids or

when the ellipsoids are embedded in noise.

A study of the similarities among various clustering and

energy-minimization algorithms used for image boundary ex-

traction is provided in [35]. The Hough transform (HT) has

been applied for finding curve parameters in images [28], [36].

In [28], the HT is treated in the context of the Bayesian

theory. LVQ or other clustering algorithms have been used

to estimate the parameters of lines and curves in the Hough

space [26], [38]. In this study we propose a 3-D extension of

the HT for estimating RBF centers in correspondence with

the alpha-trimmed mean RBF algorithm. Various ellipsoids

are gathered together, based on the graylevel and location

proximity criteria, in order to model complex objects. The

alpha-trimmed mean RBF network output parameters are

calculated based on the backpropagation algorithm [20], [22].

After estimating the network parameters corresponding to the

3-D modeling, the network can be used to reconstruct the

objects or for segmenting 3-D scenes.

The pattern classification criterion employed in this study is

described in Section II. The alpha-trimmed mean RBF algo-

rithm is presented in Section III and its application for object

modeling in Section IV. Simulation results when applying the

proposed algorithm in synthetic object modeling and in 3-D

segmentation of a stack of microscopy images are provided in

Section V and the conclusions are drawn in Section VI.

II. THE CLASSIFICATION CRITERION

We employ a Bayesian approach for object classification

in volumetric images. Let us denote by the object to

be identified and by a 3-D image. The object which

provides the maximum a posteriori probability among all the

possible candidates is given by

(1)

where is the total number of objects to be found in the

volumetric image. The a posteriori probability is expressed

by means of Bayesian relationship

(2)

where is the probability associated with 3-D scene

modeling from the component objects and is the a priori

probability of the object. We decompose these probabilities in

a set of components. This corresponds to the fact that a shape

can be represented as a combination of several subsets. The

relationship (1) becomes

(3)

where one of the components making up the object is

denoted as . Each of the component probabilities can be

expressed as an energy function

(4)

where is a normalizing constant and is a function

depending on the feature vectors associated with the voxels.

The a priori probabilities scaled by a constant are taken

as weighting factors denoted by . The relationship (3) can

be expressed as

(5)

This structure is implemented in an RBF network. RBF’s prop-

erties make them suitable to approximate continuous functions

with the desired precision [22]–[25]. They are implemented in

a two-layer network, where each input represents a feature

entry. The hidden-layer unit embeds a Gaussian function

(6)

where denotes the center vector and the covariance

matrix. A Gaussian function statistically models a cluster of

data and geometrically represents an ellipsoid in 3-D space.

The network output for data vector is denoted by

where and is limited to the interval by

a sigmoidal function

(7)

Each network output is assigned to an object.

III. ALPHA-TRIMMED MEAN RADIAL BASIS FUNCTIONS

In the previous section, we have expressed the object

probabilities as a sum of locally-activated density functions,

modeled by Gaussians. Each voxel in the volumetric image

is associated to a feature vector consisting of two parts: its

coordinates and graylevel, respectively, denoted as .

The Gaussian center is composed of , with the

former part representing the coordinates of the ellipsoid center

in the 3-D image and the latter its characteristic graylevel.

The cross-correlation between the features denoting the coor-

dinates and the graylevel is set to zero. The covariance matrix

associated to the basis function is:

(8)
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where models the shape and represents a 3 3 matrix in

3-D and is the graylevel variance. Thus, the function (6) can

be decomposed in

(9)

where the first expression of the decomposition is associated

to the geometry of the object and the second to the graylevel

distribution. This model is embedded in an RBF network.

A classical approach in training RBF networks employs the

LVQ algorithm [16] for estimating the hidden unit function

center [29]. Similar training algorithms for RBF networks

have been considered for curve parameter estimation [26] and

channel equalization [30]. These algorithms correspond to the

classical statistics theory and provide unbiased results if the

distributions are Gaussian and nonoverlapping.

The algorithm proposed in this study is based on an unsu-

pervised approach, similar to the LVQ. We generate a set of

centers at random and the algorithm calculates the Euclidean

distance from a data sample to each of them. The closest center

to the given data vector is chosen to be updated:

(10)

where is the closest center to the incoming data sample .

A robust statistics based algorithm employing the marginal

median for Gaussian center estimation and the median of

the absolute deviation from the median for width estimation

and called median RBF (MRBF) was proposed in [21]. The

theoretical analysis has shown that the bias provided by MRBF

is smaller than that of the classical LVQ-based RBF algorithm

when estimating the parameters of a mixture of overlapping

Gaussians. In this study, a new robust statistics based training

algorithm which contains the previous two approaches as

particular cases is proposed. Data samples assigned to a

specific cluster according to (10) are arranged in the order of

their values on each dimension independently. Let us denote

them in correspondence to their rank as for

where is the total number of data samples assigned to the

-th hidden unit. A very general description of many robust

statistics algorithms assigns a weight to each data sample

with respect to its rank [31], [37], and provides an estimate

of the center, as follows:

(11)

where is the weight depending on the ranking of the

respective data sample. If for ,

then the center is computed by averaging. If for

, and for

we obtain the marginal median estimator. In other

robust statistics algorithms, is replaced by a function which

decreases with respect to the distance of the data sample

from the central ordered data sample . In this study we

Fig. 1. Estimation of the ellipse center after trimming.

Fig. 2. Trimming of an ellipse after ordering its data according to the
Mahalanobis distance from the center.

propose to use the -trimmed Mean algorithm [11], [31] which

assigns for , and

for the rest of data samples, where is the percentage of data

samples to be trimmed away at each extreme of the th hidden

unit data distribution. The -trimmed mean algorithm is a good

choice for long and medium tail data distributions and has been

extensively used for image filtering [11], [32]. The adaptive

implementation of the algorithm updates the parameters of a

basis function using only the data samples which are inside of

a certain range of ranked samples:

if

otherwise

(12)

where and denote the center estimate and the number

of data samples assigned to the th basis function at the

moment . We can observe that for we obtain the

LVQ algorithm for minimum output variance [39].

The parameter is chosen according to the data distri-

bution. The following measure is used for estimating the tail
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(a) (b) (c)

Fig. 3. Estimation of a distorted ellipse. (a) Distorted elliptic shape. (b) Estimating the ellipse using classical moments method. (c) Estimating the ellipse
using alpha-trimmed mean RBF algorithm.

length of the data distribution [33]:

(13)

where represent the average of the upper and,

respectively, the lower percent of data samples assigned

to a specific basis function. The number of data samples to be

trimmed away relies directly on the value of

(14)

For long tailed distributions, the amount of data samples to

be trimmed is large while for short tailed distributions less

samples are trimmed away.

For the second-order statistics, we order the data samples

assigned to a basis function according to their Mahalanobis

distance from the estimated center , starting with

(15)

After ordering the data samples assigned to the th basis func-

tion according to this measure , the

estimate of the covariance matrix is obtained using ellipsoidal

trimming [34]

(16)

where denotes the th ordered data sample according

to the Mahalanobis distance (15) and is the trimming

percentage in this case. Similarly, with (12) this formula

can also be implemented in an adaptive form. The formula

(16) corresponds to peeling off observations in shells using a

sequence of convex hulls. The formulae (12) and (16) make

up the alpha-trimmed mean RBF training algorithm.

IV. OBJECT MODELING USING ALPHA-TRIMMED MEAN RBF

In this section we study the application of the alpha-

trimmed mean RBF algorithm for estimating the parameters

of ellipsoids. The analytic form of an ellipsoid is:

(17)

We can observe that the ellipsoid center and width correspond

to the mean and variance of a Gaussian function. The orien-

tation of the ellipsoid can be derived from the components

of the Gaussian covariance matrix. Algorithms based on first-

and second-order moments are used for calculating the ellipse

parameters [28] and they can be extended for ellipsoids.

However, the classical moment-based method is likely to

provide a biased estimate in the case when ellipsoids are

overlapping or in the presence of noise.

For simplifying the notation, let us consider an ellipse as the

two-dimensional (2-D) case of an ellipsoid. The calculation of

the center using (12) is done on each dimension independently

and does not depend on the number of entries. The pixels of

the ellipse are uniformly distributed in the domain defined by

(17). The center of the ellipse is estimated from the normalized

first-order moments:

(18)

where denotes the distribution function of the truncated

ellipse and its limits, and denotes

the estimate of the center vector component on the axis.

The denominator in (18) calculates the area of the ellipse after

truncation. In Fig. 1, the truncation of an ellipse by -trimmed

mean algorithm is displayed.

The following proposition has been proved in Appendix A.

Proposition 4.1: The center of an ellipse is exactly deter-

mined after ordering the corresponding data samples of its

distribution and after trimming away an percentage of them

at both limits, .

For the ellipse covariance matrix, we calculate the nor-

malized second-order moments for the distribution left after

trimming, as follows:

(19)
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Fig. 4. Description of the algorithm for modeling 3-D objects.

where is the function describing the ellipse, trimmed

based on (16), and and

denote the geometrical limits of the ellipse after trimming.

The illustration of ellipse trimming by excluding from compu-

tation extreme shells of data is displayed in Fig. 2. Evidently,

when trimming data samples from an ideal ellipse, a smaller

covariance matrix is obtained. The loss of data must be

compensated in certain cases. In Appendix B the estimation of

the covariance matrix after trimming an ideal ellipse is studied.

The conclusion of this study is the following:

Proposition 4.2: The variance of an ellipse after trimming

is given by

(20)

where is the th location vector ordered according to

the Mahalanobis distance from the center of the ellipse and

is the percentage of trimmed data samples associated

with the th basis function.

From (15) and (16), we can observe that the estimation

of the covariance matrix by trimming does not depend on

a specific dimension or on the number of dimensions. The

conclusions provided in Proposition 4.1 and Proposition 4.2

for ellipses can be extended for ellipsoids as well.

When estimating an elliptical shape, formula (20) corre-

sponds to the redistribution of the data samples associated

with the ellipse such that its distortions are compensated.

The -trimmed mean algorithm has been shown as robust

when estimating data corrupted by noise [11], [31]–[34]. In

order to analyze the capabilities of shape estimation for the
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alpha-trimmed mean RBF algorithm, a distorted elliptic shape

is shown in Fig. 3(a). The ellipse estimated by the classical

moments method [28] and by the proposed alpha-trimmed

mean RBF algorithm are shown in Fig. 3(b) and in Fig. 3(c).

It can be observed that alpha-trimmed mean RBF algorithm

is robust in estimating the ellipse parameters when data is

distorted by noise.

In order to model the geometrical shape by the basis

functions we can employ a 3-D extension of the HT in

combination with the alpha-trimmed mean RBF algorithm. HT

represents a mapping from the image features to sets of points

in a parameter space [2], [28], [36]. The parameters provided

by the HT have been used as input features for the RBF and

LVQ algorithms, in order to detect lines [26] and for texture

classification [38]. For voxels where a significant edge is

located, we generate a set of parameters which are compatible

with the volumetric image features and the hypothesized

model. The HT can be used to detect complex parametric

curves [28], [36]. However, the number of required parameters

increases with respect to the complexity of the model. In

order to reduce the computational complexity, HT is employed

only for finding estimates of sphere centers to be used in

the context of the alpha-trimmed mean RBF algorithm. For

finding the object edges we apply a 3-D extension of the Sobel

edge detector algorithm which provides both edge intensity

and orientation. The transformation from the rectangular to

the spherical coordinate system is given by the system of

equations:

(21)

(22)

(23)

where are the spherical coordinates corresponding to a

voxel in the rectangular coordinate system. After

the 3-D Sobel edge calculation, the orientation of the edge

with respect to the plane is given by a formula based on

(22) and the orientation with respect to axis is derived

from (23). We consider a certain volumetric image partition

in cubes and we associate an accumulator to each cube. The

possible candidates for the centers of the component spheres

can be expressed with respect to the locations of significant

edges as

(24)

(25)

(26)

for a certain interval . For each from the given

interval we increment the accumulator corresponding to

all the points as provided by (24)–(26). From (9),

we observe that we can train separately the RBF weight

components modeling the geometrical shape and the

graylevel variance . We use the accumulators provided by

3-D HT as weights in the adaptive alpha-trimmed mean RBF

Fig. 5. Estimating the parameters of the alpha-trimmed mean RBF network.

for estimating centers of spheres:

if

otherwise

(27)

where is the accumulator associated with the voxel location

. For the graylevel feature, considering the decomposition

property (9), we use directly the relationship (12). The larger

accumulators correspond to bigger probabilities that a

sphere center is located there. The result of the alpha-trimmed

mean RBF given by (27) will be weighted toward the sphere

center as provided by the 3-D HT estimates. In this case,

the ordering considers the product of the coordinate location

and its respective accumulator . In the case of ideal
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(a) (b)

(c) (d)

Fig. 6. Modeling a synthetic shape. (a) Original shape. (b) RBF modeling.
(c) Alpha-trimmed mean RBF modeling. (d) MRBF modeling.

ellipsoids this produces a function with an elliptic support that

is symmetrically distributed with respect to its center. We can

observe that the result provided by Proposition 4.1 is valid in

this situation as well.

Complex objects in images can be modeled by using shape

decomposition based on mathematical morphology [36] or

overlapping Gaussian functions [19]. As a consequence of

RBF function modeling capabilities [22]–[25], geometrically

any continuous object can be represented by a certain number

of ellipsoids with a given accuracy. By combining graylevel

and geometrical information we can model objects which do

not have smooth boundaries. Very irregular objects would

require a large number of ellipsoids in order to be modeled.

After estimating the hidden-unit parameters according to (27)

and (20) we calculate the output parameters . These

weights denote the association among the hidden and output

units. Positive ’s correspond to ellipsoids which are added

in order to model objects and negative ’s correspond to

holes (missing parts) in objects. Usually the output weights are

estimated based on a priori assumptions [22]. In this study we

have applied an unsupervised approach similar to that used

for describing moving objects in image sequences [27]. The

voxels are assigned to a certain set associated with a

hidden unit , after evaluating

(28)

where is provided in (6). In order to group various

ellipsoids in distinct objects we employ two criteria: the first

criterion considers the geometrical compactness and the sec-

ond takes into account the similarity in the graylevel statistics.

In the second criterion only the data samples assigned to

the neighboring region pairs are considered. The compactness

is calculated based on the cardinality between the regions

(a) (b)

(c) (d)

Fig. 7. Modeling a noisy synthetic shape. (a) Shape corrupted by noise. (b)
RBF modeling. (c) Alpha-trimmed mean RBF modeling. (d) MRBF modeling

TABLE I
MODELING A SYNTHETIC 3-D SHAPE WHEN USING LVQ-BASED

RBF, MRBF, AND ALPHA-TRIMMED MEAN RBF ALGORITHMS

associated to each two hidden units [40], as follows:

(29)

where and are the sets associated with two hidden

units, denotes the cardinal operation and is a 27

voxel neighborhood of the site containing the labels

of the respective voxels. This measure calculates the border

length between the volumes assigned to two different basis

functions [27]. If , then we evaluate the

similarity in the graylevel distribution and compare it with

a certain threshold. Let us denote by the distribution of

the graylevel statistics corresponding to , calculated as a

histogram. The similarity is evaluated as the distance between

the normalized graylevel distributions associated to the two

regions:

If

then (30)
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Fig. 8. Frames from a stack of microscopy images representing cross-sections of tooth pulpal blood vessels and surrounding tissue.

where is a threshold and is a decision function for the

class which contains the sets . If is small, the 3-D

scene will be split in many objects and if it is big, then fewer

objects will be considered. are used as target labels for

estimating the output parameters. We use the backpropagation

algorithm for finding the output parameters [22]

(31)

where is the output provided by the network (7) and

is the data target label decided according to (30).

The object borders coincide with the classification boundary

between their class discriminant functions, as it is provided by

the Bayesian classification theory described in Section II. The

parameters of the 3-D scene are thus embedded in the network.

The hidden units model the characteristics of the ellipsoids and

the output units represent objects. The presentation of the 3-D

object modeling and segmentation algorithm is shown in

Fig. 4. The training algorithm for alpha-trimmed mean RBF

algorithm in the context of 3-D object modeling is detailed

in Fig. 5.

V. SIMULATION RESULTS

The alpha-trimmed mean RBF algorithm has been tested

in many applications. We have used the alpha-trimmed mean

RBF algorithm as described in Section III, when modeling a

synthetic object. We consider the modeling of a 3-D shape

consisting of six spheres of constant intensity with the centers

located at

and . The resulting shape is displayed

in Fig. 6(a). The coordinates of the voxels composing the

shape are considered as inputs in the neural network. After

applying (12) and (20), we obtain the parameters describing

the given object. Afterwards, the shape is reconstructed from

the parameters embedded in the neural network. The modeling

results when using RBF, alpha-trimmed mean RBF and MRBF

network are displayed in Fig. 6(b)–(d). We distort the shape

of the artificial object by adding noise. The noise is uniformly

distributed in the volume and

has 0.2% probability of occurence in the entire volume.

In the locations where the noisy samples are added, the

pixel values are switched from the level of the object to

that of the background and vice versa. The noisy image is

displayed in Fig. 7(a). The objects reconstructed based on

the classical training algorithm for RBF, alpha-trimmed mean
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Fig. 9. Vessel segmentation in the selected frames using classical statistics-based RBF training.

RBF and MRBF algorithm are displayed in Fig. 7(b)–(d). Two

measures are considered for numerical comparison. The first

error criterion measures the average bias in center location

(32)

where represents the number of spheres and are

the original and the estimated location of centers, respectively.

A second measure is the volume error and it is calculated as the

absolute difference between the volume of the original shape,

shown in Fig. 6(a), and the volume representing the object

reconstructed based on the estimated parameters, normalized at

the size of the original object. The average of the results when

applying several times RBF, MRBF and alpha-trimmed mean

RBF are provided in Table I. We can observe from this Table

as well as from Figs. 6 and 7 that alpha-trimmed mean RBF

provides a better result than that of RBF when estimating the

original shape from Fig. 6(a), and better modeling capabilities

than MRBF when estimating the parameters from the noisy

shape. These results show the capability of the proposed

algorithm to model a composite shape as well as its robustness

to noise corruption.

The algorithm described in Section IV has been applied for

segmenting 3-D images. We present here a test on a stack

of 60 microscopy images, representing blood vessels in tooth

pulp. The images composing the stack represent parallel and

equidistant cross-sections through the object structure. A set

of nine frames is presented in Fig. 8. A rendered volumetric

view of the stack of images is shown in Fig. 11(a). We

intend to segment the blood vessels represented as continuous

darker areas. As can be observed in these images, the tissue

structure is very noisy and the objects are not well defined.

Some of the images contain darker or lighter patterns caused

by inappropriate image acquisition. Most of the algorithms

employed for segmentation of similar images rely on semi-

automatical operations involving manual operations [1]. In

the training stage we have used only 20 frames (one out of

each three consecutive frames) and the features were extracted

from 16 16 pixel blocks. This ensured a great reduction

in the number of input data samples and, implicitly, in the

training time. We have not employed any preprocessing stage

involving alignment or luminance equalization. For modeling

the objects we apply the procedures as described in the

flows from Figs. 4 and 5. After the 3-D extension of the

Sobel edge detector, we compute the 3-D HT. Initially we

consider a certain number of hidden units and those which
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Fig. 10. Vessel segmentation in the selected frames using alpha-trimmed mean RBF training.

have been assigned with few data samples according to (10)

are afterwards discarded. The voxel coordinates weighted

by the accumulator cells provided by the 3-D HT and the

graylevel are used for modeling the 3-D object shape and

structure. The data samples associated with various hidden-

units and corresponding to component parts of the objects

are organized in data histograms. A segmentation which relies

only on the graylevel value would provide spurious patterns

all across the image. If the segmentation would rely only on

the geometrical shape, the borders of the objects would not

be accurately represented or the number of required ellipsoids

would be very high. The neighboring 3-D regions which are

defined by estimating the hidden-unit parameters, are joined

together based on their graylevel similarities. Correspondences

among the 3-D regions modeled by the hidden units and

the 3-D objects are given by the output weights . After

estimating the location, shape and the graylevel parameters,

we apply the network on the entire stack of 60 images, on

2 2 pixel blocks. The segmentation of the frames from

Fig. 8 using RBF and alpha-trimmed mean RBF is shown

in Figs. 9 and 10, respectively. As it can be observed from

Fig. 10, the segmentation of the two blood vessels is good and

the spurious patterns scattered around the objects are greatly

reduced when using the alpha-trimmed mean RBF algorithm.

The 3-D segmentation of the two blood vessels is completely

automatic. The alpha-trimmed mean RBF segmentation result

is visualized for various perspective angles in Fig. 11(b)–(d).

VI. CONCLUSION

In this study we propose a new algorithm for modeling

and segmenting 3-D objects. We employ a classification-

based procedure which uses as inputs the graylevel and the

voxel coordinates. In this study the objects are composed of

overlapping ellipsoids. The classifier employed in modeling

the 3-D structure as well as the graylevel is the RBF network,

where each basis unit corresponds to an ellipsoid. We provide

a robust learning algorithm for RBF network based on the

-trimmed mean statistics. This algorithm trims away a num-

ber of data samples according to the data statistics. We prove

that the alpha-trimmed mean RBF algorithm provides no bias

when estimating the center of an ellipse and we derive the

formula for estimating the ellipses covariance matrix after

trimming. The extension of these results for ellipsoids is

straightforward. In order to find the centers of the ellipsoids

we develop a 3-D HT which is integrated in the alpha-trimmed

mean RBF training algorithm. The network parameters embed
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(a) (b)

(c) (d)

Fig. 11. Three-dimensional representations of microscopy images. (a) Original stack of frames. (b)–(d) Three-dimensional blood vessel segmentation
visualized from three different viewing angles.

location, shape and graylevel information of the objects. Each

output of the network corresponds to an object.

APPENDIX A

Let us denote the components of the covariance matrix from

(17) as

(33)

In order to evaluate the limits of integration in (18) we

calculate the tangents at the ellipse parallel with direction,

as follows:

(34)

where denotes the component of and is the

vector normal to ellipse and parallel with the axis [28].

After chosing two vectors and

we derive the limits on the axis. Let us denote with

the interval from ellipse, measured along the axis, which

is going to be eliminated by trimming an percentage at

each extremity of the data distribution. The integration limits
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corresponding to the truncated ellipse are:

(35)

The integration limits on the axis are derived with respect

to coordinate when considering equality in (17):

(36)

The denominator of the expression (18), representing the area

of the truncated ellipse, can be expressed, after changing the

variable, and considering as

(37)

Similarly, the numerator from (18) is

(38)

The second integral in (38) is zero and the result of the

estimation is

(39)

APPENDIX B

The equation of the ellipse resulted after ordering the

data samples assigned to a basis function according to the

Mahalanobis distance from the center (15) and trimming a

percentage is

(40)

Following a similar derivation as in Appendix A, we obtain

the integration limits on axis as follows:

(41)

Similarly, with (36) we derive the integration limits for axis.

The area of the ellipse after trimming is

(42)

For one of the covariance matrix components from the

numerator in the expression (19) we obtain

(43)

From (42) and (43) we derive the estimate for the variance

on axis as follows:

(44)

We obtain similar expressions for the other components of the

covariance matrix in the numerator from (19). We observe that

for in (44) we obtain the same ellipse width estimate

as that provided in the case of the ideal ellipse when using the

classical normalized second order moment method [28].
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