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DOUBLE HURWITZ NUMBERS VIA THE INFINITE WEDGE

PAUL JOHNSON

Abstract. We derive an algorithm to produce explicit formulas for certain
generating functions of double Hurwitz numbers. These formulas generalize a
formula in [GJV05] for one part double Hurwitz numbers. Immediate conse-
quences include a new proof that double Hurwitz numbers are piecewise poly-
nomial, an understanding of the chamber structure and wall crossing for these
polynomials, and a proof of the Strong Piecewise Polynomiality conjecture of
[GJV05].

The method is a straightforward application of Okounkov’s expression [Oko00]
for double Hurwitz numbers in terms of operators on the infinite wedge. We
begin with a introduction to the infinite wedge tailored to our use.
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1. Introduction

1.0.1. Double Hurwitz Numbers Hg(µ, ν). Hurwitz numbers count the number of
maps between Riemann surfaces with specified ramification.

For µ a partition, we will use ℓ(µ) to denote the number of parts of µ, and |µ|
to denote the size of µ; that is, µ1 + · · ·+µℓ(µ) = |µ|. We will always use ℓ(µ) = m
and ℓ(ν) = n.

The Double Hurwitz Number Hg(µ, ν) counts the number of maps f : Σ → P1,
where Σ is a connected complex curve of genus g, and f has profile µ over 0, ν
over infinity, and simple ramification over r = 2g − 2 + ℓ(µ) + ℓ(ν) other fixed
points. Each map f is counted with weight 1

|Aut(f)| , where Aut(f) denotes the

subgroup of automorphisms of Σ that commute with f . We further require that the
automorphisms fix f−1(0) and f−1(∞) pointwise. This extra condition is taken in
[GJV05], and has the result of multiplying Hurwitz numbers by |Aut(µ)| · |Aut(ν)|.

As r is frequently more natural than g, we will use the notation Hr(µ, ν) =
Hg(µ, ν). Furthermore, we organize the double Hurwitz numbers with fixed µ and
ν and varying genus into the following series in z, which we will call the m + n
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2 PAUL JOHNSON

point series :

Hµ,ν(z) =

∞
∑

g=0

zr

r!
Hr(µ, ν).

1.0.2. Our main result, Theorem 3.4, is an algorithm for computing Hµ,ν(z). For
any given µ and ν, the algorithm produces an attractive closed form expression for
the series. The algorithm is an easy consequence of an expression of Okounkov for
double Hurwitz numbers in terms of the infinite wedge [Oko00], and further devel-
opment of this point of view by Okounkov and Pandharipande [OP06b, OP06a].

The motivation of this paper is not so much Theorem 3.4 itself, but some of its
consequences. It allows us to easily reprove and extend most of the known results
about the algebraic structure of H(µ, ν). As corollaries of Theorem 3.4, we give a
new proof that H(µ, ν) is piecewise polynomial, and extend this to a full solution
of their Strong Piecewise Polynomial conjecture. Furthermore, we derive a novel
wall crossing formula, similar to but simpler than that found in [CJMa].

1.0.3. The structure of the paper is as follows. In the remainder of the introduction
Section 1.1 carefully states our results, and Section 1.2 gives an overview of the
methods used.

Section 2 is an introduction to the infinite wedge. The sole aim is accessibility for
the reader unfamiliar with the infinite wedge. We make no pretense of completeness
or concision and present no careful proofs. Instead we focus rather narrowly on
giving some intuition for the infinite wedge and its use as a tool for computing
characters of the symmetric group. This section contains no new material, and is
essentially an extended exposition of a few formulas from [Oko00, OP06b, OP06a].

Section 3 contains the proof of the main result and several examples. The proof
is an application of standard techniques for computing vacuum expectations on the
infinite wedge.

Finally, Section 4 presents the consequences of the main formula to the structure
of double Hurwitz numbers, including the proof of the Strong Piecewise Polynomi-
ality Conjecture, a wall crossing formula, and a few additional observations.

1.1. Statement of Results. The series Hµ,ν(z) has a chamber dependence on the
value of µ, ν which we now describe.

1.1.1. Connected vs. disconnected covers and the resonance arrangement. It is fre-
quently more natural to relax the condition that Σ be connected, and count dis-
connected covers. For double Hurwitz numbers, these two counts actually agree for
most values of µ and ν – generically, a double Hurwitz cover is connected, as we
now argue.

Fix a component of a disconnected cover. This component must contain some
subset I ⊂ [m] and J ⊂ [n] of the marked points, and map to P1 with some degree
d′ < d. Thus, we must have

∑

i∈I µI = d′ =
∑

j∈J νJ .
This discussion naturally leads us to define

Definition 1.1. The resonance arrangement is a set of hyperplanes WI,J inter-
secting the region

Rm,n =







(µ1, . . . , µm, ν1, . . . , νn) ∈ Rm+n

∣

∣

∣

∣

∣

µi, νj > 0;

n
∑

i=1

µi =

n
∑

j=1

νj







.
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For I ⊂ [m], J ⊂ [n] proper subsets, the hyperplane, or wall, WI,J is the set of
µ, ν ∈ Rm,n satisfying

∑

i∈I

µI =
∑

j∈J

νJ .

A chamber c of the resonance arrangement is a connected component of the
complement of the WI,J inside Rm,n.

The walls WI,J are precisely the values of µ, ν which allow for disconnected
covers. If we fix a chamber c and look at µ, ν ∈ c, connected and disconnected
Hurwitz numbers agree; unless stated otherwise we will assume we are in this
situation.

1.1.2. The main theorem. Following [OP06b], we introduce the following notation
for functions closely related to the hyperbolic sine:

ς(z) = ez/2 − e−z/2 = 2 · sinh(z/2)
and

S(z) = ς(z)

z
=

sinh(z/2)

z/2
.

Double Hurwitz numbers with m = 1; that is, µ = (d), are called one part
double Hurwitz numbers. It is easy to see that R1,n consists of only one chamber.
In [GJV05], the following formula for one part double Hurwitz numbers, i.e. double
Hurwitz numbers with µ = (d), was derived:

(1) Hg(d, ν) = r!dr−1[t2g]
1

S(t)

n
∏

i=1

S(νit).

Here, [t2g] means take the coefficient of t2g in the expression that follows. Equation
(1) is easily seen to be equivalent to the following formula for the 1+n-point series:

(2) H(d),ν(z) =
1

d

1
∏

νi

1

ς(dz)

n
∏

i=1

ς(dνiz).

Our main result, Theorem 3.4, is the natural generalization of Equation (2) to
all m + n point series. Though slightly difficult to state, it expresses the general
m+n point series as a sum of terms with the same general form as those appearing
in Equation (2). More specifically, it says:

Main Theorem (rough statement). For µ, ν ∈ c, a chamber of Rm,n, we have

Hµ,ν(z) =
1
∏

µi

1
∏

νj

1

ς(dz)

t(c)
∑

k=1

m+n−1
∏

ℓ=1

ς(zQc

k,ℓ),

where t(c) is finite and the Qc

k,ℓ are certain quadratic polynomials in µi and νj .

Theorem 3.4 is presented in Section 3. Though the double Hurwitz number
Hr(µ, ν) does not depend on an ordering of the parts of µ and ν, the precise form
of the sum in Theorem 3.4 does. Different orderings result in different expressions
that are equivalent due to identities for ς and the fact that |µ| = d = |ν|. This is
concretely illustrated in Examples 3.6 and 3.7 in Section 3.2.2.

Apart from providing a convenient way to calculate Hurwitz numbers, Theorem
3.4 has several immediate consequences about the structure of double Hurwitz
numbers. These are presented in full in Section 4; we state the results now.
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1.1.3. Polynomiality. Our main motivation was the following corollary:

Corollary 1.2. For µ, ν restricted to a given chamber c of the resonance arrange-
ment, we have

Hg(µ, ν) = P c,r(µ, ν) =

g
∑

k=0

(−1)kP c

g,k(µ, ν),

where P c

g,k is a homogeneous polynomial of degree 4g − 3 + m + n − 2k, with

P c

g,k(µ, ν) > 0 for (µ, ν) ∈ c.

Corollary 1.2 is essentially the Strong Piecewise Polynomial conjecture of [GJV05].
We now survey previous results in this direction. It was proven in [GJV05] that
Hg(µ, ν) was piecewise polynomial of degree 4g− 3+m+n, and Corollary 1.2 was
proven in full for one part double Hurwitz numbers. The walls of polynomiality
were first determined in genus zero by [SSV08], reproduced in genus zero in [CJMb],
and extended to all genera in [CJMa], which also proves that Hg(µ, ν) is either even
or odd. To our knowledge, this is the first proof of the lower degree bound and of
the positivity properties of the polynomials.

The motivation and form of the Strong Piecewise Polynomial Conjecture is an-
other, deeper conjecture in [GJV05], which we will call the GJV conjecture, that
would express double Hurwitz numbers as intersection numbers of certain tauto-
logical cycles in a (as yet undetermined) compactification of the universal Picard
variety, a moduli space parameterizing curves together with a holomorphic line
bundle. The GJV conjecture would give a geometric explanation of all aspects of
Corollary 1.2, parallel to the way that the ELSV formula [ELSV01, GV03, Liu]
explains similar facts about polynomiality for single Hurwitz numbers.

As our methods are entirely algebraic, they make no progress toward proving the
GJV conjecture. However, corollary 1.2 can be interpreted as providing evidence for
an extension of the GJV conjecture. In [GJV05], the conjecture is only stated for
one-part double Hurwitz numbers. Corollary 1.2 essentially says that the algebraic
structure of double Hurwitz numbers on other chambers support an extension of
the conjecture. See [CJMa] for further evidence in support of this extension. In
[GJV05], ad-hoc definitions of the compactified Picard variety in genus 0 and 1 gave
additional support to the conjecture. Similar checks on other chambers is clearly
desirable.

As an additional consequence of our main theorem, we see that P c

g,k is essentially
P c

g−k,0:

Corollary 1.3.

P c

g,k(µ, ν) =
(1 − 1

2

2k−1
)|B2k|d2k

(2k)!
P c

g−k,0(µ, ν),

where B2k denote the Bernoulli numbers.

1.1.4. Wall Crossing. From our main theorem we also derive a wall crossing formula
for Hµ,ν(z), and hence Hg(µ, ν).

By a wall crossing formula for Hµ,ν(z), we mean the following. Let c1 and c2 be
two adjacent chambers of the resonance arrangement, adjacent along the wall WI,J .
Then Theorem 3.4 gives two series expansions S1

µ,ν(z) and S2
µ,ν(z) that agree with

Hµ,ν(z) for (µ, ν) integers in chamber c1, c2, respectively. However, these series
Si
µ,ν(z) make sense for arbitrary (µ, ν) and so their difference makes sense as well.
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Definition 1.4.
WCI,J

µ,ν (z) = S2
µ,ν(z)− S1

µ,ν(z).

Note that since |µ| = |ν|, the wallWI,J is equivalent to the wallWIc,Jc . Following
[CJMa], we will use this redundancy to indicate which direction we are crossing the
wall: we will always move so that δ = |µI | − |νJ | = |νcJ | − |µc

I | is increasing; that is,
it will be negative on c1, zero on the wall WI,J , and positive on c2.

We will use δ = |µI | − |νJ |, d1 = |µI | = |νJ |+ δ and d2 = |µc
I |+ δ = |νcJ |.

Theorem 1.5. For µ, ν ∈ c1, we have

WCI,J
µ,ν (z) = δ2

ς(d1z)

ς(δd1z)

ς(d2z)

ς(δd2z)

ς(δdz)

ς(dz)
HµI ,νJ+δ(z)Hµc

I
+δ,νc

J
(z).

In c2, δ > 0, and we will see that the chamber c2 determines chambers for the
smaller Hurwitz numbers µI , νJ + δ and µc

I + δ, νcJ .
This is a natural generalization of the wall crossing formula in [SSV08] given for

genus 0 Hurwitz numbers. To extract the genus formula, we take the asymptotics
as z → 0. The left hand side becomes the genus zero wall crossing, and on the right
hand side all the ς terms together simplify to 1/δ.

Theorem 1.5 has the same general form to that given in [CJMa]. It is in some
sense much simpler in that we only need to add a single part of size δ to the smaller
Hurwitz numbers instead of summing over all partitions of δ, and the product of
ς ’s involved is also simpler than the inclusion/exclusion in [CJMa]. However, the
formula in [CJMa] has the advantage of being entirely in terms of Hurwitz theory.

1.1.5. Chambers with product formulas. Although in general our main formula The-
orem 3.4 only expresses Hµ,ν(z) as a sum of terms, in certain chambers it has an
expression with only one term. In Section 4.3 we determine all chambers where
Theorem 3.4 has only one term, giving a product formula for double Hurwitz num-
bers. We note that it is possible that double Hurwitz numbers can be written this
way on other chambers – we only show that our algorithm cannot do this. Further-
more, it turns out that in these chambers the polynomials Qk,ℓ(µ, ν) can explicitly
be determined, giving a completely closed form expression for Hµ,ν(z) on these
chambers.

A subset of these chambers include the totally negative chambers of [SSV08],
where they gave explicit formulas for genus zero double Hurwitz numbers. Our
formula reproduces theirs and extends it to higher genus, but contains additional
chambers as well.

1.2. Technique of Proof. Although we have defined Hurwitz numbers as a geo-
metric object, our techniques are entirely algebraic. It is a classical result, respon-
sible for much of the interest in Hurwitz numbers, that studying the monodromy
of the cover reduces Hurwitz numbers to counting certain sets of elements in the
symmetric group (or more general monodromy groups).

It is nearly as old of a result (Okounkov [Oko00] points out that it is an exercise in
Burnside’s group theory textbook), that this group theoretic count is conveniently
calculated using representation theory. This is the method used to prove Equation
(1) in [GJV05], and it is the method we will follow as well.

We will not discuss the transition between counting ramified covers and the
character theory of the symmetric group further. Detailed discussions can be found
in [LZ04] or [Rot].
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1.2.1. Hurwitz numbers in terms of character theory of Sn. We will now state the
formula for double Hurwitz numbers in terms of representation theory, which will
be the starting point of our algorithm.

Both representations and conjugacy classes of the symmetric group are naturally
indexed by partitions. For us, λ will always be a partition indexing a representation,
while µ and ν will always index conjugacy classes.

Let χλ
µ denote the character indexed by λ, dimλ denote the dimension of the

representation indexed by λ, and let Cµ denote the size of the conjugacy class
denoted by µ. Then the central character fµ(λ) is

fµ(λ) =
Cµ

dim λ
χλ
µ.

We will use f2(λ) to denote the central character of a transposition; that is, when
µ = 2 + 1 + · · ·+ 1.

Then disconnected double Hurwitz numbers can be expressed as:

(3) Hr(µ, ν) =
1
∏

µi

1
∏

νj

∑

|λ|=d

χλ
µf2(λ)

rχλ
ν .

As the degree d grows, this expression appears to become quite complicated: the
number of partitions of d grows exponentially, and calculating a general character
value can become complex. In some sense our main result is a consequence of these
complications not arising. We now explain this heuristically, beginning with the
one part case.

1.2.2. The one part case. To see that Equation (3) is not that complicated in the
one part case, first note that the character χλ

(d) vanishes for most representations λ

– in fact, it vanishes unless λ is an L-shaped partition λ = k+1+1+1+ · · ·1. Thus
the sum over partitions in Equation (3) really only receives contributions from d
different partitions.

The situation further simplifies because the representations indexed by the L-
shaped partitions are quite simple: they are exactly the exterior powers of the
standard (d−1) dimensional representation. From this fact it follows that there are
simple and explicit formulas for their characters that can be derived and packaged
into generating functions “by hand”, and the generating function viewpoint leads
quickly to Equation (1).

1.2.3. The general case. Though more complicated than the one part case for the
m + n point series is still much simpler than it might initially appear. Again,
the sum over partitions in 3 will vanish on most partitions: by the Murnaghan-
Nakayama rule, χλ

µ will vanish unless λ is composed of at most m border strips,
and clearly the number of such partitions grows polynomially in d.

Furthermore, since the number of parts of µ, ν is fixed, the Murnaghan-Nakayama
rule is relatively efficient for calculating χλ

µ. A formula of Frobenius can calculate
f2(λ) explicitly, and so computationally we have seen that Equation (3) is well-
behaved in the general case.

So, the only difficulty in extending the argument of [GJV05] to the case of the
general m + n point series is packaging this computation attractively in terms of
generating functions. Presumably, with ingenuity this could again be done “by
hand”. Instead, we will accomplish it by writing Equation 3 in terms of operators
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acting on the infinite wedge. Then, commutator relationships for these operators
will provide an algorithmic way to derive the desired formulas.

1.2.4. The infinite wedge and Hurwitz theory. An introduction to the mathematics
of the infinite wedge is contained in 2 – here, we only comment that applying it to
Hurwitz theory is hardly original to this work.

The use of the infinite wedge in Hurwitz theory began in the physics literature.
An article accessible to mathematicians, with pointers to more physics literature,
is Dijkgraaf [Dij95]. Dijkgraaf uses a more general form of Equation 3 is used to
express Hurwitz numbers counting covers of a torus as the trace of an operator on
the infinite wedge, from which it is deduced that they are quasimodular forms.

In the same vein, Okounkov [Oko00] expressed double Hurwitz numbers as
vacuum expectations of a certain operator on the infinity wedge to show that
they satisfy the 2-d Toda hierarchy. Okounkov and Pandharipande developed
this machinery further in their calculation of the Gromov-Witten theory of curves
[OP06b, OP06a], which heavily utilizes Hurwitz numbers.

Our main algorithm is a straightforward application of the results of [Oko00,
OP06b, OP06a]. The main novelty is applying this technique to the question of
polynomiality, and the expanded exposition.

1.3. Acknowledgements. This work would not have been possible without the
help of my advisor, Yongbin Ruan: I began learning the machinery used here in
the very first reading course I took with him, and learned the rest while writing my
thesis. I also thank Renzo Cavalieri and Hannah Markwig for conversations during
the related work [CJMb, CJMa], from which this paper developed.

2. The infinite wedge

The infinite wedge has connections and applications to a vast range of math-
ematics – representation theory, integrable systems, and modular forms, to name
a few. A full introduction to the infinite wedge is beyond the scope of this note.
However, we will only be using a few aspects of the infinite wedge as a tool for
dealing with the character theory of the symmetric group. This section is a self-
contained introduction to this aspect infinite wedge. We sometimes present more
material than we will need when doing so will help aid intuition. More detailed
presentations of the infinite wedge include [Oko01], [KR87], and [MJD00].

2.0.1. A frequent approach to the character theory of the symmetric group is
through symmetric functions. The ring of symmetric functions has many different
bases, in particular the power sum functions pµ and the Schur functions sλ. The
change of basis matrix between pµ and sλ is essentially the character table of χλ

µ of
Sn.

For us, the infinite wedge
∧∞

2 V will play the same role as the ring of symmetric
functions. In fact, there is a natural isomorphism between (the charge zero part
of) the infinite wedge and the ring of symmetric functions, known as the Boson-
Fermion correspondence, and so in principle all calculations we do could be carried
in terms of symmetric functions.

An easy way to understand the benefit of working with the infinite wedge rather
than symmetric functions is the following: the Schur functions sλ are frequently held
up as the “best” basis of the ring of symmetric functions. In terms of representation
theory, this is seen in that the Schur functions are the basis corresponding to the
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characters, which are the semi-simple basis of the center of the group algebra.
However, Schur functions are the most complicated of the usual symmetric functions
to define.

In the infinite wedge, on the other hand, it is the most natural basis vλ that
corresponds to the characters (and hence the Schur functions); it is the basis cor-
responding to conjugacy classes that is more complicated.

2.1. Definition of
∧∞

2 V . Let V be the vector space with basis labeled by the
half-integers. We use the underscore to represent the corresponding basis vector,
so that 1/2 is the basis vector indexed by 1/2, and so

V =
⊕

i∈Z

i+
1

2
.

Definition 2.1. The infinite wedge
∧∞

2 V is the span of vectors of the form
∞

2
∧

V =
⊕

(ik)

i1 ∧ i2 ∧ · · ·

where the sum is over all decreasing sequences of half integers ik ∈ Z+ 1
2 such that

(4) ik + k − 1/2 = c for k sufficiently large.

Here, c is some constant known as the charge. This terminology is borrowed from
physics, and will be explain in Sections 2.3.2 and 2.3.3

2.1.1. Since the sequence (ik) is decreasing, we can recover it from the set of values
S = {ik}. Let Z+

1/2 and Z−
1/2 be the positive and negative elements of Z + 1/2,

respectively. Then the fact that (ik) is decreasing implies that

(5) S ∩ Z+
1/2 is finite

while condition 4 implies that

(6) Sc ∩ Z−
1/2 is finite.

Furthermore, from any S satisfying conditions (5) and (6) we can construct a de-
creasing sequence ik satisfying condition (4). Using this correspondence, we will
use vS to denote the vector i1 ∧ i2 ∧ · · · .

The basis vectors vS are conveniently pictured graphically by a collection of
black and white stones known as Maya Diagrams: a stone is placed at each half
integer on the number line (with, conventionally, the negative direction going to
the right). For each k ∈ Z+ 1/2, if k ∈ S we place a black stone, while if k /∈ S we
place a white stone. Sometimes we will treat the white stones as an empty space.
Conditions (5) and (6) are equivalent to the fact that sufficiently far to the left all
the stones will be white, while far to the right all the stones will be black.

2.1.2. We will be interested only in the charge zero subspace of the infinite wedge
∧

∞

2

0 V , where the charge c = 0; that is, when ik + k − 1/2 = 0 for large k. Letting
λk = ik + k − 1/2, we see that λk is a decreasing and eventually zero, and hence a

partition. Thus,
∧

∞

2

0 V has a basis vλ indexed by partitions:

(7) vλ = λ1 − 1/2 ∧ λ2 − 3/2 ∧ λ3 − 5/2 ∧ · · · ∧ λi − i+ 1/2 · · ·
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Figure 1. Dictionary between partitions and Maya diagrams for
λ = 3 + 2 + 2

· · ·
9
2

7
2

5
2

3
2

1
2

−1
2

−3
2

−5
2

−7
2

−9
2

· · ·

The algebraic translation between λ and the Maya diagram given in Equation
(7) is interpreted graphically in Figure 2.1.2, which we now describe. Draw the
partition λ in Russian notation, that is, rotated counter-clockwise by 45 degrees
and enlarged by a factor of

√
2. Place the Maya diagram beneath the partition, with

0 beneath the vertex; then one stone will lie beneath each edge of λ. Downward
sloping edges of λ correspond to white stones of the Maya diagram, while upward
sloping edges of λ correspond to black stones.

2.1.3. We will largely be interested in certain operators acting on the infinite
wedge. These operators will be analogs of the following situation from the finite
dimensional situation: If W is a finite dimensional representation of a lie algebra
g, then the wedge ∧kW is, too, where g acts on ∧kW by the Leibniz rule

g · (w1 ∧ w2 ∧ · · · ∧ wk) =
k
∑

i=1

w1 ∧ · · · ∧ (g · wi) ∧ · · · ∧ wk.

In particular, if W has a basis e1, . . . , en, then we can view n×n matrices as the
Lie algebra gl(W ), and hence they act on ∧kV .

We will extend this situation by describing and action of certain ∞×∞ matrices

on
∧∞

2 V . However, some care is needed, in defining what lie algebra we are using,
and that everything is well defined.

Let gl∞ be the set of matrices with only finitely many nonzero entries; that is

gl∞ =
⊕

i,j∈Z+1/2

Eij .

Then it is then clear that the usual commutator makes gl∞ into a Lie algebra that

acts on V , and the usual Leibniz rule makes
∧∞

2 V into a representation. However,
gl∞ is not large enough for our purposes.
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Instead, we will use the algebra A∞, consisting of those matrices with only
finitely many nonzero diagonals, that is:

(8) A∞ =







∑

i,j∈Z+1/2

aijEij

∣

∣

∣

∣

∣

aij = 0 for |j − i| >> 0







.

It is then again easy to see that multiplication, and hence commutation, of
elements of A∞ are well defined and again in A∞. Defining the action of A∞ on
∧∞

2 V is more complicated, and we will treat it while introducing examples in the
next two sections. The action of elements Ekk on the main diagonal will be treated
in Section 2.3, while the next section introduces some non-diagonal elements.

2.1.4. We give
∧∞

2 V an inner product (·, ·) by declaring the vS to be orthonormal.

A special role will be played by the vacuum vector |0〉 ∈ ∧
∞

2

0 V , which is the
vector corresponding to, equivalently: the partition λ of zero; the set S = Z−

1/2; the

Maya diagram where all stones left of zero are white and all stones right of zero are
black.

For an operator M , we define the vacuum expectation of M , 〈M〉, by:

(9) 〈M〉 = (|0〉 ,M |0〉)

The goal of the remainder of this chapter is to explain how to express the gen-
erating function Hµ,ν(z) as a vacuum expectation.

2.2. The operators αk and the Murnaghan-Nakayama rule. In this section
we will treat the following operators in A∞, for n 6= 0:

Definition 2.2.

αn =
∑

k∈Z+1/2

Ek,k+n.

2.2.1. We begin by noting that the αn have an elegant description in terms of the
Maya diagrams. The vector αnvS will be a signed sum of basis vectors vS′ . The
terms of the sum are obtained by picking up a black stone in S, and trying to set
it down n steps to the right. If there is already a black stone there, the result is
zero. If there is a white stone there, we pick it up it up and set it down where the
black stone was, creating a new Maya diagram by switching the locations of these
two stones. This diagram corresponds to some set S′, and the vector vS′ appears
in αnvS with sign (−1)s, where s is the number of black stones the stone we moved
jumped over.

It is not difficult to see that this action results in a finite sum. We will have
a nonzero term in αnvS whenever vS has a white stone n steps to the right of a
black stone. Since all the stones sufficiently far to the right are black, and all stones
sufficiently far to the left are white, this can only happen finitely many times. This
same argument shows that if An is any operator of the form

An =
∑

k∈Z+1/2

akEk,k+n

with n 6= 0, then the naive action of An on the infinite wedge is well defined.
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Figure 2. Demonstration that α2v(3,2,2) = v(3,2) − v(3,1,1)

· · ·
-

· · · · · ·
+

· · ·

2.2.2. Although we have seen that the Leibniz rule gives a well defined action of

the operators αn on
∧∞

2 V , this action is not a representation of the lie algebra gl∞.
As operators in A∞, we would expect the αn to commute. However, as operators

on
∧∞

2 V they satisfy the following commutation relation:

[αn, αm] = nδn,−m.

2.2.3. The nice description of the action of αn on Maya diagrams translates in
a similarly attractive description of the action on the vectors vλ. Since the Maya
diagrams of the basis vectors vS′ appearing in αnvS only differ from S at two places
(the two swapped stones), the partitions λ′ appearing will be closely related to the
partition λ. The path taken by the border of λ′ will deviate from that of λ at
the first place, then follow it in parallel for the n steps the stone was moved, and
the rejoin the path at the other modified place. This results exactly in adding or
removing (depending on the sign of n) a border strip of length n. This is illustrated
in a simple example in Figure (2.2.3).

Furthermore, the number of black stones that were jumped, and hence the sign
with which vλ′ appears, will be the number of upward steps taken in the border
strip.

The description of the αn operators in terms of partitions is exactly the recursion
present in the Murnaghan-Nakayama rule:

Theorem (Murnaghan-Nakayama).

χλ
µ =

∑

λ′=λ−S
S is a border strip of length µ1

(−1)sign(S)χλ′

µ−µ1
.

Where Sign(S) is the number of steps of the border step that run from the lower
left to the upper right.

So immediately we have
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Lemma 2.3. For µ a partition of d,

ℓ(µ)
∏

i=1

α−µi
|0〉 =

∑

|λ|=d

χλ
µvλ.

Similarly, taking the adjoint, we have

ℓ(µ)
∏

i=1

αµi
vλ = χλ

µ|0〉.

From Lemma 2.3, if we define

α−µ|0〉 =
ℓ(µ)
∏

i=1

α−µ|0〉

then α−µ|0〉 is a basis of
∧

∞

2

0 V , and the change of basis between vλ and α−µ|0〉 is
exactly the character tables of the symmetric groups Sn.

2.3. The operator F2 and an equation of Frobenius.

2.3.1. In the previous section, it was noted that for nondiagonal elements of A∞,
the usual Leibniz rule resulted in only finite sums. This is not the case for diagonal
elements, however. For instance, the identity matrix is in A∞, and when applied
to the vacuum this results in an infinite sum.

Instead of the usual Leibniz action of the diagonal elements Ekk on the infinite
wedge, we will use the following action.

Definition 2.4.

Ek,k · vS =







vS k > 0, k ∈ S
−vS k < 0, k /∈ S
0 else

.

First, some motivation and intuition for this definition. Definition 2.4 is es-
sentially comparing the naive Ekk action on vS with the naive Ekk action on the
vacuum.

More precisely, let E′
kk denote the naive action on the infinite wedge; that is

E′
kk · vS = δk∈SvS .

Then Definition 2.4 is equivalent to

Ekk · vS = E′
kkvS − E′

kk|0〉.
2.3.2. Dirac’s Electron Sea. The infinite wedge and the action of E′

kk have a phys-
ical interpretation known as Dirac’s electron sea. Here, the vector space V repre-
sents the possible energy levels of a single electron according to quantum mechanics.
Pauli’s exclusion principle states that two electrons cannot occupy the same energy
level, giving rough motivation that recording a collection of electrons should be
done with wedges of V .

Difficulty arose with the negative energy vectors; although they were predicted by
quantum mechanics, it doesn’t make sense for an electron to have to have negative
energy. Dirac’s solution to this problem was to redefine the vacuum: rather than the
vacuum consisting of no electrons at all, it consists of an “infinite sea” of negative
energy electrons, with every possible negative energy level filled - this is precisely
what corresponds to our vacuum vector |0〉.
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Then it is possible to have a hole in the sea: for instance, the vector −1/2 ∧
−5/2 ∧ −7/2 ∧ · · · with every negative energy state filled except for −3/2. Since

we are “missing” an electron with energy −3/2, this should be the same thing
as having a particle with energy 3/2 but charge opposite that of an electron: a
positron. Thus, the vectors vS correspond to pure states consisting a finite number
of electrons, with energies S∩Z+

1/2, together with a finite number of positrons, with

energies Sc ∩ Z−
1/2.

2.3.3. This notation explains the names of some common diagonal operators on
the infinite wedge.

Definition 2.5. The charge operator C is defined by

C =
∑

k∈Z+1/2

Ekk

The energy operator E is defined by

E =
∑

k∈Z+1/2

kEkk

The charge and energy operator are each diagonal in the basis vS , and the
eigenvalues corresponding to the charge and energy of the corresponding collection
of particles.

In particular, we say a vector vS ∈ ∧∞

2 V has charge c (or energy e), if C ·vS = 0

(respectively, E · vS). This examples the name of the charge 0 subspace
∧

∞

2

0 V – it
consists of this vectors annihilated by C.

An operator M has energy e if acts by decreasing the energy by e, that is
[E,M ] = −e. The operator αn has energy n.

It will be important to us that operators with positive energy annihilate the
vacuum. IfM is any operator, and P is an operator with positive energy 〈MP 〉 = 0.
Taking the adjoint, if N is an operator with negative energy, 〈NM〉 = 0.

2.3.4. For a vector vλ ∈ ∧
∞

2

0 V , viewing its Maya diagram in terms of electrons
and positrons as above corresponds to viewing the partition in Frobenius notation.

Frobenius notation describes a partition λ as an ordered pairs of strictly de-
creasing lists of non-negative integers (a1, . . . , an) and (b1, . . . , bn), with |λ| =
n+

∑

ai +
∑

bi. The number n and the n-tuples ai and bi are obtained as follows:
in Russian notation, there will be some number n of boxes lying directly above 0;
number them so that the first box is at the origin, the last box is on the border.
Then ai is the number of boxes above and to the left of the ith box, while bi is
the number of boxes above and to the right; they obviously satisfy the properties
listed.

The electron and positron view of the infinite wedge coincides most closely with
Modified Frobenius notation rather than remove the n boxes, we cut them in half,
and adjoin each half to the strip of boxes making up ai and bi; obtaining half
integers a′i = ai + 1/2 and b′i = bi + 1/2, with a′i, b

′
i strictly decreasing n-tuples in

Z+
1/2, and

(10)
∑

a′i +
∑

b′i = |λ|.
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From this description it is immediate that the a′i are the energy levels of the electrons
appearing in the Maya diagram of vλ, and the b′i are the energy levels of the
positrons appearing in vλ.

Furthermore, with E =
∑

kEk,k the energy operator, Equation (10) immediately
becomes

E · vλ = |λ|vλ.
2.3.5. Frobenius gave a formula for the characters of the symmetric group eval-
uated on a conjugacy class that in the case the conjugacy class is a transposition
has the following elegant expression in terms of Frobenius notation:

Theorem (Frobenius).

(11) f2(λ) =
1

2

n
∑

i=1

ai(ai − 1)− 1

2

n
∑

i=1

bi(bi − 1).

In terms of modified Frobenius notation this becomes

(12) f2(λ) =
1

2

n
∑

1=1

(a′i)
2 − 1

2

n
∑

i=1

(b′i)
2.

Note that while ai(ai−1) = (a′i)
2−1/4, the occurrence of 1/4 here will cancel with

a similar occurrence in the sum over the b′i, giving Equation (12).
This is conveniently encoded in terms of the infinite wedge. Define the operator

F2 by:

Definition 2.6.

F2 =
∑

k∈Z+1/2

k2

2
Ek,k.

Equation (12) immediately gives

Lemma 2.7.
F2 · vλ = f2(λ)vλ.

That is, the vλ form an eigenbasis for F2, with eigenvalues f2(λ).

2.4. Hurwitz numbers as vacuum expectations.

2.4.1. We are now in a position to write Hurwitz numbers as vacuum expectations
on the infinite wedge.

Theorem 2.8.

Hr(µ, ν) =
1
∏

µi

1
∏

νj

〈

∏

αµi
Fr

2

∏

α−νj

〉

.

Proof. This is nothing but an encoding of Equation (3) using Lemmas 2.3 and 2.7.
First expand

∏

αµi
|0〉 into the vλ basis, with vλ appearing with a factor of χλ

ν . In
the vλ basis, Fr

2 is diagonal and produces the factor of f2(λ)
r . Finally, applying

∏

α−νj to vλ produces χλ
µ|0〉. �

Theorem 2.8 appears in [Oko00], and nearly in [Dij95].
Theorem 2.8 leads immediately to a vacuum expectation expression for the m+n

series:

(13) Hµ,ν(z) =
1
∏

µi

1
∏

νj

〈

∏

αµi
ezF2

∏

α−νj

〉

.
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2.5. The operators Er(z). Though an attractive formula, as presented so far The-
orem 2.8 is essentially nothing but the classical Equation (3). The benefit of writ-
ing it in terms of the infinite wedge will come from manipulating this expression
in terms of commutators of the operators involved. In this section, we will begin
that process, by rewriting Equation (13) for Hµ,ν(z) in terms of Okounkov and
Pandharipande’s operators Er(z).
Definition 2.9.

Er(z) =
∑

k∈Z+1/2

ekzEk,k+r +
δr,0
ς(z)

.

The commutators of these operators will produce the ς terms in Theorem 3.4.

2.5.1. The
δr,0
ς(z) term can be understood as adding back the infinite sum that would

have appeared if we had used the naive action on the infinite edge, and that we
regularized away with Definition 2.4. The naive action of the first term of E0(z) on
the vacuum |0〉 is an infinite sum that converges for z > 0:

e−z/2 + e−3z/2 + e−5z/2 + · · · = e−z/2
(

1 + e−z + e−2z + · · ·
)

=
e−z/2

1− e−z
=

1

ς(z)
.

So, for z > 0 we have

E0(z) =
∑

k∈Z+1/2

ekzE′
k,k.

2.5.2. We now collect the basic facts about Er(z) that we will require. All of them
can be proved by straightforward calculations which we omit.

The operator Er(z) has energy r and for r 6= 0 is closely related to the operators
αr. It is immediate from the definition that

(14) Er(0) = αr.

In fact, Er(z) is equal to αr conjugated by a zero energy operator depending on
z, as in the following identity from [OP06a]:

(15) ezF2α−ne
−zF2 = E−n(nz).

Finally, the following commutator is the reason we introduce the Er(z), and will
be our main tool in Section 3

(16) [Er(z), Es(w)] = ς

(

det

[

r z
s w

])

Er+s(z + w).

2.5.3. We will find it convenient to rewrite Equation (13) in terms of the operators
Er(z), essentially following [OP06a].

Since F2 annihilates the vacuum, we may rewrite Equation (13) as

Hµ,ν(z) =
1
∏

µi

1
∏

νj

〈

∏

αµi

∏

(

ezF2α−νje
−zF2

)

〉

.

Applying Equations (14) and (15) then immediately gives

(17) Hµ,ν(z) =
1
∏

µi

1
∏

νj

〈

∏

Eµi
(0)
∏

E−νj (zνj)
〉

.
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3. The main formula

To derive our formula for the n+m point series, we follow a standard strategy
for computing vacuum expectations: successively commute operators with positive
energy to the right. For example, a similar case is the use in [OP06a] to compute
the n-point Gromov-Witten invariants.

3.0.4. Before deriving our main formula, we introduce a few pieces of new notation
so that we may express it cleanly.

Definition 3.1. For I ⊂ [m] and J ⊂ [n], define

E(I, J) = E|µI |−|νJ |(z|νJ |).

Definition 3.2. For I,K ⊂ [m] and J, L ⊂ [n], define

ς ( I J
K L ) = ς

(

det

[

|µI | − |νJ | z|νJ |
|µK | − |νL| z|νL|

])

= ς

(

z · det
[

|µI | |νJ |
|µK | |νL|

])

,

Definitions 3.1 and 3.2 are such that for I,K ⊂ [m] disjoint and J, L ⊂ [n]
disjoint Equation (16) becomes

(18) [E(I, J), E(K,L)] = ς ( I J
K L ) E(I ∪K, J ∪ L)

and Equation (17) becomes

(19) Hµ,ν(z) =
1
∏

µi

1
∏

νj

〈

m
∏

i=1

E(i, ∅)
n
∏

j=1

E(∅, j)
〉

.

3.1. The algorithm. In this section, we describe an algorithm that computes the
n+m point series from Equation (19). The algorithm leads immediately to Theorem
??.

3.1.1. Inductive Step. At each step, we will have a sum of vacuum expectations of
operators of the form

〈

k
∏

i=1

E(Ii, Ji)
〉

.

We assume that µ, ν are in the interior of a chamber c of the resonance arrange-
ment, so that the E(Ii, Ji) cannot have zero energy, except for E([m], [n]).

The algorithm proceeds as follows: pick any term of the sum, and find the
rightmost E with positive energy; say, E(I, J). If this is the rightmost E in total,
then that term contributes zero, since operators with positive energy annihilate the
vacuum.

Otherwise, we commute that term with the operator immediately to its right,
which we will denote E(K,L). That is, substitute

E(I, J)E(K,L) = E(K,L)E(I, J) + [E(I, J), E(K,L)]

= E(K,L)E(I, J) + ς ( I J
K L ) E(I ∪ J,K ∪ L)

where we have used Equation 16.
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3.1.2. Termination. The substitution gives us two terms: one with one less E and
an additional ς factor, which we call the canceling term, and one with a positive
energy E further to the right, which we call the passing term.

Iterating this procedure, eventually either a positive energy E is at the far right,
in which case the term contributes zero, or there is only a single E term remaining,
which must then be E([m], [n]) = E0(dz), which has vacuum expectation

〈E0(dz)〉 =
1

ς(dz)
.

3.1.3. To extract a formula from the algorithm, we need to record all possible ways
of taking passing and canceling terms to get a nonzero result. It suffices to record
only the sets that are involved in the canceling terms.

Definition 3.3. For |µ| = |ν| partitions with ordered parts, a commutation pattern

P consists of four m+ n− 1-tuples of sets IPℓ , JP
ℓ ,KP

ℓ , LP
ℓ ,

IPℓ ,KP
ℓ ⊂ [m], JP

ℓ , LP
ℓ ⊂ [n], 1 ≤ ℓ ≤ n+m− 1

such that the algorithm has a nonvanishing term where the kth commutator com-
puted was [E(IPk , JP

k ), E(KP
k , LP

k )].
We denote the set of all possible commutation patterns P for a given µ, ν by

CP (µ, ν).

The algorithm then immediately gives our main theorem.

Theorem 3.4.

Hµ,ν(z) =
1
∏

µi

1
∏

νj

1

ς(dz)

∑

P∈CP (µ,ν)

n+m−1
∏

ℓ=1

ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

.

3.2. Examples.

3.2.1. Reproducing [GJV05].

Example 3.5. ?? We compute the 1+n series H(d),ν(z), reproducing the calcula-
tion in [GJV05]. The key observation is that CP ((d), ν) consists of a single element:
if a passing term is ever taken the result will be zero, as there would be a negative
energy term on the far left. That is, we want to compute the vacuum expectation

〈

Ed(0)
m
∏

j=1

E−µj
(zµj)

〉

.

The only operator with positive energy is Ed(0), and so if we have ever take the
passing term one of the negative energy operators E−µj

(zµj) would be at the far
left, and the result would be zero.

Thus, we have that Iℓ = {1}, Jk = [ℓ − 1], where [0] = ∅, Kℓ = ∅ and Lℓ = {ℓ},
and so the ℓth commutator produces a factor of:

ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

= ς

(

z · det
[

d
∑ℓ−1

i=1 νi
0 νℓ

])

= ς(zdνℓ),

and so in this case Theorem 3.4 is equivalent to Equation (2).
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3.2.2. The next two examples compute the 2+2-point series with two different
orderings of the µi and νj , giving two different looking answers that are equivalent
by an identity for ς . We will assume µ1 > ν1, ν2 > µ2.

Example 3.6. We will compute the series H(µ1,µ2),(ν1,ν2). From Equation 17, we
have vacuum expectation we are interested in is then

Hµ,ν(z) =
1

µ1µ2ν1ν2
〈Eµ1

(0)Eµ2
(0)E−ν1(zν1)E−ν2(zν2)〉

The rightmost E with positive energy is Eµ2
(0), so after substituting we get

〈Eµ2
(0)E−ν1(zν1)Eµ2

(0)E−ν2(zν2)〉+ ς(zµ2ν1)〈Eµ1
(0)Eµ2−ν1(zν1)E−ν2(zν2)〉.

Carrying out the inductive step again on the first term of the sum, we the
rightmost positive energy term is again Eµ2

(0). If we take the passing term again,
Eµ2

(0) would be at the far right of the whole term and annihilate the vacuum, and
so we must keep only the canceling term:

ς(zµ2ν2)〈Eµ1
(0)E−ν1(zν1)Eµ2−ν2(zν2)〉

Note that this has only one term of positive energy, Eµ1
(0), and so as we continue

the algorithm it is immediate that any term where we take a passing term will be
zero. Therefore, we see:

〈Eµ1
(0)E−ν1(zν1)Eµ2−ν2(zν2)〉 = ς(zµ1ν1)〈Eµ1−ν1(zν1)Eµ2−ν2(zν2)〉

=
ς(zµ1ν1)ς(z(µ1ν2 − µ2ν1))

ς(dz)

and this term gives a total contribution of

ς(zν2µ2)ς(zµ1ν1)ς(z(µ1ν2 − µ2ν1))

ς(dz)
.

Similarly, returning to the first canceling term, there is only one term with
negative energy, and so that term is

〈Eµ1
(0)Eµ2−ν1(zν1)E−ν2(zν2)〉 =

ς(µ1ν1z)ς(dν2z)

ς(dz)
.

Putting everything together, we have

(20) Hµ,ν(z) =
ς(zν2µ2)ς(zµ1ν1)ς(z(µ1ν2 − µ2ν1)) + ς(zµ2ν1)ς(µ1ν1z)ς(dν2z)

µ1µ2ν1ν2ς(dz)
.

Note that the series Hµ,ν(z) depends only on µ and ν as unordered partitions,
but our algorithm depends on the ordering chosen for the elements of µ and ν.
Different choices of orderings give different expressions for Hµ,ν(z). These different
expressions can be seen to describe the same series by applications of identities for
ς(z). We illustrate this in the next example by calculating the 2 + 2 series again,
but with a different ordering of the partitions.

Example 3.7. Let us repeat the calculation of the 2+2-point series from Example
3.6 with the other ordering of the parts of µ:

Hµ,ν(z) =
1

µ2µ1ν1ν2
〈Eµ2

(0)Eµ1
(0)E−ν1(zν1)E−ν2(zν2)〉.
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At the first step, the right most term negative energy term is Eµ1
(0); we see that

the passing term is zero, as the rightmost two operators in the passing term are
Eµ2

(0)E−ν1(zν1), which has energy µ2 − ν1 < 0.
In fact, the only nonzero commutation pattern is when all canceling terms are

taken, and so the algorithm gives:

(21) Hµ,ν(z) =
1

µ1µ2ν1ν2

ς(zµ1ν1)ς(zµ1ν2)ς(zµ2d)

ς(zd)
.

These two expressions for the 2+2-point series – i.e., Equations (20) and (21) –
are easily checked to be equivalent using |µ| = d = |ν| and a simple identity for ς ,
which can be written attractively as:

(22) ς(a− b)ς(c) + ς(b− c)ς(a) + ς(c− a)ς(b) = 0.

4. Consequences

In this section, we explore some of the consequences of Theorem 3.4. Section 4.1
proves the Strong Piecewise Polynomiality conjecture, as well as Corollary 1.3; Sec-
tion 4.2 derives a wall crossing formula for the piecewise polynomials, and Section
4.3 determines those chambers on which Theorem 3.4 has a particular nice form.

4.1. Strong Piecewise Polynomiality.

Lemma 4.1. The set CP (µ, ν) depends only on the chamber of (µ,ν) in the reso-
nance arrangement Rm,n.

Proof. Looking at decisions involved in the algorithm, the only way µ and ν enter
into the decisions is determine whether a given E(I, J) has positive or negative
energy. But the energy of E(I, J) is −|µI |+ |νJ |, and knowing the chamber of (µ, ν)
in Rm,n is equivalent to knowing the signs of all −|µI |+ |νJ |. �

From Lemma 4.1, it follows that in a given chamber of the resonance arrange-
ment, the sum in Theorem 3.4 contains exactly the same terms. In the remainder
of Section 4.1, we will prove Corollary 1.2, by showing that the statement holds
true for each individual term in the sum appearing in Theorem 3.4.

4.1.1. Polynomiality. From the form of Theorem 3.4, it is only clear that each
term is a Laurent polynomial: we must divide by the initial factor of

∏

µi

∏

νj ,
and additionally we must divide by a factor of d to invert 1/ς(zd). Thus, to show
that Hg(µ, ν) is a polynomial, we must show that d

∏

µi

∏

νi divides

(23)

n+m−1
∏

ℓ=1

ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

for each P ∈ CP (µ, ν).
We first show that (23) is divisible by µi. The term µi enters the calculation

through E(i, ∅). This term has positive energy, and so eventually must occur as
the first entry of some commutator; suppose this is the ℓth commutator, and so
IPℓ = {i}, and JP

ℓ = ∅.
Then

ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

= ς

(

z · det
[

µi 0
X Y

])

= ς(zµiY )
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where X and Y are some linear functions of the parts of µ and ν. so we have seen

that µi divides ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

.

A completely analogous argument shows that there must be some ℓ with KP
ℓ = ∅

and LP
ℓ = {j}, and that for this ℓ, νj divides ς

(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

.

Finally, we show (23) is divisible by d. Consider the last commutator, when
ℓ = m+ n− 1. Every µi and νj is involved in this commutator, so IPℓ ∪KP

ℓ = [m]
and JP

ℓ ∪ LP
ℓ = [n]. Thus, adding the two rows of the matrix appearing in the

definition of ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

gives the vector (d, d), and so ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

is divisible by d.

We have shown that each factor of d
∏

µi

∏

νj divides (23), and examining the
argument it is evident that their product does.

4.1.2. Nonzero degrees. Because ς(z) is odd, we immediately see that the polyno-
mials are either odd or even.

To determine the degree of the polynomial, note that in ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

, z is multi-

plied by a quadratic polynomial in the µi and νj , while in
1

ς(dz) , z is multiplied by a

linear function of the µ and ν. Therefore, the highest coefficient of the polynomial
will occur when as many as possible of the z’s come from the first term, and the
lowest degree term will occur when all come from the second.

The genus g Hurwitz number appears as the coefficient of z2g−2+m+n. As we
will always divide by one z from 1

ς(dz) , the highest degree term will come from

the coefficient of z2g−1+m+n from the product. As each of these z’s multiplies a
quadratic function, this gives us a polynomial of degree 4g−2+2m+2n, and when
we factor out of the m + n + 1 linear factors of µi, νj and d, what remains is a
polynomial of degree 4g − 3 +m+ n.

For the lowest degree term, note that we must take at least one z from each of
the m+n−1 factors inside; this gives us a polynomial of degree 2m+2n−2. Then,
we must take the remaining z2g from 1

ς(dz) , each of which gives us a linear factor,

for a polynomial of degree 2g + 2m+ 2n− 2, which when we cancel the m+ n+ 1
linear factors gives a polynomial of degree 2g − 3 +m+ n.

4.1.3. Positivity. First, note the alternating signs in ς(z) and in

1

ς(z)
=

1

z
−

∞
∑

n=1

(1− 1
2

2n−1
)B2nz

2n−1

(2n)!
,

since the Bernoulli numbers B2n alternate sign.
From these alternating signs, the positivity result will follow if each determinant

appearing in ς ( I J
K L ) is positive, i.e. if each

(24) det

[

|µI | − |νJ | |νJ |
|µK | − |νL| |νL|

]

is positive.
Recall that ς ( I J

K L ) appears in the commutator [E(I, J), E(K,L)], and that this
commutator only occurs in the algorithm if E(I, J) has positive energy and E(K,L)
has negative energy. But this implies the first row of the matrix in (24) is in the
first quadrant and the second row is in the second quadrant, and so the determinant
is positive.

Corollary 1.3 also follows immediately from the expansion of 1
ς(dz) .
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4.2. Wall Crossing. We now prove the wall crossing formula, Theorem 1.5.
Suppose that c1 and c2 are two chambers bordering along the wall WI,J . The

main idea is that CP (c1) and CP (c2) are nearly the same, and that the permutation
patterns that are in one but not the other have a nice description.

4.2.1. Reduction to commutation patterns containing E(I, J). We begin by noting
that the algorithm will run nearly the same on both c1 and c2; equivalently, the set
CP (µ, ν) will change in an easily described way as we cross the wall.

As noted before, the only way the algorithm depends on µ, ν is checking if the
operators E(K,L) have positive or negative energy; this is equivalent to knowing
which side of the wallWK,L we are on. Hence, if a commutation pattern P ∈ CP (c1)
does not ever produce the operator E(I, J), then this commutation pattern P will
also appear in CP (c2), and so the resulting terms will cancel in the formula for
WCI,J

µ,ν (z).
Thus, it is effective to choose an ordering of the µI and νJ so that the elements

of I and J occur in the middle; i.e., with a starting vacuum expectation is of the
form:

〈

∏

i/∈I

E(i, ∅)
∏

i∈I

E(i, ∅)
∏

j∈J

E(∅, j)
∏

j /∈J

E(∅, j)
〉

.

Then if a commutation pattern produces E(I, J), the first vacuum expectation to
contain E(I, J) must be exactly

(25)

〈(

∏

i/∈I

E(i, ∅)
)

E(I, J)





∏

j /∈J

E(∅, j)





〉

.

4.2.2. Contribution before producing E(I, J). Up until the vacuum expectation (25)
is produced, the algorithm will have ran identically on both c1 and c2. Let T1 be
the product of ς terms the algorithm produces in reaching (25) up this point; we
will now show that T1 is essentially HµI ,νJ+δ(z).

The vacuum expectation involved in computing HµI ,νJ+δ(z) is
〈

∏

i∈I

E(i, ∅)
∏

j∈J

E(∅, j)E−δ(δz)

〉

.

The key observation is that the E−δ(δz) term cannot be involved in a commutator
leading to a nonzero term until the very last commutator. Suppose there were a
nonzero term where it was involved in a commutator with E(K,L) for some K ⊂ I
and L ⊂ J , with at least one subset being proper. Then we must have had that
µK − νL to be positive, but µK − νL − δ to be negative. However, this contradicts
the fact that we are in a chamber which borders δ = 0.

Thus, all the other commutators must be computed first, which produces the
factor T1:

〈

∏

i∈I

E(i, ∅)
∏

j∈J

E(∅, j)E−δ(δz)

〉

= T1 〈E(I, J)E−δ(zδ)〉

= T1ς(zδd1) 〈E0(zd1)〉

= T1
ς(zδd1)

ς(zd1)
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where we have used

E(I, J) = E|µI |−|νJ |(z|νJ |) = Eδ(z(d1 − δ)).

Including the factors of µi, δ, and νj involved, we have that

(26) T1 = δ
∏

i∈I

µi

∏

j∈J

νj
ς(zd1)

ς(zδd1)
HµI ,νJ+δ(z).

4.2.3. Contribution after producing E(I, J). To finish the proof, we must compute
the difference of the vacuum expectation (25) on chambers c2 and c1; we will denote
this series T2. If we ran the algorithm as usual on each chamber, the results would
diverge at the very first step as the central term E(I, J) would head it opposite
directions: it has energy δ, which is negative on c1 and positive on c2.

To better compare the vacuum expectation (25) on the two chambers, we will
follow the algorithm as usual on c1, but commute E(I, J) to the left in c2, even
though it has positive energy.

Note that if E(I, J) is involved in a canceling term as we move it to the left,
then afterwards the algorithm will run naturally on both sides of the wall from
that point on: after the cancelation, we will have terms of the form E(I ∪K, J ∪L),
where K,L are not both empty; and since the chambers differed by only one wall,
the sign of the energy of this term will be the same independent of which side of
the wall we were on. Thus, the contributions of these terms on the two sides of the
wall will cancel.

However, if E(I, J) reaches the far left end, then the result will vanish on c1, but
not on c2. Thus, we see that

(27) T2 =

〈

Eδ(z|νJ |)
(

∏

i/∈I

E(i, ∅)
)





∏

j /∈J

E(∅, j)





〉

evaluated on c1.
The vacuum expectation (27) is very nearly the vacuum expectation that would

appear to calculate HµIc+δ,νJc (z). The only difference is that the leftmost E term
appearing is Eδ(z|νJ |) instead of Eδ(0).

However, this term can only be involved in the very last commutator. All other
E terms must cancel first, producing E(Ic, Jc) = E−δ(z|νcJ |). So, the last step of
the algorithm for vacuum expectation (27) will end with

〈Eδ(z|νJ |)E−δ(z|νcJ |)〉 =
ς(zdδ)

ς(zd)

instead of

〈Eδ(0)E−δ(z|νcJ |)〉 =
ς(zδd2)

ς(zd2)
.

Thus, we have that

(28) T2 = δ
∏

i/∈I

µi

∏

j /∈J

νj
ς(zdδ)

ς(zd)

ς(zd2)

ς(zd2δ)
Hµc

I
+δ,νc

J
(z).

Since WCI,J
µ,ν (z) =

T1T2∏
µi

∏
νj
, Equations (26) and (28) give

WCI,J
µ,ν (z) = δ2

ς(zd1)

ς(zδd1)

ς(zdδ)

ς(zd)

ς(zd2)

ς(zd2δ)
Hδ,νJ+δ(z)Hµc

I
+δ,νc

J
(z).
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Example 4.2. We illustrate Theorem 1.5 in the simplest case. When m = n = 2,
all chambers are essentially the same: they are determined by the largest of the
four parts. We will determine the wall crossing from the chamber c1 where µ1 is
the largest, to c2 where ν1 is the largest; these chambers border along the wall
W1,1 = W2,2 where µ1 = ν1 and µ2 = ν2.

The 2+2-point series was computed in two different ways in Examples 3.6 and 3.7;
Equation 21 from 3.7 gives a formula for Hµ,ν(z) on chamber c1, and interchanging
the roles of µ and ν gives a formula for Hµ,ν(z) on chamber c2, and so we see that
we should have

(29) WC1,1
µ,ν(z) =

1

µ1µ2ν1ν1

ς(zµ1ν1)

ς(dz)
(ς(ν1µ2z)ς(ν2dz)− ς(µ1ν2z)ς(µ2dz)) .

The right hand side of Theorem 1.5 involvesH{µ1+δ},ν1(z) and Hµ2,{ν2+δ}, which
as 1+2-point series are calculable from Equation ?? (Example ??). Substituting
this equation and canceling terms, we find that the right hand

(30)

δ2
ς(zν1)

ς(zδν1)

ς(zdδ)

ς(zd)

ς(zµ2)

ς(zµ2δ)
H{δ+µ1},ν1(z)Hµ2,{ν2+δ}(z) =

ς(µ1ν1z)ς(µ2ν2z)ς(δdz)

µ1µ2ν1ν2ς(dz)
.

Equating (29) and (30), we see that in this case Theorem 1.5 boils down to the
identity

ς(ν1µ2z)ς(ν2dz)− ς(µ1ν2z)ς(µ2dz) = ς(µ2ν2z)ς(δdz),

which, using ν1 = d− ν2, µ1 = d− ν2 and δ = µ2 − ν2, can be rewritten as

ς(dµ2z − µ2ν2z)ς(ν2dz) + ς(µ2ν2z − dν2z)ς(µ2d) + ς(dν2z − dµ2z)ς(µ2ν2z) = 0

which is Equation (22) with {a, b, c} = {µ2ν2, dµ2, dν2}.

4.3. Special Chambers. In [SSV08], certain chambers, called the totally nega-
tive chambers, were found where the genus zero Hurwitz numbers had a product
formula. In this section we will find a wider class of chambers where such formu-
las exist, and extend the result on these chambers to a product formula for the
m+ n-point series.

The method will be to find those chambers where there is only one term in the
sum in Theorem 3.4; that is, we want CP (µ, ν) to consist of just a single element.

Note first that there is one easily described element in every CP (µ, ν): the
pattern P where we take the canceling term at every possible opportunity, and
never take the passing term. We will call this the all commutator pattern.

The all commutator pattern then gives us a natural total ordering ϕ of the m+n
parts of µ and ν. To make this compatible with the usual orderings on µ and ν, we
will label the parts of µ and ν out from the center; that is, the vacuum expectation
we are computing is

〈E(m, ∅) · · · E(1, ∅)E(∅, 1) · · · E(∅, n)〉 .
The ordering ϕ is defined as follows: the larger of µ1 and ν1 is the first element

ϕ(1), and the smaller of them is the second, ϕ(2). The remaining terms are ordered
occurring to when they are first involved in a commutator in the all commutator
pattern.
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Let ϕ(k) denote the kth term in this total ordering. Either ϕ(k) is a part of µ
or a part of ν. We will say k ∼ ℓ if ϕ(k) and ϕ(ℓ) belong the same partition, and
k ≁ ℓ if they do not. We will frequently use k � ℓ to mean k < ℓ and k ≁ ℓ.

Definition 4.3. The ϕ-totally negative chamber is the chamber defined by the
following inequalities, for all k > 1:

ϕ(k) >
∑

ℓ�k

ϕ(ℓ).

Remark 4.4. It is not immediately obvious that the inequalities in Definition 4.3
define a single chamber, as they do not contain all walls WI,J . However, they imply
an inequality for each I, J , as we now explain.

We may assume 1 /∈ I, as otherwise we can work with Ic and Jc instead. Let
k ∈ [m+n] be minimal such that ϕ(k) is one of the parts in µI or νJ ; say ϕ(k) ∈ µI .
Then every part νj of νJ is of the form ϕ(ℓ) with ℓ > k, and so

∑

i∈I

µi ≥ ϕ(k) >
∑

ℓ�k

ϕ(ℓ) ≥
∑

j∈J

νj .

Lemma 4.5. The set CP (µ, ν) consists of a single element exactly if µ, ν are in a
totally ϕ-negative chamber.

Proof. Suppose µ, ν are in a totally ϕ-negative chamber, and suppose there was
a commutation pattern in CP (µ, ν) that contained a passing term. Suppose the
first k− 1 ≥ 0 interactions are commutators, so that the first passing term involves
ϕ(k) passing an E term containing exactly the ϕ(j) with j < k. We can assume
ϕ(k) ∈ µ, so that immediately after we take the passing term the far right of the
vacuum expectation will be

Eϕ(k)(0)
∏

j�k

E−ϕ(j)(zϕ(j)) |0〉

This product of E terms has energy

ϕ(k) −
∑

j�k

ϕ(j) > 0,

and so annihilates the vacuum, and hence this passing term is zero.
If, on the other hand, µ, ν were in a chamber with

ϕ(k) <
∑

j�k

ϕ(j),

then we can easily construct another nonzero passing term: always take the cancel-
ing term except for the one passing term described above; that is, pass the E with
φ(k) through the E with φ(j) for j < k. �

4.3.1. The product formula. In a totally ϕ-negative chamber c, Theorem 3.4 then
has a particularly attractive form.

Since every commutator taken involves an E(I, J) with one of I, J empty, every
matrix appearing in a ς will be upper or lower triangular, and so we see that for P
the all commutator term, we have

ς
(

IP
ℓ JP

ℓ

KP
ℓ LP

ℓ

)

= ς



z · ϕ(ℓ) ·
∑

j�ℓ

ϕ(j)



 .
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