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ABSTRACT

Cables are widely used structural elements capable of bearing tensile forces and experience vi-
bration problems due to their slenderness and low mass. In the field of civil engineering, they are
mostly used in bridges where the vibrations are mainly induced by wind, rain, traffic and earth-
quakes. This paper proposes the use of a tuned-inerter-damper (TID) system, mounted on cables to
suppress unwanted vibrations. These are to be attached transversally to the cable, in the vicinity
of the support, connected between the deck and the cable. The potential advantage of using a TID
system consists in the high apparent mass that can be produced by the inerter. Our analysis showed
that the modal damping ratio obtained is much higher than in the case of traditional dampers or
tuned mass dampers, leading to an improved overall response. An optimal tuning methodology is
also discussed. Numerical results are shown with a cable subjected to both free and forced vibrations
and the TID performance is improved when compared with equivalent dampers.

Keywords: cable; tuned inerter damper; vibration suppression; support excitation; viscous damper.

1 Introduction

Bridge cables are prone to large amplitude vibrations due to a series of factors. The most common factors causing
these vibrations are wind and rain action, deck vibration induced by traffic or earthquakes.

Several solutions aimed at reducing cable vibrations have been proposed. One of the most widely used
solutions consists of the installation of dampers. These are generally located in the vicinity of the anchorage point,
connected between each cable and the deck. The efficacy of this approach has been studied both theoretically
and experimentally.

An important concept in understanding the behaviour of the combined cable and damper systems refers to
the maximum attainable modal damping [1]. This means that the there exists an optimum damper that can be
attached at a certain location along the cable length, in order to achieve maximum damping of the vibration
mode that the device is tuned for. The optimum damper size can be determined using the universal curve
for estimating the modal damping of stay cables, introduced by Pacheco et al. [2]. Later, the universal curve
formulation was extended by Cremona [3] to inclined cables. The work of Main and Jones [4] extended these
studies to the case when dampers trigger large frequency shifts of the uncontrolled cable natural frequency. On
the experimental side, the behaviour of cables with attached dampers was presented in several case studies [5].

One of the disadvantages of using dampers refers to the fact that their installation is restricted to the end
of the cable, generally at a distance lower than 5% of the cable length from the support [6]. A solution to this
problem can be the use of tuned mass dampers (TMD) [7]. These can be located anywhere along the cable length
and do not need to be connected to the ground or bridge deck. Wu & Cai [8] conducted a parametric study looking
into the influence of the TMD and cable parameters (mass, damping, stiffness, location, cable inclination) on the
behaviour of the combined cable and TMD system performance. Anderson et al. [9] compared the behaviour of
cables with attached viscous dampers and TMDs and concluded that TMDs potentially become more effective
than dampers when located at 40% distance from the cable anchorage point. Their performance can be improved
through adequate tuning of parameters or by using magneto-rheological dampers instead of viscous dampers.

However, the fact that TMDs are most efficient when located close to the cable midspan represents a dis-
advantage from installation point of view, as cables are usually very long. Also, the size of the TMD mass is
limited to ratios of under 10% of the cable mass.
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As an alternative, this paper proposes the use of TID vibration suppression systems for cable vibration
mitigation. The TID, a system comprising of a spring-inerter-damper system, was introduced by the authors in
[10]. Its layout is similar to that of a passive TMD, where the mass element was replaced by an inerter.

The inerter was introduced by Smith [11] and used in modern suspension systems for Formula 1 racing
cars[12]. The inerter is the mechanical equivalent of the capacitor, thus completing the force-current analogy
between mechanical and electrical networks. The force produced by an inerter is

F = b(ẍi+1 − ẍi) (1)

where b is the constant of proportionality of the device, named inertance and ẍi − ẍj represents the relative
acceleration between its nodes. The inertance is measured in kilograms.

The most important characteristic of the inerters consists of their capacity of generating high apparent masses,
mainly through gearing. This leads to the generation of a high inertial force, that cannot be obtained using a
traditional TMD, where the mass is restricted to low values. Gearing ratios of 200:1 have been achieved [13].

The applications of inerters span across many engineering fields from vehicle [14, 15, 16] and train suspension
systems [17] to building suspension systems [18, 19]. Ikago et al. [13, 20] studied the performance of tuned
viscous mass dampers, where the inerter is mounted in parallel to a damper, both elements being connected in
series with a spring. Marian and Giaralis [21] propose the use of a tuned mass-damper-inerter systems (TMDI),
where the inerter is mounted in series with a TMD, thus connecting it between two adjacent storeys. They study
the performance of TMDIs when installed in support-excited structures.

The TID system provides a very good vibration suppression level of the host structure. It has been shown
that it is most efficient when located at bottom storey level, this constituting an important advantage from
installation point of view. Its performance was studied for a wide range of loading scenarios, including sinusoidal
support and lateral excitation [22], earthquake excitation and wind loads [23]. The TID showed comparable or
improved performance when compared to equivalent TMDs or damper systems.

As shown in [10], in case of multi-storey structures, the TID must be connected between the first floor and
the ground. Similarly, when installed on cables, the TID is connected between the cable and the bridge deck.
Therefore, its installation is restricted to locations situated in the vicinity of the cable anchorage point, as in the
case of dampers. Given this, the TID is located within easy access, should maintenance or retrofitting become
necessary. While in the case of dampers their location represents a disadvantage in terms of performance, in
the case of TIDs the limitation can be overcome by adjusting the inerter’s apparent mass. This represents an
important advantage of the proposed system.

Based on the analysis of horizontal cables with attached viscous dampers [4] presented in the literature, we
study the performance of cables with attached TIDs. Starting from the uncontrolled cable model, differential
equations can be derived for calculating the modal damping ratio obtained using a TID. For simplicity, a finite
element model has also been created. This reduces the computational effort without significant loss of accuracy.

An important aspect is represented by the device optimisation. This is more involved due to the fact that
TIDs introduce a greater number of parameters (inertance, damping and stiffness), while in the case of dampers
only one parameter needs to be set, namely the damping capacity. The optimisation is aimed at minimising the
displacement at the cable’s midspan when the cable is subjected to sinusoidal deck excitation.

Our analysis showed that better performance can be achieved by using TIDs, when connected at the same
location as viscous dampers. Moreover, the optimal damping required in a TID is much lower than that of
dampers. Considering the results shown, it was concluded that the TID represents a viable alternative to viscous
dampers when used to limit unwanted cable vibration.

2 Structural system

The structural system considered is represented by a horizontal cable fixed at both ends, as shown in Figure 1.
The TID is connected at length l1 from the left support of the cable. In case of a bridge this would correspond
to the point of anchorage to the deck. l2 represents the distance to the right support which could be associated
to the cable connection to the bridge tower.

The elements of the TID, as described in [10] are the inerter (characterised by its inertance, bd), a spring
(with stiffness kd) and a damper (with damping cd). The TID is also connected to the bridge deck.

The cable used in the numerical examples has a total length L = 100m and is subject to a tensile force
T = 5000kN. Its mass per unit length is m = 100kg/m and the resulting frequency of the first mode of vibration
is ωc = 7.02rad/s.

The system will be subject to sinusoidal deck excitation, which translates into a sinusoidal displacement of
the left support of the cable and of the point of anchorage of the viscous damper or TID to the bridge deck.

The tuning of both devices is done such that we obtain minimum displacement at the cable’s midspan, when
the overall structure is subject to deck excitation.
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Fig. 1 Cable with an attached TID

2.1 Cable differential equations

Assuming that the tension in the cable is large compared to its weight, the bending stiffness and damping of the
cable are small, and that the cable deflection is small such that the tension force caused by deflection is negligible
in comparison to the static tension, the following partial differential equation is satisfied over each segment of
the cable:

T
∂2vk(xk, t)

∂x2
k

= m
∂2vk(xk, t)

∂t2
(2)

where T is the tension force in the cable, m is the cable mass per unit length, xk is the coordinate of the k-th cable
segment along the cable axis and vk represents the transversal deflection. For simplification, a non-dimensional
time parameter τ = ωct is introduced. Using the new notation, the cable displacement can be expressed as

vk(xk, t) = γ(τ)
sinh(πλxk/L)

sinh(πλlk/L)
(3)

where λ is the dimensionless eigenvalue and γ is the displacement at the location where the device is connected
[4].

The equilibrium equation at the TID connection point can be written as
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where kd, cd and vd are the stiffness, damping and vertical displacement of the TID system. The equilibrium
equation of the TID is

bd
d2vd
dt2

+ kd(vd − v1|x1=l1) + cd

(
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− dv1
dt

∣

∣

∣

∣

x1=l1

)

= 0 (5)

where bd is the inertance of the TID system.
Following the procedure presented in [7], the TID system displacement can be expressed as vd = βγ(τ), where

β is the complex amplitude ratio between the TID and the corresponding cable point.

β =
1 + 2ξρλ

1 + 2ξρλ+ ρ2λ2
(6)

where ξ = cd
2bdωd

is the TID damping ratio and ρ = ωc

ωd

is the ratio between the cable and the TID fundamental

frequency (ωd =
√

kd

bd
).

Substituting equations 3 and 6 into 4, we obtain

coth(πλl1/L) + coth(πλl2/L) +
πλbd
Lm

1 + 2ξρλ

1 + 2ξρλ+ ρ2λ2
= 0 (7)

The solutions, λ, of Equation 7 represent the eigenvalues of the combined cable-TID system. Considering
λ = σ + ϕi where i =

√
−1, and separating the real and imaginary terms, we obtain a system of equations that

can be soled numerically and the modal damping ratio can be calculated as

ζi =

(

ϕ2
i

σ2
i

+ 1

)

−

1

2

. (8)



2.2 Finite element model

Although this method provides accurate results, it is difficult to use in practice, where we need to calculate the
response of the structure. To overcome this limitation, a finite element model using axial elements was created.
Once the mass and stiffness matrices have been assembled, the structural response can be easily evaluated using
the state space formulation. We opted for a model formed of 20 elements. The resulting frequency of the first
mode of vibration is ω = 7.03rad/s, very close to the frequency determined analytically, ωc = 7.02rad/s. The
resulting modal damping ratios have been validated using the analytical model. This simplified model has been
employed in the following calculations and examples.

3 Analysis of damper systems performance

This section is aimed at analysing the response of cables with attached viscous dampers. The approach is similar
to the one presented in [4]. As explained by the authors, there is an optimal damping capacity that ensures a
maximum level of modal damping in each vibration mode. This is illustrated in Figure 2(a), where we can see
the variation of the modal damping ratio attained in the first, second and third mode of vibration of a cable plus
damper system with damper capacity.
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Fig. 2 (a)Modal damping ratio obtained in the first, second and third mode of vibration of a cable with an attached viscous damper,

located at 0.02L distance from the left support; (b) Variation of the first modal damping ratio, ζ1, with the damper location.

The damper capacity is expressed in terms of its damping ratio. This is defined as

ξV D =
c

2
√
Tm

(9)

where c represents the damping coefficient of the viscous damper.
When the viscous damper is located at l1 = 0.02L distance from the left support, the maximum modal

damping attached in the first three vibration modes is approximately ζi = 1%. However, these maxima cannot
be attained concomitantly. A different damper capacity is needed in each case. For example, if the damper
capacity is set to ξV D = 7.9, the corresponding modal damping ratios will be ζ1 = 1%, ζ2 = 0.8% and ζ3 = 0.6%.
Similar results have been reported in [4] for a different scaling of the damping parameter.

In the present case, we are interested in tuning the damper such that we suppress the vibration of the first
mode of vibration, therefore we will extend the system analysis in this direction. To do so, we are looking at the
variation of the modal damping ratio achieved in the first mode of vibration when the damper is moved along
the cable length. This is shown in Figure 2(b). The device becomes more effective when located at a larger
distance with respect to the left support. The thick line representing the first modal damping ratio of the system
in Figure 2(b) is shown using the same legend in Figure 2(a). When the length ratio is increased to l1/L = 0.05,
the first modal damping ratio increases to ζ1 = 2.6%.

Figure 3(a) shows the variation of the midspan gain with length ratio, for optimally tuned dampers. As the
length ratio increases, the gain value drops, indicating the increased efficiency of the device. A value Gms = 0.5
is attained when the device is located at 5% distance from the left support. Also, the damping ratio necessary
to obtain the minimum gain decreases as the length ratio is increased. This trend can be seen in Figure 3(b).
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Fig. 3 (a) Variation of the midspan gain Gms with length ratio; (b) Variation of the optimal damper capacity with length ratio.

4 Analysis of TID systems performance

A similar analysis is now done in case of cables with attached TIDs. The device tuning is more complex in this
case due to the increased number of parameters that need to be taken into account.

As explained in [10], the TID introduces a new degree of freedom in the system. This induces a TMD-
like behaviour in the vicinity of the first fundamental frequency of the uncontrolled system. The aim of our
optimisation was to tune the TID such that the amplitude of response at the newly created peaks is the same.
Concomitantly, the response must be minimised. Therefore, after setting the desired mass ratio, µ, we will
determine the optimum frequency ratio, ρ, and the corresponding damping ratio, ξTID. The TID damping ratio
is calculated as ξTID = ξ πµ

ρ
, where ξ = cd

2ωdbd
. This scaling is done in order to comply with the damping

coefficient definition for viscous dampers given in Equation 9.
Figure 4(a) shows the the variation of the modal damping ratio attained in the first, second and third mode

of vibration of a cable plus TID system with the TID damping ratio. The maximum modal damping ratio in
the first mode of vibration is approximately ζ1 = 1.7%. As in the case of dampers, when tuning the device to
suppress the vibration of the first mode, the corresponding second and third mode damping ratios are much
smaller. If the optimisation criterion is changed, higher modal damping ratios can be obtained. However, this
would not lead to an optimal response in terms of midspan gain, Gms, as in the case of dampers.

Figure 4(b) gives the variation of the first modal damping ratio with the length ratio giving the TID position.
As seen, the maxima obtained are considerably higher than in the case of dampers. When the TID is placed at
l1/L = 5%, a modal damping ratio of ζ1 = 4.5% can be achieved.

The midspan gain variation with the length ratio is shown in Figure 5(a). As in the case of dampers, the gain
decreases as the device is moved further from the support. The minimum value obtained using a TID with mass
ratio µ = 0.2, located at l1/L = 5% from the support is Gms = 0.35, smaller than in the case when dampers are
used. This proves that the TID system is more effective.
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Fig. 4 (a)Modal damping ratio obtained in the first, second and third mode of vibration of a cable with an attached TID with

mass ratio µ = 0.2, located at 0.02L distance from the left support; (b)Variation of the first modal damping ratio, ζ1, with the TID

location, for a mass ratio µ = 0.2.

Figure 5(b) shows the variation of the optimal damper capacity with length ratio for a TID with mass ratio
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Fig. 5 (a) Variation of the midspan gain Gms with length ratio for a TID with mass ratio µ = 0.2; (b) Variation of the optimal

damper capacity with length ratio for a TID with mass ratio µ = 0.2.

µ = 0.2. In this case, as the length ratio is increased, the optimal TID damping ratio increases as well. However,
the necessary damper capacity is much smaller than in the case of dampers.

The results obtained indicate the fact that a TID with mass ratio µ = 0.2 of the total cable mass is more
efficient than viscous dampers, when connected at the same location along the cable’s length.

5 Response to vibrations induced by bridge deck motion - Perfor-

mance comparison

One of the most attractive aspects associated with the use of TID instead of viscous dampers is the fact that
the performance of the TID can be adjusted by increasing its mass ratio. We are looking at the performance of
different mass ratio TIDs, each optimised to minimise the midspan gain.
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Figure 6 shows a comparison between the performance of TIDs and dampers in terms of midspan gain, Gms.
The dashed line representing the optimal damper performance lies between the curves corresponding to TIDs
with mass ratios of µ = 0.05 and µ = 0.2. In case of TIDs, an improved performance can be obtained id the
mass ratio is further increased to µ = 0.5. These values are feasible due to the capacity of the inerter to generate
high apparent mass.

For a better understanding of the TID and damper behaviour, Figure 7 shows the frequency response to
sinusoidal deck excitation for the case when the devices are located at l1/L = 2% from the left support. It is
considered that the uncontrolled cable has no inherent damping, thus the amplitude of its response near the first

?
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fundamental frequency is infinite. It can be seen that the high damper capacity induces a frequency shift in the
overall system response. The TIDs display the equal-amplitude split-peak response characteristic for TMD-like
systems. As shown in Figure 6, the dampers performance lies in between that of a TID with µ = 0.05 and
µ = 0.2, and an improved performance is obtained for µ = 0.5.

6 Conclusion

In this paper we analysed the possibility of using TIDs for cable vibration suppression, as an alternative to
viscous dampers.

The inerter is an attractive device for vibration suppression application, given its ability of generating a high
apparent mass compared to its physical mass. This leads to high inertial forces, proportional to the relative
acceleration between the device terminals.

The performance of TIDs installed on cables is compared to that of optimised viscous dampers attached at
the same location. Since the TID system introduces a higher number of design parameters and obtaining the
highest modal damping ratio does not lead to an optimal response of the overall system, we introduced a new
optimisation algorithm, based on the minimisation of the response gain at the cable’s midspan.

As presented in previous literature, there is a maximum level of modal damping that can be achieved when
a viscous damper is connected to a cable at a given location. In the case of TIDs, this is no longer valid as the
device can be improved varying its mass ratio. This leads to very good vibration suppression levels.

If is shown that for the case when the system is subject to sinusoidal excitation of the left support, a better
vibration suppression level can be achieved by using a TID than a viscous damper, when both devices are
located at l1/L = 2% from the support. Considering the results shown, it was concluded that the TID represents
a promising alternative to viscous dampers when used to limit cable vibration.
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