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Interference-plus-Noise Covariance Matrix
Reconstruction via Spatial Power Spectrum

Sampling for Robust Adaptive Beamforming
Zhenyu Zhang, Wei Liu,Senior Member, IEEE, Wen Leng, Anguo Wang, and Heping Shi

Abstract—Recently, a robust adaptive beamforming (RAB)
technique based on interference-plus-noise covariance (INC) ma-
trix reconstruction has been proposed, which utilizes the Capon
spectrum estimator integrated over a region separated fromthe
direction of the desired signal. Inspired by the sampling and
reconstruction idea, in this paper, a novel method named spatial
power spectrum sampling (SPSS) is proposed to reconstruct
the INC matrix more efficiently, with the corresponding beam-
forming algorithm developed, where the covariance matrix taper
(CMT) technique is employed to further improve its performance.
Simulation results are provided to demonstrate the effectiveness
of the proposed method.

Index Terms—Covariance matrix reconstruction, matrix taper,
robust beamforming, spatial power spectrum sampling.

I. I NTRODUCTION

A DAPTIVE beamforming has found many applications
ranging from wireless communications, radar, sonar, and

speech processing, to medical imaging, radio astronomy, etc
[1], [2]. It is well-known that the performance of a standard
adaptive beamformer is sensitive to various array manifold
errors such as calibration error and direction of arrival (DOA)
estimation error for the signal of interest (SOI) [3], [4], [5],
[6]. As a solution, various robust adaptive beamforming (RAB)
techniques have been proposed in the past decades [1], [7]. The
design principles of RAB based on the minimum variance
distortionless response (MVDR) criterion were illustrated in
[8] and the diagonal loading technique was studied in [5],
while the one based on the worst-case optimization was
proposed in [9], and steering vector estimation with presumed
prior knowledge for RAB was investigated in [10], [11].

In a recent RAB design [12], a method for estimating the
interference-plus-noise covariance (INC) matrix to eliminate
the power of SOI was proposed, where it first uniformly
samples the spatial power spectrum over the full angular range
from −π/2 to π/2, and then reconstructs the INC matrix
by summing up the values over a region separated from the
direction of the desired signal. A drawback of this effective
RAB method is its high computational complexity due to the
large number of samples involved in both spectrum estimation
and matrix multiplication/summation. According to [12], it
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has a complexity ofO
(
M2S

)
with S ≫ M , whereM is

the number of sensors andS the number of samples taken
in the summation. Based on this idea, a sparse method was
proposed to estimate the INC matrix to reduce the complexity
in [13]. On the other hand, to deal with unknown arbitrary-
type mismatches, an uncertainty set was employed for INC
matrix reconstruction in [10].

To further reduce the computational complexity of the RAB
method in [12], in this letter, a low-complexity INC matrix
reconstruction method is proposed based on spatial power
spectrum sampling (SPSS), and a corresponding beamforming
algorithm is developed. The spatial power spectrum sample
operation is realized by a proposed sample equation which is
derived from the selecting property of the steering vector.The
covariance matrix taper (CMT) technique studied in [14] is
employed to improve the robustness as well as reinforce the
sample equation due to a relatively small size of the array
system in practice. With the proposed method, the spatial
power spectrum estimation process in [12] can be avoided,
making the SPSS based algorithm computationally much more
efficient. Simulation results will be provided to demonstrate
the effectiveness and robustness of the proposed RAB method.

II. T HE SIGNAL MODEL

Consider a uniform linear array (ULA) ofM (usually
from tens to hundreds [15]) omni-directional sensors, witha
half wavelength spacing. One desired signal arrives from the
direction θs with a power ofσ2

s , while Q interfering signals
impinge upon the array from directionsθi, i = 1, 2, . . . , Q,
with their corresponding powers given byσ2

i . The M × 1
complex array observation vector at timek can be modeled as

x (k) = s (k) + i (k) + n (k) , (1)

wheres (k) = s (k)d (θs), i(k) andn(k) are the statistically
independent components of the desired signal, interference and
noise, respectively,s(k) is the desired signal waveform, and
d (θs) is its steering vector. The steering vector of the ULA
has the following general form

d(θ) =
[
1 ejπ sin θ ... ejπ(M−1) sin θ

]T
. (2)

Let R denote the theoretical covariance matrix of the array
output vector. ThenR can be expressed as follows:

R = σ2
sd (θs)d

H (θs) +

Q∑

i=1

σ2
i d (θi)d

H (θi) + σ2
nI, (3)
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where(·)H denotes Hermitian transpose, andσ2
nI is the noise

covariance matrix withI representing the identity matrix and
σ2
n the noise power. Alternatively,R can also be formed

through the spatial spectrumσ2(θ) of the array by

R =

∫

θ∈[−π

2
,π
2 )

σ2 (θ)d (θ)dH (θ) dθ, (4)

In practice, theoretical covariance matrixR is usually
unavailable and the sample covariance matrix (5) is used as
an approximation:

Rx =
1

K

K∑

k=1

x(k)xH(k) , (5)

whereK is number of data snapshots.
Applying the complex weight vectorw = [w1, ..., wM ]

T
∈

C
M to the received signal vectorx(k), we obtain the beam-

former outputy(k), given by y (k) = w
H
x (k). The beam-

former output signal-to-interference-plus-noise ratio (SINR) is
defined as

SINR =
σ2
s

∣∣wH
d (θs)

∣∣2

wHRi+nw
, (6)

whereRi+n is the INC matrix.
Maximizing (6) subject to a unity constraint to the SOI

direction leads to the following optimization problem

minimize
w

w
H
Ri+nw subject to w

H
d (θs) = 1, (7)

and the solution is commonly known as the MVDR beam-
former or Capon beamformer [11]

wopt =
R

−1
i+nd (θs)

dH (θs)R
−1
i+nd (θs)

. (8)

III. T HE PROPOSEDMETHOD

Recall the INC matrix reconstruction method given by[12]:

R̄i+n =

∫

Θ̄

P̂ (θ)d(θ)dH (θ)dθ (9)

where P̂ (θ) = 1/dH(θ)R−1
x d(θ) is the Capon power spec-

trum estimator andΘ̄ is the angular region excluding the
assumed SOI regionΘ. The main computational cost is the
integration approximation by summation, whereS (number of
sampled values) times spectrum estimation and vector multi-
plication operations have to be performed. In the following, by
analyzing the selecting property of the steering vector, wegive
an efficient method to calculate this approximation without
incurring the spectrum estimation process.

A. The selecting property of the steering vector, sample matrix
and sample equation

The inner product of two steering vectors is given by

f (α;α0) =
1

M
d
H (α0)d (α) =

1

M

M−1∑

k=0

ejkπ[sin(α)−sin(α0)]

(10)
whereα0, α ∈ [−π/2, π/2]. Let x = M/2[sin(α) − sin(α0)]
∈ [(−1− sin(α0))M/2, (1− sin(α0))M/2), then (10) can be

rewritten asf (x) = 1/M
∑M−1

k=0 ej(2π/M)kx, and f(x) can
be seen as a time-domain signal corresponding to anM -point
discrete rectangular function in the frequency domain. So we
can obtain that

f (x) =
1

M
·
sin (πx)

sin
(

π
M x

)ej
M−1

M
πx. (11)

When M is large enough,f (x) will approximate a sinc
function, i.e. f(x) = sinc (πx) = sin (πx)/πx. As x =
M/2[sin(α) − sin(α0)], unlessα is very close toα0, x will
be very large andf(x) will have a very small value. Then
we can conclude that whenM is big enough,f(α;α0) will
approximate a Kronecker delta function, i.e.

f(α;α0) ≈ δα,α0
=

{
1, α = α0

0, α 6= α0
. (12)

This is calledthe selecting property of the steering vector in
this letter. Fig. 1 shows the relationship betweenM and the
selecting property of the steering vector.

Moreover, for equation (11), whenx = 0, we have
f(x) = 1; whenx ∈ Z = {z|z ∈ [(−1 − sin(α0))M/2, (1 −
sin(α0))M/2), z ∈ Z, z 6= 0}, we havef (x) = 0. There
are M − 1 such values in the setZ, i.e. f (x) hasM − 1
zeros, and we denote them asxk, k = 1, 2, . . . ,M − 1. As
x = M/2[sin(α) − sin(α0)], the zeros off (α;α0), denoted
asαk, k = 1, 2, ...,M − 1, can be easily obtained byxk as
αk = arcsin (2xk/M + sin (α0)).

Additionally, from (10), we can show that any two of the
steering vectors of

(
α0, {αk}

M−1
k=1

)
are orthogonal to each

other. Therefore, the steering vectors of
(
α0, {αk}

M−1
k=1

)
span

theM -dimensional complex space.
Then, we define a matrix using

(
α0, {αk}

M−1
k=1

)
:

D =
1

M

∑

αk∈Ω

d (αk)d
H (αk) (13)

where Ω is a specified angular sector. WhenM is large
enough, we have the result for the Hermitian matrixD ·R ·D
given in (14). From (14), we can see that whenΩ covers
the whole region,D · R · D can be considered as anM -
point approximation to the covariance matrixR. We refer to(
α0, {αk}

M−1
k=1

)
, D, and equation (14) aswatch points, sample

matrix, andsample equation, respectively.
To estimate the INC matrix, we can remove the assumed

angle sector for SOI, i.e. letΩ = Θ̄. Then an approximation
of the INC matrix can be obtained bŷD · R · D̂, where
D̂ = 1/M

∑
αk∈Θ̄ d(αk)d

H(αk). In practice, sinceR is not
available, we can replaceR by Rx, i.e. D̂ ·Rx · D̂.

In this way, we have avoided the estimation̂P (θ) of the
spatial power spectrum in (9). However, whenM ≪ ∞, there
will be a large error in the estimation bŷD ·Rx · D̂, because
the selecting property of the steering vector is not ideal and
the watch points spacing is not dense enough. To improve it,
a taper operation is needed, as detailed in the next subsection.

B. SPSS INC matrix reconstruction

As just mentioned, for the estimation given in (14), whenM
is not large enough, the spacing between two adjacent watch



3

D ·R ·D = 1
M

∑
αi∈Ω d (αi)d

H (αi) ·
(∫

θ∈[−π

2
,π
2 )

σ2 (θ)d (θ)dH (θ) dθ
)
· 1
M

∑
αk∈Ω d (αk)d

H (αk)

=
∑

αi∈Ω

∑
αk∈Ω d (αi)

{∫
θ∈[−π

2
,π
2 )

σ2(θ)
[

1
M d

H(αi)d(θ)
] [

1
Md

H(θ)d(αk)
]
dθ

}
d
H(αk)

≈
∑

αi∈Ω

∑
αk∈Ω d (αi)

[∫
θ∈[−π

2
,π
2 )

σ2 (θ) δθ,αi
δθ,αk

dθ
]
d
H (αk)

=
∑

αk∈Ω σ2 (αk)d (αk)d
H (αk).

(14)
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Fig. 1. |f (α, 0)| versusα.

points may be too large to sample the power information
of interfering signals accurately. So we need to dither the
power of interferences to their neighborhood for robustness
as well as for the sample equation to catch more critical
power information of the interfering signals to some degree.
To achieve this, the covariance matrix tapering technique
introduced in [14] is employed to modify the estimated INC
matrix. In particular, we here use the Malloux-Zatman (MZ)
taper defined as follows [14],

TMZ = [amn]M×M = [sinc ((m− n)∆/π)] , ∆ > 0 (15)

where∆ corresponds to the width of the dithering area. For the
matrix R, the ‘tapered matrix’ is given byR ◦TMZ , where
“◦” denotes the Hadamard product. As pointed out in [14],
“the MZ taper is equivalent to the introduction of a uniformly
distributed coherent phase dither.”

As for the choice of∆, it should satisfy a requirement
that, for a signal whose arriving angle is located between two
adjacent watch points, the power of the arriving signal should
be dithered to one of the adjacent watch points by the taper
operation. In this paper,∆ = sin−1 (2/M) is chosen.

Additionally, considering that the spectrum of the sampled
matrix is discrete,TMZ should be adopted again to dither
the power of watch points into their neighborhood to obtain
a relatively continuous spatial spectrum. And this finish the
reconstruction of INC matrix.

C. The SPSS-based beamforming algorithm

Based on the discussions above, the proposed SPSS-based
beamforming algorithm can be described in four steps: dither-
ing, sampling, reconstructing, and weighting. Fig. 2 showsthe
power spectrums of the output matrices in the first three steps,
whereΘ = [−1◦, 11◦] is used and the Capon power spectrum
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Fig. 2. Effect of the first three steps in the SPSS algorithm.

estimator is adopted. It can be seen that the reconstructed INC
matrix can effectively restrain the power of SOI, as well as
maintain the information of interferences and noise.

1) Step 1: (Dithering) Specify a certain∆ for TMZ to taper
the sample covariance matrixRx, i.e.RT = Rx◦TMZ .

2) Step 2: (Sampling) Develop the required sample matrix
D̂; then sampleRT using the sample equation, i.e.
R̂i+n = D̂ ·RT · D̂.

3) Step 3: (Reconstructing) UseTMZ in Step 1 again, to
dither the power of each watch point to its neighborhood,
and obtain a continuous spatial spectrum, i.e.R̃i+n =
R̂i+n ◦TMZ ;

4) Step 4: (Weighting) Substitute the reconstructed INC
matrix R̃i+n and presumed DOA of SOI,θp, into the
Capon beamformer (8) to obtain the weight vector, i.e.

w =
R̃

−1
i+nd (θp)

dH (θp) R̃
−1
i+nd (θp)

. (16)

It can be seen that the main computational cost of the
proposed algorithm is the matrix inversion operation in Step
4. Its overall computational complexity isO(M3) in contrast
to O(SM2) with S ≫ M for the algorithm in [12]. As
an example to show the significantly reduced computational
complexity by the proposed method, we run the two algorithms
using MATLAB 2009a on a Windows XP SP3 PC with dual
core 3.07GHz Intel Core i3 CPU and 3.36GB memory. With
M = 30, K = 60, andS = 300, the required CPU time for
the beamformer in [12] is around 14.6ms, while it takes the
proposed one only about 0.6ms with no code optimization.

IV. SIMULATION RESULTS

In our simulations, we consider a ULA withM = 30
omnidirectional sensors, with zero-mean and unity variance
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spatially and temporally white Gaussian noise. Two interfering
sources with random waveforms arrive from DOA angles of
−50◦ and−20◦, respectively. The interference-to-noise ratio
(INR) at each sensor is 30dB. The desired signal impinges
on the array from the presumed directionθp = 5◦. For each
simulation, 500 Monte-Carlo runs are performed.

Our proposed SPSS-based beamformer is compared with the
worst-case-based beamformer [9], the beamformer in [16], the
sequential quad-ratic programming (SQP) based beamformer
in [17], and the beamformer in [12]. For the SPSS-based
beamformer and the beamformer in [12], the general angular
location of the desired signal is assumed to be within the
intervalΘ = [θp − 6◦, θp + 6◦]; α0 = 0◦ is used in (10)1, and
∆ = sin−1 (2/M) is used in (15). The valueδ = 0.1 and 20
dominant eigenvectors of the matirxC =

∫
Θ
d(θ)dH(θ)d(θ)

are used in the SQP based beamformer, whileǫ = 0.3 is used
for the worst-case-based beamformer.

A. Example 1: Random direction mismatch for SOI and inter-
ference

In this example, the direction mismatch error is assumed to
be randomly and uniformly distributed in[−4◦, 4◦] for both the
SOI and interferences as in [12].S is kept at 300 to calculate
the integration in the beamformer [12]. Here the random DOAs
change from run to run but remain fixed from snapshot to
snapshot. Fig. 3a depicts the output SINR of the beamformers
versus the input SNR. The number of snapshots is fixed to
be K = 2M = 60. It can be seen that the performance
of the SPSS-based beamformer is very close to that of the
beamformer in [12] and outperforms the other beamformers
when SNR is larger than 0dB. In Fig. 3b, the output SINR
is shown with respect to the number of snapshotsK, with a
fixed SNR for the desired signal at 10dB. Again the proposed
beamformer has a similar performance to the beamformer in
[12], but much better than the remaining ones.

B. Example 2: Performance versus number of sensors

In the second example, we compare the performance be-
tween the SPSS-based beamformer and the beamformer in
[12] against the number of sensors. Considering the same
mismatched situation in Example 1, we varyM from 20 to
80, while the SNR of SOI andK are kept at 20dB and2M
respectively. In all the simulations,S = 3601 is chosen to
get the best performance for the beamformer in [12]. It can
be seen from Fig. 4 that, when using 22 or more sensors,
the deviation between the two beamformers is within 0.7dB,
which means the approximation by our proposed beamformer
has been good enough to reach a similar performance to [12],
but with a much lower computational complexity.

V. CONCLUSION

In this letter, an SPSS-based method has been proposed
to reconstruct the INC matrix in a computationally efficient

1Note that for the choice ofα0, it can take any value as long as at least
one watch pointαi (as a result of the choice ofα0) is within the desired
angular sectorΘ. When this is satisfied, the power of SOI will be excluded
in the reconstructed INC matrix.
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way, with the corresponding robust beamforming algorithm
developed. The computational complexity of the proposed
beamformer isO

(
M3

)
, which in general is much smaller than

O
(
M2S

)
(S ≫ M) of a previously proposed reconstruction

method. In particular the spatial spectrum estimation process
has been avoided. Simulation results have demonstrated that
the proposed beamformer can achieve a very similar perfor-
mance to its high-complexity version.
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