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MicroRNAs (miRNAs) are small, abundant RNA molecules that constitute part of the
cell’s non-coding RNA “dark matter.” In recent years, the discovery of miRNAs has
revolutionised the traditional view of gene expression and our understanding of miRNA
biogenesis and function has expanded. Altered expression of miRNAs is increasingly
recognized as a feature of many disease states, including neurodegeneration. Here, we
review the emerging role for miRNA dysfunction in Alzheimer’s disease, Parkinson’s
disease, amyotrophic lateral sclerosis (ALS) and Huntington’s disease pathogenesis. We
emphasize the complex nature of gene regulatory networks and the need for systematic
studies, with larger sample cohorts than have so far been reported, to reveal the most
important miRNA regulators in disease. Finally, miRNA diversity and their potential to
target multiple pathways, offers novel clinical applications for miRNAs as biomarkers and
therapeutic agents in neurodegenerative diseases.
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INTRODUCTION
Arguably one of the most important discoveries in molecular
biology in recent years has been the finding and characterization
of regulatory RNAs. The majority of the human genome is tran-
scribed, however, less than 1.5% encodes protein. A vast amount
appears to be biologically active, non-coding RNAs which are
often referred to as the “dark matter” of the cell (Mattick,
2005). Progressively more advanced RNA sequencing techniques
have uncovered many classes of small regulatory RNA, how-
ever, there is general recognition of three main types: microRNAs
(miRNAs), short interfering RNAs (siRNAs) and piwi-interacting
RNAs (piRNAs). The full range of these RNA species has been
reviewed elsewhere (Carthew and Sontheimer, 2009; Kapranov
and St Laurent, 2012). The aim of this article is to focus on
miRNAs and their emerging role in neurodegeneration.

Traditionally conditions such as Parkinson’s disease,
Alzheimer’s disease and amyotrophic lateral sclerosis (ALS)
have been considered as distinct entities, however, there is
increasing evidence of clinical, pathological and genetic overlap.
Neurodegenerative diseases can therefore be considered a spec-
trum of aetiologies culminating in a final common final pathway
of neuronal cell death. The pathogenic mechanisms underlying
neurodegeneration are complex, but the universal risk factor is
aging and there are common themes across the disorders, includ-
ing protein aggregation, neuroinflammation and mitochondrial
dysfunction. There are also common challenges across these
conditions including the lack of early diagnostic testing and a
large proportion of patients having sporadic forms of the disease
(excepting Huntington’s disease). Unraveling the similarities and
differences between these conditions, and understanding cell type
specific vulnerability, will be key to developing new therapeutic
interventions.

BASIC BIOLOGY OF miRNA
MiRNAs are a novel class of small (18–25 nucleotides), non-
coding RNA molecules predicted to post-transcriptionally reg-
ulate at least half the human transcriptome (Friedman et al.,
2009). The discovery, and subsequent characterization, of miR-
NAs has revealed an intriguing additional level of gene reg-
ulation that is fundamental in a diverse range of pathways
including development, differentiation and pathological pro-
cesses. Each miRNA is estimated to regulate around 200 targets,
and mRNA transcripts may be regulated by multiple miRNAs
(Lewis et al., 2003; Krek et al., 2005; Lim et al., 2005). The miRNA
biogenesis pathway is highly conserved, as are many miRNA
sequences and their target binding sites, highlighting their impor-
tance across evolution (Berezikov et al., 2005; Friedman et al.,
2009).

MiRNA genes are encoded either in intergenic regions under
control of their own promoter, within the introns of protein cod-
ing genes or are exonic, overlapping with coding regions and
transcribed by the host promoter (Rodriguez et al., 2004). The
majority of miRNAs in humans are transcribed independently
and putative promoters for the most of these have been identi-
fied (Zhou et al., 2007; Ozsolak et al., 2008). Over 40% of human
miRNAs are found in clusters that are co-transcribed as poly-
cistronic transcriptional units (Lee et al., 2002; Griffiths-Jones
et al., 2008). Many miRNAs are highly temporally and spatially
regulated, either via transcription factors or epigenetic mech-
anisms including DNA methylation and histone modification
(Chuang and Jones, 2007). Overall, the mechanisms that con-
trol miRNA expression are similar to those of protein-coding
genes with a trend toward regulation by their target mRNAs
and double-negative feedback loops (Carthew and Sontheimer,
2009).
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miRNA BIOGENESIS
CANONICAL PATHWAY
The bulk of miRNAs are generated via the typical, canoni-
cal pathway of miRNA biogenesis (Figure 1). MiRNA genes are
transcribed by RNA polymerase II (pol II) to generate long pri-
mary transcripts (pri-miRNAs), which can be several kilobases
long. The pri-miRNAs are capped, spliced and polyadenylated.
They may encode a single miRNA, clusters of distinct miRNAs,
or a protein and can therefore also act as mRNA precursors
(Carthew and Sontheimer, 2009). The next step also takes place
in the nucleus and is orchestrated by the microprocessor com-
plex. The principal components of this complex are the RNase
III enzyme known as Drosha and its binding partner DiGeorge
syndrome critical region gene 8 (DGCR8), a double-stranded
RNA-binding protein (Denli et al., 2004). Drosha digests pri-
miRNAs to release hairpin structures called precursor miRNAs
(pre-miRNAs), which are 60–70 nucleotides in length. Exportin-
5 interacts directly with the pre-miRNAs to mediate their export
into the cytoplasm, where a second RNase III enzyme named
Dicer, cleaves the pre-miRNA to generate a double-stranded
miRNA duplex of ∼22 nucleotides. Following Dicer process-
ing the miRNA duplex is rapidly unwound as it associates with
Argonaute (Ago) proteins, one strand is retained to become
the mature miRNA and is loaded into RNA-induced silencing
complexes (RISCs) to participate in mRNA regulation. The com-
plementary strand, which is found at lower concentrations within
the cell and is sometimes called the ∗ sequence, was believed to
be non-functional and rapidly degraded. However, recent studies
have demonstrated that several miRNA∗ sequences associate with
different Ago protein complexes to also become active (Czech and
Hannon, 2011).

NON-CANONICAL PATHWAYS
The advent of deep-sequencing technologies has led to the
discovery of many miRNAs that are generated via alternative

FIGURE 1 | Canonical miRNA biogenesis pathway. Primary miRNA
(pri-miRNA) transcripts are transcribed by RNA polymerase II. Pri-miRNAs
are processed by the microprocessor complex into precursor miRNA
(pre-miRNA) hairpins. These are transported into the cytoplasm, where they
are further processed by Dicer into miRNA duplexes. Following strand
separation, the mature miRNAs are loaded into RNA-induced silencing
complexes (RISCs) to guide the repression of protein synthesis or mRNA
degradation.

mechanisms, by-passing the usual Drosha/Dicer two-step pro-
cessing (for in depth review see Miyoshi et al., 2010). In
mammals four Drosha independent pathways have been identi-
fied, namely the mirtron pathway, small nucleolar RNA-derived,
tRNA-derived and short hairpin RNA-derived pathways (Babiarz
et al., 2008; Ender et al., 2008; Saraiya and Wang, 2008). The most
common of these replaces the microprocessor step with a splic-
ing event to produce short hairpin introns known as mirtrons
that can be transported by Exportin-5 and cleaved by Dicer
(Ruby et al., 2007). Mirtrons are relatively uncommon compared
to canonical miRNAs, but have been identified throughout the
animal kingdom and there is evidence to suggest a particular
importance of mirtrons in the primate nervous system (Berezikov
et al., 2007). In addition, there are two Dicer independent miRNA
processing pathways. These are very rare with a single miRNA
(miR-451) known to be produced via direct pre-miRNA loading
onto Ago2 and miRNA-like small RNA sequences generated from
tRNAs, with RNaseZ cleavage of pre-miRNAs in place of Dicer
(Lee et al., 2009; Cheloufi et al., 2010; Haussecker et al., 2010).

miRNA MECHANISM OF ACTION
RISC is a generic term for a family of heterogeneous complexes
containing Ago proteins that are involved with gene silencing
(Pratt and MacRae, 2009). Once incorporated into the RISC,
mature miRNAs act as a guide to direct target recognition via
base-pairing interactions with mRNA transcripts, which are often
located in the 3’UTR region (Bartel, 2009). The majority of
animal miRNAs do not match their target sequences exactly,
however, nucleotides 2–6 of the miRNA are known as the “seed
region” and are critical for target recognition (Lewis et al., 2003,
2005). The extent of complementarity between a miRNA and
its target mRNA sequence influences the downstream regula-
tory mechanism, with perfect matches leading to degradation,
while mismatches result in translational repression. In humans
the Ago2 protein catalyses target mRNA cleavage and subse-
quent degeneration of miRNA, although translational repression
is the most prevalent mode of action for miRNAs in animals
(Liu et al., 2004). The exact mechanism for repression remains
unclear. There is evidence to support disruption of translation
initiation, promotion of target mRNA deadenylation, seques-
tration of miRNAs and their targets to processing (P) bodies
and stress granules or RISC-mediated protein degradation after
translation (Tang et al., 2008). Translational repression by miR-
NAs is therefore complex and usually produces a fine tuning
effect, with a typical miRNA-target interaction producing <2-
fold reduction in protein level (Ebert and Sharp, 2012). An addi-
tional level of regulation has recently been hypothesized whereby
mRNA transcripts compete for common miRNAs by sharing
miRNA binding sites. These competing endogenous RNAs (ceR-
NAs) could be pseudogenes that have the ability to co-regulate
gene expression in intricate ceRNA networks (Salmena et al.,
2011). Further experimental evidence is, however, required to
validate this theory. MiRNAs are recognized as negative regu-
lators of gene expression but there are reports of target activa-
tion by miRNAs under certain conditions such as cellular stress
(Bhattacharyya et al., 2006; Vasudevan et al., 2007; Orom et al.,
2008).
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In contrast to miRNA biogenesis, which has been extensively
studied and well-defined, the regulation of miRNA degradation
and turnover is less clear. MiRNAs are generally considered to be
highly stable molecules with a long half-life (Krol et al., 2010b).
However, recent studies indicate that miRNA turnover can vary
widely among miRNAs and cell types, with rapid miRNA decay
a common feature of neuronal cells (Krol et al., 2010a). There
is also evidence of miRNA recycling by the cell which may help
to explain their capacity to regulate large numbers of transcripts
(Baccarini et al., 2011). Mature miRNAs are protected by binding
to Ago proteins and the presence of mRNA target sequences are
believed to be an important factor in preventing their release from
RISC complexes and subsequent degradation (Diederichs and
Haber, 2007). Hence, in the absence of complementary mRNA
targets, miRNAs could be specifically released to make RISC
available for loading new miRNAs. Two families of exonuclease
enzymes have so far been identified as mediators of miRNA decay,
namely small RNA degrading nuclease (SDN) genes in plants and
exoribonuclease 2 (XRN2) in animals (Ramachandran and Chen,
2008; Chatterjee and Grosshans, 2009).

miRNAs IN NEURODEGENERATIVE DISORDERS
MiRNAs are found in high abundance within the nervous sys-
tem where they are key regulators of functions such as neurite
outgrowth, dendritic spine morphology, neuronal differentiation
and synaptic plasticity. The dysfunction of miRNAs in neurode-
generative disorders is increasing recognized, see Table 1 for a
summary of the miRNAs discussed within this review.

ALZHEIMER’S DISEASE
Alzheimer’s disease is a complex neurodegenerative disorder
and the most common form of dementia in the elderly
(Avramopoulos, 2009; Schonrock and Gotz, 2012). The clinical
signs of disease are a slow, progressive loss of cognitive function
and memory loss, due to destruction of synapses and neurons,
which ultimately leads to dementia and death. Alzheimer’s dis-
ease is progressive with different brain regions and cells affected
in a sequential process of increasing deposition of amyloid-β (Aβ)
plaques and neurofibrillary tangles of hyperphosphorylated tau
as described by Braak staging (Braak and Braak, 1995). Aβ is a
mainly 40–42 amino acid fragment derived from the membrane
spanning amyloid precursor protein (APP) by proteolytic cleav-
age by the β-site APP cleaving enzyme (BACE1) and presenilin
dependent γ-secretase (Delay et al., 2012).

Less than 1% of Alzheimer’s disease cases are familial, with
autosomal dominant mutations described in only three genes that
lead to early onset disease; APP, presenilin 1 (PSEN1) and prese-
nilin 2 (PSEN2), both of the latter encoding components of the
γ-secretase pathway (Schonrock and Gotz, 2012). No other can-
didate genes have been identified for familial Alzheimer’s disease,
although over 500 polymorphisms have been proposed to be risk
alleles (Bertram et al., 2007, 2010; Tanzi, 2012). Possession of the
ε4 allele of the Apolipoprotein E (ApoE) genotype is known to
have a modifying influence on the genotype and is associated with
a predisposition for the disease. The vast majority of Alzheimer’s
disease is sporadic, with no obvious genetic component, sug-
gesting that other mechanisms are responsible. Recent studies

have demonstrated that alterations in the network of miRNAs
contribute to the disease process.

Several studies have used profiling strategies to show miRNA
dysregulation in Alzheimer’s disease patient brain tissues [see
Schonrock and Gotz (2012) for a detailed review of these].
However, little overlap in the specific miRNA changes identified
has been observed, which might result from differences in exper-
imental technique, but it is likely that much of this variation
derives from differences in the tissue examined and diagnos-
tic features. Comparative miRNA expression in gray and white
matter of normal individuals and early stage Alzheimer’s dis-
ease revealed that most of the disease associated miRNA changes
were found in the gray matter. This work highlights that cel-
lular composition of the regions has a marked effect upon the
miRNA expression profile, for instance the white matter profile is
markedly influenced by the oligodendrocyte content of the tissue
(Wang et al., 2011). The use of tissue homogenates, with diverse
cell type compositions, and various regions of tissue at different
Braak stages, makes comparing the results of individual stud-
ies challenging. Therefore, systematic studies investigating the
expression of these miRNAs in the different regions of the brain
in relation to Braak staging are needed to clarify their significance
in relation to the pathogenesis of Alzheimer’s disease. However,
there are miRNAs that have consistently been identified as dys-
regulated including miR-107, miR-29, miR-9, miR-181, miR-34,
miR-106, and miR-146 (Schonrock and Gotz, 2012). Many of
these have been linked to altered regulation of key genes known
to be involved with Alzheimer’s disease.

Down regulation of miR-107 at an early stage of Alzheimer’s
disease has been observed in temporal cortex and correlated with
the up regulation of BACE1 in two studies, which could impact
upon Aβ production (Wang et al., 2008b; Nelson and Wang,
2010) This finding was confirmed as being specific to miR-107
(and not a family member such as miR-103) and demonstrated
that as miR-107 declines with advancing pathology, BACE1
increases along with neuritic plaque density (Wang et al., 2008b).
Interestingly, miR-107 and miR-124a, two miRNAs experimen-
tally proven to target BACE1 also regulate other aspects of APP
metabolism, thus demonstrating the capacity for single miRNAs
to influence several components of the same pathway and the
potential to produce additive effects. MiR-107 directly targets a
disintegrin and metalloproteinase 10 (ADAM10), another secre-
tase enzyme which processes APP, and miR-124a is involved in the
regulation of APP mRNA alternative splicing via direct targeting
of polypyrimidine tract binding protein 1 (PTBP1) (Smith et al.,
2011; Augustin et al., 2012).

The miR-29 family of miRNAs have target sites on BACE1
mRNA and loss of this cluster is negatively correlated with
BACE1 expression in a subset of sporadic Alzheimer’s disease
cases (Hebert et al., 2008; Zong et al., 2011). The correlation
was Alzheimer’s disease specific and was verified in HEK293
and SH-SY5Y cell culture models, where an increase in Aβ pro-
duction was also observed as a result. Whilst not specific for
brain regions particularly associated with Alzheimer’s disease,
as demonstrated by analysis of material taken from the cere-
bellum (a brain area not typically affected by the disease), it is
an important additional relationship between an miRNA and
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Table 1 | Dysregulated miRNAs discussed within this review article.

miRNA Neurodegenerative

disease

Reported findings Proposed biological effects References

Let-7 PD Reduced in two C.elegans models of
PD (alpha-synuclein transgenic and
pdr-1 strains), antagonised by
pathogenic LRRK2 in Drosophila
model

Increased dopaminergic neuronal cell
death via increased expression of
E2F1 and DP transcription factors

Asikainen et al., 2010; Gehrke
et al., 2010

miR-106a* PD Increased in human PD substantia
nigra

Chaperone mediated autophagy
pathway

Kim et al., 2007; Alvarez-Erviti
et al., 2013

miR-106a/b AD Down regulation in human AD
temporal cortex and cerebral cortex of
APPswe/PS�E9 AD mouse model

Regulation of APP and ABCA1, impact
on Aβ production

Hebert et al., 2008, 2009;
Patel et al., 2008; Kim et al.,
2012

miR-107 AD Down regulation in human AD
temporal cortex

Regulation of BACE1 and ADAM10,
impact on Aβ production

Wang et al., 2008b; Nelson
and Wang, 2010; Augustin
et al., 2012

miR-124a AD Down regulated in human AD
temporal cortex

Targets BACE1 and PTBP1, impact on
Aβ production

Smith et al., 2011

ALS Reduced in spinal cord from SOD1
mouse model of ALS

Regulates glutamate transport protein
EAAT2/GLT1

Morel et al., 2013

HD Down regulated in human HD frontal
cortex and striatum

Down regulated by REST Marti et al., 2010

miR-125b HD Down regulated in HdhQ111IHdhQ111

cell model of HD
Targets HTT, regulates p53 and is
predicted to target TBP

Sinha et al., 2010, 2011;
Ghose et al., 2011

miR-132 AD Down regulation in human AD
hippocampus, cerebellum and medial
frontal gyrus

Regulates several AD associated
genes including SIRT1, AChE, PTEN,
FOXO3a and p300

Cogswell et al., 2008; Shaked
et al., 2009; Wong et al., 2013

HD Down regulated in human HD cortex Down regulated by REST Johnson et al., 2008

miR-133b PD Down regulated in PD patient
midbrain

Negative feedback circuit with Pitx3,
function of midbrain dopaminergic
neurons

Kim et al., 2007

miR-146a AD Up regulated in AD hippocampus and
temporal cortex

Targets inflammatory pathways
including NFkB and TSPAN12 to
potentially impact upon Aβ production

Lukiw et al., 2008; Sethi and
Lukiw, 2009; Li et al., 2011

HD Down regulated in HdhQ111IHdhQ111

cell model of HD
Targets HTT, TBP and is regulated by
the p53 pathway

Sinha et al., 2010, 2011;
Ghose et al., 2011

miR-146a* ALS Up regulated in human spinal cord
homogenates

Targets NFL Campos-Melo et al., 2013

miR-150 HD Down regulated in HdhQ111IHdhQ111

cell model of HD
Targets HTT regulates p53 and is
predicted to target TBP

Sinha et al., 2010, 2011

miR-153 AD Down regulated in cerebral cortex of
APPswe/PS�E9 AD mouse model

Regulation of APP and APLP2, impact
on Aβ production

Liang et al., 2012; Long et al.,
2012

PD Interaction with SNCA in cell culture
models of PD

Targets SNCA Doxakis, 2010

miR-181c AD Down regulated in human temporal
cortex and patient serum. Down
regulated by addition of Aβ to primary
hippocampal neurons

Targets SIRT1, impact on tau
metabolism

Hebert et al., 2008;
Schonrock et al., 2010, 2012;
Geekiyanage et al., 2012

(Continued)
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Table 1 | Continued

miRNA Neurodegenerative

disease

Reported findings Proposed biological effects References

miR-184* PD Antagonised by pathogenic LRRK2 in
Drosophila model of PD

Increased dopaminergic neuronal cell
death via increased expression of
E2F1 and DP transcription factors

Gehrke et al., 2010

miR-200a/c HD Up regulated cerebral cortex of
N171-82Q HD mouse model

Predicted to target genes involved in
neuronal function

Jin et al., 2012

miR-205 PD Down regulated in PD cerebral cortex
tissue

Targets LRRK2 Cho et al., 2013

miR-206 ALS Up regulation in muscle from ALS
patients and ALS mouse model

Nerve-muscle communication and
promotes reinnervation following
nerve damage

Williams et al., 2009

miR-21* PD Increased in human PD substantia
nigra

Chaperone mediated autophagy
pathway

Alvarez-Erviti et al., 2013

miR-224 PD Increased in human PD substantia
nigra and amygdala

Chaperone mediated autophagy
pathway, predicted to target lamp-2a
mRNA

Kim et al., 2007; Alvarez-Erviti
et al., 2013

miR-26b PD Increased in human PD substantia
nigra

Chaperone mediated autophagy
pathway, predicted to target hsc70
mRNA

Kim et al., 2007; Alvarez-Erviti
et al., 2013

miR-29a/b AD Down regulation in human AD
temporal cortex, cerebellum and
patient serum

Regulation of BACE1 and impact on
Aβ production, regulation of microglia
in the aged brain

Hebert et al., 2008;
Geekiyanage et al., 2012;
Fenn et al., 2013

miR-29c AD Up regulation cerebral cortex of
APPswe/PS�E9 AD mouse model

Regulation of BACE1 and impact on
Aβ production

Zong et al., 2011

miR-301b PD Increased in human PD substantia
nigra

Chaperone mediated autophagy
pathway

Alvarez-Erviti et al., 2013

miR-338-3p ALS Up regulated in human ALS frontal
cortex and ALS leukocytes

Predicted to target neurotransmitter
signalling pathways

Shioya et al., 2010; De Felice
et al., 2012

miR-34a AD Up regulated in human AD
hippocampus, cerebellum, medial
frontal gyrus and white blood cells. Up
regulated in cerebral cortex of
APPswe/PS�E9 AD mouse model

Targets BCL2 and potentially
increases apoptotic cell death, targets
SIRT1, impact on tau metabolism

Schipper et al., 2007;
Cogswell et al., 2008; Wang
et al., 2009

miR-34b HD Up regulated in mutant HTT
transfected NT2 cell model of HD and
elevated in human HD patient plasma

Interaction with p53 pathway Gaughwin et al., 2011

miR-34b/c PD Down regulation in PD amygdala,
frontal cortex and substantia nigra

Altered mitochondrial function and
oxidative stress, also linked to brain
ageing

Minones-Moyano et al., 2011;
Liu et al., 2012

miR-373* PD Increased in human PD substantia
nigra and amygdala

Chaperone mediated autophagy
pathway, predicted to target lamp-2a
mRNA

Kim et al., 2007; Alvarez-Erviti
et al., 2013

miR-433 PD Polymorphism in FGF20 binding site
linked to increased risk of PD

Increase FGF20 expression and
downstream up regulation of SNCA

Wang et al., 2008a

(Continued)
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Table 1 | Continued

miRNA Neurodegenerative

disease

Reported findings Proposed biological effects References

miR-64/65 PD Reduced in two C.elegans model of
PD (alpha-synuclein transgenic and
cat-1 strains)

Unknown, target candidates include
transcription factor mdl-1 and the
development gene ptc-1

Asikainen et al., 2010

miR-7 PD Interaction with SNCA and
neuroprotective role in cell culture
models of PD

Targets SNCA and supresses SNCA
mediated toxicity

Junn et al., 2009; Doxakis,
2010

miR-9 AD Up and down regulation reported in
human AD brain tissue. Down
regulated in patient serum and by the
addition of Aβ to primary hippocampal
neurons

Targets include NFH and SIRT1,
plague and tangle formation

Detailed review see
Geekiyanage et al., 2012;
Schonrock and Gotz, 2012

ALS Down regulation in Dicer knock out
mature motor neurons and up
regulation in SMA mouse model

Targets NFH Haramati et al., 2010

HD Down regulated in human HD cortex Down regulated by REST and targets
REST in a double negative feedback
loop

Packer et al., 2008

miR-9* HD Down regulated in human HD cortex Down regulated by REST and targets
CoREST in a double negative feedback
loop

Packer et al., 2008

AD, Alzheimer’s disease; PD; Parkinson’s disease; ALS, Amyotrophic lateral sclerosis; HD, Huntington’s disease.

mRNA expression (Hebert et al., 2008). In addition to regulating
BACE1, miR-29a/b are increased in the aging brain and linked
to modulation of microglial activation (Fenn et al., 2013). The
miR-29 cluster has been sequenced in a cohort of sporadic and
familial patients and variants were found within the cluster that
significantly associated with Alzheimer’s disease (Bettens et al.,
2009). However, this finding requires further validation in addi-
tional cohorts and the functional effects of these variants remains
unclear.

APP is also a target for miRNA regulation, miR-106a and miR-
106b directly bind to APP mRNA and are down regulated in the
anterior temporal cortex of Alzheimer’s disease patients (Hebert
et al., 2008, 2009). Interestingly, miR-106 has also been found to
regulate ATP-binding cassette transporter A1 (ABCA1), a lipid
transporter implicated in ApoE lipidation and the production of
Aβ, suggesting that this miRNA could influence the Aβ generation
via more than one route (Kim et al., 2012).

Recent studies have examined possible associations of miR-
153 with Alzheimer’s disease after functional studies confirmed
an interaction with APP and amyloid beta precursor-like pro-
tein 2 (APLP2) mRNA transcripts (Liang et al., 2012; Long et al.,
2012). Levels of miR-153 were significantly decreased at early and
late stages of disease in the APPswe/PS�E9 double mutant mouse
model. Furthermore, the interaction has been demonstrated
in vitro using HeLa and primary human fetal brain cells where
delivery of miR-153 down regulated endogenous expression of
APP and APLP2 (Long et al., 2012). miR-153 levels were signif-
icantly decreased in the cohort of advanced Alzheimer’s disease
post-mortem brain specimens with neocortical neurofibrillary

tangle pathology (Braak III–VI) as compared with specimens
lacking neocortical neurofibrillary tangle pathology (control and
Braak stage I/II specimens). Importantly, an inverse co-regulation
of miR-153 and APP in human frontal cortex was observed at
the protein level (Long et al., 2012). Thus, evidence indicates
that miR-153 contributes to post-transcriptional regulation of
APP/APLP2 and may therefore have a role in Alzheimer’s dis-
ease, although further validation of this potential interaction is
required.

MiR-9 is a highly conserved, brain enriched miRNA and the
most frequently identified misregulated miRNA in Alzheimer’s
disease to date, although there are inconsistencies regarding up
or down regulation as both have been reported (Schonrock and
Gotz, 2012). Addition of Aβ to primary neuron cultures results
in a rapid decrease of miR-9 in vitro and suggests that dereg-
ulation may be related to plaque formation (Schonrock et al.,
2010). The targets for miR-9 include neurofilament heavy chain
(NFH), a protein found in neurofibrillary tangles, and sirtuin
(SIRT1), a de-acetylase that interacts with tau and is linked to
accumulation of hyperphosphorylated forms of tau in the dis-
ease (Haramati et al., 2010; Saunders et al., 2010; Liu et al.,
2011; Schonrock et al., 2012). Three other miRNAs have been
found to supress SIRT1, namely miR-181c, miR-34, and miR-132,
all of which show consistent altered expression in Alzheimer’s
disease brain (Schonrock and Gotz, 2012; Wong et al., 2013).
Furthermore, miR-132 has several direct targets of relevance
to Alzheimer’s disease pathogenesis including Tensin Homolog
(PTEN), Forkhead Box O3a (FOXO3a), and E1A binding pro-
tein p300 (P300), which all have a role in neural apoptosis,
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and the acetylcholinesterase enzyme (AChE), inhibition of which
is a standard treatment in Alzheimer’s disease and links into
the cholinergic anti-inflammatory pathway (Shaked et al., 2009;
Wong et al., 2013).

An additional miRNA linked to both inflammation and
Alzheimer’s disease is miR-146a. This key regulator of innate
immunity is up regulated in brain regions affected by Alzheimer’s
pathology, including the hippocampus and temporal cor-
tex, yet remains unchanged in unaffected regions (Lukiw
et al., 2008; Sethi and Lukiw, 2009). Experimentally proven
targets of miR-146a include complement factor H (CFH),
interleukin-1 receptor-associated kinase-1 (IRAK1) and TNF
receptor-associated factor 6 (TRAF6), all associated with innate
immunity and inflammatory pathways which are dysregulated in
Alzheimer’s disease (Wang et al., 2012). Interestingly, miR-146a
also targets transmembrane spanning tetraspanin 12 (TSPAN12),
a key regulator of ADAM10 and therefore has the potential to
impact upon Aβ metabolism (Li et al., 2011). These findings fur-
ther demonstrate the capacity of miRNAs to influence several
pathways and mediate cross-talk between pathogenic mecha-
nisms.

PARKINSON’S DISEASE
Parkinson’s disease is characterized clinically by bradykinesia,
tremor and rigidity. This is caused by the progressive loss of
dopaminergic neurons in the substantia nigra pars compacta. The
majority of cases are idiopathic, however, around 20% of patients
have a positive family history. The most important and widely
accepted monogenically inherited Parkinson’s disease genes are
α-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2)
for late-onset disease and Parkin (PARK2), oncogene DJ1 (DJ1)
and PTEN Induced Putative Kinase 1 (PINK1) for early onset
(Coppede, 2012). The neuropathology of Parkinson’s disease is
characterized by cellular inclusions known as Lewy bodies in
neurons, the main components of which are α-synuclein, neuro-
filament and ubiquitin.

Recent studies suggest that miRNAs may be involved in
the development of Parkinson’s disease. Deletion of Dicer in
dopaminergic neurons in transgenic mice led to reduced loco-
motion and symptoms reminiscent of human Parkinson’s dis-
ease (Kim et al., 2007). Expression profiling of miRNAs from
patient midbrain samples revealed a significant decrease in miR-
133b. MiR-133b targets Pixt3, a transcription factor enriched in
dopaminergic neurons, which is deficient in the aphakia mouse
model of Parkinson’s disease (Hwang et al., 2003). A negative
feedback model has been proposed to explain the relationship, in
which, Pitx3 specifically induces transcription of miR-133b and
Pitx3 activity is directly down regulated by miR-133b (Kim and
Kim, 2007). However, the impact of miR-133b in vivo remains
unclear, miR-133b null mice display normal midbrain dopamin-
ergic neuronal development and function with a lack of disease
phenotype (Heyer et al., 2012).

MiRNA profiling to evaluate dysregulation of miRNAs in
various regions of human Parkinson’s disease brain tissue has
also reported a widespread reduction in the miR-34b/c cluster,
which could be detected early in the disease course. Depletion of
these miRNAs in dopaminergic neuronal cells led to a reduction

of cell viability accompanied by mitochondrial dysfunction
(Minones-Moyano et al., 2011). Interestingly, miR-34 has been
linked with aging in Drosophila, as identified by comparing brain
miRNA profiles at three time points, 3, 30, and 60 days. Loss of
this age-modulated miRNA in transgenic flies resulted in a late-
onset brain degeneration and a striking decline in survival (Liu
et al., 2012).

In a recent study Asikainen et al. (2010) used global analy-
sis of miRNAs in three C.elegans models of Parkinson’s disease.
Reduced expression of miR-64 and miR-65 was observed in
SNCA transgenic and vesicular catecholamine transporter mutant
strains, while members of the let-7 family were dysregulated in the
SNCA and Parkin mutant strains (Asikainen et al., 2010). Let-7
miRNAs are highly conserved and abundant in the central ner-
vous system (CNS) (Lagos-Quintana et al., 2002). Unfortunately
there is no literature to describe the function of the miR-64/65
cluster and these results are yet to be validated in rodent models
or human tissue.

One of the most important factors in Parkinson’s disease
pathology is α-synuclein protein accumulation. Mutations and
multiplications of the SNCA gene are found in familial forms of
the disease and polymorphisms in the gene are linked to greater
susceptibility in sporadic cases (Hardy et al., 2009). Examination
of the SNCA gene has revealed an unusually highly conserved and
long 3′UTR sequence which is important in the post-translational
control of the gene and strongly suggests a role for miRNA regu-
lation (Sotiriou et al., 2009). Two miRNAs have been identified
to date as directly targeting SNCA, namely miR-7 and miR-153.
These brain enriched miRNAs have been found to bind directly
to SNCA mRNA and down regulate expression, with an addi-
tive effect (Doxakis, 2010). In addition, miR-7 suppresses SNCA
mediated cytotoxicity in neuronal cell models (Junn et al., 2009).
Other miRNAs found to be significantly increased in Parkinson’s
disease brain tissue include six (miR-21∗, miR-224, miR-373∗,
miR-26b, miR-106a∗, and miR-301b) that target components
of the chaperone-mediated autophagy pathway (Alvarez-Erviti
et al., 2013). Defects in this pathway have the potential to disrupt
α-synuclein protein degradation and have been proposed as a
mechanism for Lewy body pathology (Winslow and Rubinsztein,
2011).

Mutations in the LRRK2 gene are the most common cause of
Parkinson’s disease identified to date, but the pathogenic mech-
anism remains unclear. The LRRK2 protein has been found to
directly associate with components of the miRNA processing
pathway, including Ago proteins (Dachsel et al., 2007; Gehrke
et al., 2010). Pathogenic LRRK2 in Drosophila antagonises at least
two miRNAs, let-7 and miR-184∗, leading to greater dopaminer-
gic neuronal cell death via increased expression of E2F1 and DP
transcription factors (Gehrke et al., 2010). The pathogenic effects
of LRRK2 mutations were age-dependent. However, this mecha-
nism has yet to be investigated in vertebrate systems and awaits
confirmation in human patient tissue models such as LRRK2
mutant fibroblasts or induced pluripotent stem cell-derived neu-
rons. Interrogation of the LRRK2 gene sequence has revealed
a highly conserved binding site for miR-205 in the 3’UTR. In
human and mouse brain tissue the level of miR-205 inversely cor-
related with LRRK2 protein. Further investigation in Parkinson’s
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disease cases revealed a significant decrease of miR-205 in the
frontal cortex compared to controls and in vitro luciferase assays
confirmed a direct interaction of this miRNA with LRRK2 mRNA
(Cho et al., 2013). This novel regulatory mechanism for LRRK2
suggests miR-205 may serve as a therapeutic target for Parkinson’s
disease.

Another gene associated with increased risk of Parkinson’s dis-
ease in some populations is fibroblast growth factor 20 (FGF20)
(Itoh and Ohta, 2013). One polymorphism (rs12720208) is pre-
dicted to disrupt the binding site for miR-433 in the 3’UTR of the
gene, leading to increased expression of FGF20 and a downstream
up regulation of SNCA (Wang et al., 2008a). An additional miR-
433 putative binding site polymorphism has also been identified
in the SNCA 3′UTR, however, no difference in allele distribution
between patients and controls has been found, and a regulatory
effect for miR-433 on SNCA expression could not be confirmed
(Schmitt et al., 2012).

AMYOTROPHIC LATERAL SCLEROSIS
ALS is characterized by the progressive loss of upper and lower
motor neurons from the motor cortex, brain stem and spinal
cord. For the patient, this results in severe muscle atrophy leading
to paralysis and death usually within 2–5 years of symptom onset
(McDermott and Shaw, 2008). A family history of ALS is found
in 5% of patients, with the remaining 95% of cases sporadic in
nature. Clinically, familial and sporadic ALS are very similar, with
the exception of an earlier than the typical mid-life onset in some
familial cases. Several genes have now been identified as causative
in ALS of which the most frequent are C9ORF72, superoxide
dismutase 1 (SOD1), transactive response DNA-binding protein
(TARDBP) and fused in sarcoma (FUS) (Goodall et al., 2012).
The proteins encoded by the latter 3 genes, SOD1, TDP-43, and
FUS, have been found within the ubiquitinated inclusions that are
pathological hallmarks of ALS (Al-Chalabi et al., 2012).

To determine if miRNAs are essential to motor neuron sur-
vival, Haramati et al. (2010) used Dicer knockdown to generate
transgenic mice lacking the ability to produce mature miRNAs in
a subset of their post mitotic motor neurons. The transgenic ani-
mals showed progressive locomotor defects and denervation mus-
cle atrophy caused by motor neuron loss. Further work revealed
a specific increase in NFH expression, which was at least in part
attributed to the loss of miR-9. This is a miRNA highly expressed
in the brain and found to be up regulated in mouse models of
the juvenile motor neuron disorder known as spinal muscular
atrophy (SMA) (Haramati et al., 2010). In addition, miRNAs that
directly target neurofilament light chain (NFL) have been found
to be altered in ALS. Up regulation of miR-146a∗ and down reg-
ulation of miRNAs 524-5p and 582-3p were reported in SALS
spinal cord compared to controls. However, the study used whole
spinal cord tissue homogenates so the contribution of differing
cell type composition between cases and controls may have influ-
enced the miRNA expression profile differences (Campos-Melo
et al., 2013).

The ALS associated proteins TDP-43 and FUS have been
found to directly bind key components of the miRNA processing
pathway, implicating miRNA dysregulation in disease pathogen-
esis. Drosha forms two distinct protein complexes, one with

DGCR8 which is responsible for the bulk of miRNA processing
in the cell (the microprocessor) and a larger complex of at least
17 polypeptides, including TDP-43 and FUS, with limited pri-
miRNA processing activity (Gregory et al., 2004). In addition,
TDP-43 can directly bind Dicer, Ago2, subsets of pri-miRNAs
in the nucleus and pre-miRNAs in the cytoplasm (Kawahara
and Mieda-Sato, 2012). Depletion of TDP-43 and FUS protein
in vitro affects the generation of specific subsets of miRNAs, some
of which are implicated in neuromuscular development, neu-
ronal function and survival (Buratti et al., 2010; Kawahara and
Mieda-Sato, 2012; Morlando et al., 2012). The mislocalisation
of TDP-43 and FUS to cytoplasmic inclusions in ALS is there-
fore likely to reduce their availability to bind miRNA processing
components and affect the production of at least a subset of miR-
NAs, the consequences of which for neuronal cells have yet to be
investigated.

Changes in miRNAs have also been seen in peripheral ALS tis-
sues. Williams et al. (2009) profiled the miRNAs present in the
muscle from mutant SOD1 mouse models of ALS. A dramatic
increase in the miR-206 was observed in transgenic mice at the
time of symptom onset and was found to be a direct result of
denervation (Williams et al., 2009). miR-206 is a skeletal muscle
enriched miRNA that has fundamental roles in muscle devel-
opment and plasticity (McCarthy, 2008). A similar increase in
miR-206 has also been observed in human ALS patient muscle
tissue (Russell et al., 2012). The loss of miR-206 from transgenic
SOD1 mice accelerated the rate of disease progression, most likely
because miR-206 is a key player in nerve-muscle communication
and therefore essential for reinnervation following nerve damage
(Williams et al., 2009).

The role of miRNAs as mediators of intercellular communica-
tion via exosomes has also been observed in the CNS. Exosomes
are small membrane bound vesicles secreted by a variety of cell
types including astrocytes and neurons (Raposo and Stoorvogel,
2013). There is evidence that neuronal miRNAs packaged in
exosomes can be internalized by astrocytes where they influ-
ence protein expression (Morel et al., 2013). Interestingly, this
mechanism of regulation has been observed for the main CNS
glutamate transporter EAAT2/GLT1. Defects in glutamate trans-
port are well-documented in ALS and a specific decrease in
EAAT2/GLT1 levels has been observed in ALS patient samples and
the SOD1 mouse model, though the cause of this defect remains
elusive (Robberecht and Philips, 2013). Recent work has shown
that miR-124a from neuronal exosomes is internalized by astro-
cytes to result in specific increased expression of EAAT2/GLT1
protein levels via an indirect mechanism. Levels of miR-124a in
the spinal cord of mutant SOD1 mouse models is decreased at the
end stage of disease and in vivo injection of artificial miR-124a
oligos into the spinal cord of these mice led to a 30% increase
in EAAT2/GLT1 expression. These exciting findings open up the
potential for miRNA mediated therapy in ALS to combat the
excitotoxicity seen in the disease (Morel et al., 2013).

HUNTINGTON’S DISEASE
Huntington’s disease is an autosomal dominant inherited dis-
order caused by an elongated CAG repeat expansion in the
huntingtin (HTT) gene. The classical motor symptom of chorea
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is not present in all patients, whilst other motor features such as
impaired balance or abnormal fine finger movements are more
likely to interfere with the patient’s quality of life. Huntington’s
disease patients frequently develop neuropsychiatric complica-
tions such as progressive cognitive decline, personality change
and depression. Pathologically, there is severe degeneration of
the corpus striatum and atrophy of several brain regions, includ-
ing the caudate nucleus, putamen and globus pallidus, but also
the cortex itself (Zuccato et al., 2010). Medium spiny neurons
of the striatum are particularly vulnerable to the HTT mutation,
which is believed to predominantly cause a toxic gain of func-
tion. Although HTT is ubiquitously expressed, the aggregates of
mutant HTT protein, which are a pathological hallmark of the
disease, are restricted to neuronal cells (Imarisio et al., 2008).

There are widespread gene expression changes in Huntington’s
disease and evidence suggests these can be attributed partly to
miRNA dysregulation (Seredenina and Luthi-Carter, 2012). The
HTT protein directly interacts with Ago2 and is found to localize
to P bodies. Depletion of wild type HTT compromises miRNA
mediated gene silencing and the mutant protein disrupts neu-
ronal P body integrity (Savas et al., 2008). There is also evidence
to suggest other key components of miRNA biogenesis are dys-
regulated in mouse models of the disease, including Dicer, Drosha
and Exportin-5, at different stages of the disease course (Lee et al.,
2011). However, these findings are yet to be further validated.

An alternative mechanism of aberrant transcriptional regu-
lation in Huntington’s disease is increased nuclear localization
of RE1-Silencing Transcription Factor (REST). REST is a tran-
scriptional repressor that acts to silence neuronal gene expression
in non-neuronal cells. In healthy neurons REST is sequestered
in the cytoplasm, but in Huntington’s disease there is increased
nuclear translocation of REST in neurons leading to increased
gene repression, which has a negative effect on survival (Zuccato
et al., 2007). In addition to targeting mRNA, REST has been
shown to regulate miRNAs, including a neuronal miRNA fam-
ily containing miR-124a, miR-132, miR-9, and miR-9∗ (Conaco
et al., 2006; Johnson et al., 2008; Marti et al., 2010). MiR-124a
and miR-132 are highly expressed in the CNS and are crucial
regulators of neural identity and function (Conaco et al., 2006;
Wanet et al., 2012). Further investigation into miR-9/miR-9∗ has
revealed that they directly target two components of the REST
complex to form a double negative feedback network (Packer
et al., 2008). The majority of REST-regulated miRNAs identified
to date have displayed reduced expression in Huntington’s patient
brain tissue and models of the disease (Johnson et al., 2008; Packer
et al., 2008).

Studies to profile miRNA expression in human tissue, mouse
models of disease and cellular systems have revealed numerous
expression changes in miRNAs not under REST control, sug-
gesting that miRNA dysregulation is extensive in Huntington’s
disease (Marti et al., 2010; Sinha et al., 2010; Ghose et al., 2011;
Jin et al., 2012). More specifically, the miR-200 family is altered
in the cortex of mutant HTT mouse models at early stages of
disease, which may compromise a network of genes involved in
neuronal plasticity and survival (Jin et al., 2012). In cellular mod-
els of Huntington’s disease, miR-146a, miR-125b, and miR-150
are down regulated while miR-34b was elevated by the presence

of mutant HTT protein (Sinha et al., 2010; Gaughwin et al.,
2011). Further investigation revealed complex interplay between
these miRNAs and several transcriptions factors, including p53,
RelA, and NFkB, (Gaughwin et al., 2011; Ghose et al., 2011).
Interestingly, miR-146a, miR-150, and miR-125b also targeted
HTT and were predicted to interact with tata binding protein
(TBP), a protein known to be recruited into mutant HTT aggre-
gates and were shown to modulate aggregate formation (Sinha
et al., 2010, 2011). The relevance of this observation in relation to
the pathogenesis of Huntington’s disease remains unknown and
represents an interesting subject for further investigation (Sinha
et al., 2011).

CLINICAL APPLICATIONS OF miRNA
BIOMARKERS
There is an urgent need for effective biomarkers in neurodegen-
erative disease. For the majority of these conditions, diagnosis
relies upon clinical assessment and monitoring the progression
of symptoms, which causes substantial delay. Once a neurode-
generative disease has manifested, significant neuronal loss and
CNS damage will already be present, therefore early diagnosis is
essential to maximize the effectiveness of disease modifying ther-
apies. In addition, neurodegeneration is clinically heterogeneous,
with multiple subtypes associated with different survival times,
rates of progression and symptoms. Robust biomarkers would be
valuable not only for the initial diagnosis, but the classification of
various subtypes of disease, monitoring responses to therapeutic
agents and tracking disease progression (Shi et al., 2009).

Recent studies have demonstrated the existence of miRNAs in
the body fluids including blood, cerebrospinal fluid (CSF) and
saliva, at detectable levels where they are exceptionally stable and
potential candidates for biomarker discovery (Chen et al., 2008).
These extracellular miRNAs are proposed to originate from pas-
sive leakage from damaged tissue as the result of cell lysis or
apoptosis, active transport from cells via microvesicles such as
exosomes or bound within RISC protein complexes (Etheridge
et al., 2011).

Blood is an attractive source of biomarkers as it interacts with
every tissue in the body and sample collection is already part
of standard clinical practice. There has therefore been a recent
focus on circulating miRNAs as biomarkers, both extracellular
and those expressed in white blood cells, with a number of studies
investigating these in neurodegenerative disease patients.

Several studies have interrogated blood-based miRNAs in
Parkinson’s disease (Margis and Rieder, 2011; Martins et al., 2011;
Khoo et al., 2012; Cardo et al., 2013; Soreq et al., 2013). The
first determined miRNA expression profiles of peripheral blood
mononuclear cells from 19 patients and 13 controls using Exiqon
miRCURY LNA assays and identified a panel of 18 significantly
dysregulated miRNAs. These were all under-expressed and could
differentiate patients from healthy controls (Martins et al., 2011).
In order to place these miRNAs in a wider biological context, the
authors performed pathway analysis of the predicted target genes
of these miRNAs and revealed an over-representation in pathways
previously linked to Parkinson’s disease, including semaphorin
signaling in neurons and transcriptional repression signaling
(Martins et al., 2011). A second study investigated 85 miRNAs in
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whole blood samples using real-time PCR assays from 8 patients
to reveal a set of three miRNAs, miR-1, miR-22∗, and miR-29a,
with reduced expression when compared to 8 control subjects.
A second set of miRNAs, miR-16-2∗, miR-26a-2∗, and miR-30a,
was identified as increased in response to levodopa treatment,
suggesting a role for anti-parkinsonian drugs in altering miRNA
expression (Margis and Rieder, 2011). Two studies have inter-
rogated Parkinson’s disease patient plasma samples, Cardo et al.
profiled 384 miRNAs from 31 patients at onset of symptoms and
25 controls were compared using TaqMan real-time PCR assays.
The study revealed only one significantly up regulated miRNA,
namely miR-331-5p, in Parkinson’s disease cases (Cardo et al.,
2013). Khoo et al. used Agilent microarrays followed by TaqMan
QPCR validation to identify a panel of plasma biomarkers for
Parkinson’s disease consisting of miR-1826, miR-450b-3p, miR-
626, and miR-505, which provided 91% sensitivity and 100%
specificity (Khoo et al., 2012). Lastly, circulating miRNAs have
been profiled in Parkinson’s disease patients before and after
deep brain stimulation treatment. This study compared leukocyte
miRNA expression profiles using SOLiD sequencing in 7 patients
before treatment and 6 healthy controls to reveal 16 dysregulated
miRNAs, including miR-16, miR-20a, and miR-320. Interestingly,
following deep brain stimulation 5 of the 11 leukocyte miRNAs
that were significantly altered matched those changed by disease
but in the opposite direction (Soreq et al., 2013).

Overall, there is a lack of overlap between these studies and
little concordance with the findings from miRNA profiling in
CNS tissue in Parkinson’s disease, which highlights the difficul-
ties of analysing different sample types and comparing different
methodologies.

In ALS, a study of 8 patients and 12 healthy controls revealed
8 miRNAs with significantly altered expression in leukocytes (De
Felice et al., 2012). One of these, miR-338-3p is predicted to tar-
get genes involved in neurotransmitter signaling pathways and
had previously been described as up regulated ALS patient brain
tissue, a finding that failed to validate in an enlarged study pop-
ulation and awaits further experimentation (Shioya et al., 2010;
De Felice et al., 2012). MiRNA profiling of peripheral monocytes
in the SOD1 mouse model of ALS and in ALS patients showed a
pro-inflammatory phenotype with high expression of miR-27a,
miR-155, miR-146a, and 532-3p in sporadic ALS patients and
not in healthy control or multiple sclerosis subjects (Butovsky
et al., 2012). A similar profile was also observed in 4 familial
ALS patients with SOD1 mutations, which may represent a com-
mon abnormality in the immune system of different forms of ALS
(Butovsky et al., 2012).

Huntington’s disease is an inherited disorder and can there-
fore be diagnosed using genetic testing, however, biomarkers are
still required for the pre-symptomatic period as this coincides
with an opportunity for therapeutic interventions and biomark-
ers are needed to track disease progression. Circulating levels of
miR-34b have been observed at the pre-clinical stage in a small
study of Huntington’s disease plasma samples when compared to
healthy controls. Moreover, miR-34b is induced by the expres-
sion of mutant HTT gene in neuronally differentiated cell lines
(Gaughwin et al., 2011). The study proposes the use of miR-34b

as a biomarker for the onset of Huntington’s disease, however, the
cohort size was small and this findings has yet to be replicated.

In Alzheimer’s disease the levels of disease associated miRNAs
miR-29a/b, miR-181c, and miR-9 have been reported as down
regulated in patient serum samples compared to healthy controls
(Geekiyanage et al., 2012). However, the study was conducted
in a small study cohort of 7 per group and further validation
is required. CSF miRNA signatures have been investigated in
Alzheimer’s disease patients. Cogswell et al. (2008) recovered
miRNAs from CSF samples from 10 Braak stage V Alzheimer’s
disease patients and 10 Braak stage I patients. Sixty miRNAs
were significantly differentially regulated between the different
Braak stages, including Let-7 family members, a finding which
has since been replicated (Cogswell et al., 2008; Lehmann et al.,
2012). Interestingly, extracellular let-7 was shown to activate the
RNA-sensing Toll-like receptor (TLR) 7 to mediate neurodegen-
eration, demonstrating a role for miRNAs as signaling molecules,
a function that is independent of their conventional role in gene
regulation (Lehmann et al., 2012). In peripheral blood mononu-
clear cells of Alzheimer’s disease patients compared to controls
several miRNAs have been identified as differentially expressed
including miR-34a and miR-29b, both of which have been found
to be dysregulated in brain tissue (Schipper et al., 2007; Villa
et al., 2013). Levels of miR-29a were inversely related to SP1, a
transcription factor associated with Alzheimer’s disease, and is
the first reported incidence of a miRNA and its target acting in
cooperation as potential biomarkers (Villa et al., 2013). A direct
interaction between them, however, remains untested.

Investigation of miRNA-based biomarkers in neurodegenera-
tive disease is in its infancy and has thus far been confounded
by small sample sizes, lack of replication and a wide range of
methodologies for extraction and quantification of miRNAs. To
fully investigate miRNA potential as biomarkers, improved study
design, including longitudinal experiments at various disease
stages, and standardization of sample preparation and detection
methods is required. However, these early studies have high-
lighted the potential of using circulating biomarkers to measure
the effects of disease modifying treatments, an attractive prospect
for future neurodegenerative disease clinical trials.

THERAPY
A further clinical application for miRNA is the development of
miRNA-based therapy and there are currently several clinical tri-
als testing the therapeutic efficacy of miRNA modulation in other
disease areas, such as cancer and chronic hepatitis C viral infec-
tion, with more expected with the next few years (Elmen et al.,
2008; Nana-Sinkam and Croce, 2013). The therapeutic applica-
tion of miRNAs can be summarized by two broad strategies, RNA
interference (RNAi) using miRNA mimics and miRNA inhibition
via miRNA antagonists (including antimiRNA oligonucleotides
and sponges).

The use of RNAi techniques to target disease-associated genes,
such as BACE1, APP, HTT, SOD1, and SNCA, holds great
promise for neurodegeneration, with a number of studies demon-
strating beneficial effects in animal models (Gonzalez-Alegre,
2007; Ling et al., 2011). RNAi faces the same challenges as
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traditional drug development, including pharmacokinetics, tar-
get specificity, efficacy and toxicity (Nana-Sinkam and Croce,
2013). MiRNA strategies are likely to be less toxic, given that
they mimic naturally occurring RNAi mechanisms, and there
is evidence of reduced immune activation compared to other
short hairpin RNAs (shRNAs) when used to treat neurodegen-
erative disease. McBride et al. (2008) screened several shRNAs
that targeted HTT in mouse models of Huntington’s disease
and found unexpected neurotoxicity caused by microglial acti-
vation and astrogliosis. Toxicity was notably reduced when
shRNAs were placed into artificial miRNA expression systems
(McBride et al., 2008).

One of the advantages of miRNAs as therapeutic agents is
their ability to influence multiple target genes and pathways.
However, this can also be disadvantageous due to potential off-
target effects such as secondary and tertiary consequences of
modulating complex miRNA networks. Each miRNA can tar-
get several hundred mRNAs, thus understanding the effects of
unwanted interactions between the miRNA and endogenous

RNAs are important. Another consideration is that artificially
introduced miRNAs could overwhelm the biogenesis machin-
ery and impair the effectiveness of endogenous miRNAs (Khan
et al., 2009). These saturation-based effects may be of par-
ticular importance for neurodegeneration given the evidence
of impaired microprocessor function in these conditions. One
potential strategy to minimize saturation is to employ non-
canonical miRNAs, such as mirtrons, which bypass the micro-
processor complex. Proof of principle has been demonstrated by
work in Parkinson’s disease, where RNAi sequences to LRRK2
and SNCA were incorporated into the miR-1224 mirtron back-
bone. The artificial mirtron mimics could directly silence human
LRRK2 and SNCA in a cell-type specific manner, by using
human synapsin promoter in the neuronal SH-SY5Y cell line
(Sibley et al., 2012). Artificial mirtrons are therefore an attractive
approach for the future, however, their efficacy in vivo is yet to be
tested.

MiRNA antagonists have also been investigated in mod-
els of neurodegeneration. In the ALS SOD1 mouse model,

FIGURE 2 | MiRNAs implicated in neurodegeneration. A diagram
to summarize the miRNA dysfunction networks in Alzheimer’s
disease, Parkinson’s disease, amyotrophic lateral sclerosis and
Huntington’s disease. Blue boxes indicate pathogenic processes,

green circles are affected genes/proteins and the miRNAs are
in purple boxes. Arrows indicate the direction of the
interactions, culminating in the common pathway of
neurodegeneration.
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oligonucleotide-based miRNA inhibitors (anti-miRs) to miR-
155 have been used to prolong survival and disease duration
by 38%. miR-155 was previously identified as up regulated
in SOD1 mouse and human ALS patients spinal cord tissues,
in addition to patient peripheral blood cells, and is linked to
altered inflammation in the disease (Butovsky et al., 2012; Koval
et al., 2013). Another experimental strategy to inhibit miRNA
function is miRNA sponges, which are based upon compet-
ing endogenous RNAs (Ebert and Sharp, 2010). Sponge RNAs
contain complementary binding sites to a miRNA of interest
and specifically hamper the activity of miRNAs with a com-
mon seed sequence. These have yet to be tested for therapeu-
tic applications and have thus far remained in experimental
settings.

Effective treatment of neurodegenerative disorders will most
likely require manipulation of multiple targets and biochemical
pathways. The capacity of miRNAs to modify multiple targets is
an attractive feature for developing therapeutic strategies in the
future.

CONCLUDING REMARKS
Over the past two decades there has been an explosion of research
focused on small non-coding RNAs, the so called “dark matter” of
the cell. MiRNAs have emerged as key players in regulating gene
expression and their dysregulation is common to many disease
states, including neurodegeneration. The alteration of miRNA-
mediated regulatory activity potentially upsets the delicate bal-
ance required for neuronal cell survival, thereby contributing
to pathogenesis and disease progression (Figure 2). In common
with proposed disease mechanisms and pathological features,
overlap in the dysregulated miRNAs between neurodegenerative
conditions are beginning to emerge. Examples of miRNAs with
perhaps a more general role in neurodegeneration include miR-
9, miR-132, miR-124a, and miR-34. MiR-9 has been found to
be dysregulated in Alzheimer’s disease, Huntington’s disease and
animal models of SMA. Reported targets important in terms
of neurodegeneration include NFH, SIRT1, BACE1 and REST.
Moreover, miR-9 is regulated by Aβ and REST in complex feed-
back regulatory mechanisms (Packer et al., 2008; Haramati et al.,
2010; Schonrock and Gotz, 2012). MiR-132 has been linked to
AKT survival signaling, anti-inflammatory pathways and acetyl-
choline metabolism. There are reports of down regulation causing
neuronal death in cell culture models and reduced expression
in Alzheimer’s disease and Huntington’s disease patient tissue
(Cogswell et al., 2008; Johnson et al., 2008; Shaked et al., 2009;
Wong et al., 2013). MiR-124a is another miRNA which targets
BACE1 and has an additional role in excitotoxicity via regulat-
ing the glutamate transporter EAAT2 and is itself affected by
the Huntington’s disease associated transcription factor REST
(Marti et al., 2010; Smith et al., 2011; Morel et al., 2013). Lastly,
the miR-34 family target SIRT1 to affect tau metabolism, are
decreased in Parkinson’s disease patients and show increased
expression in the presence of mutant HTT (Wang et al., 2009;
Schonrock and Gotz, 2012). Overall it is too early to gain an
understanding of the scope for miRNAs across the spectrum of
neurodegenerative disease. Nevertheless, it is interesting to note

that these four miRNAs have been linked to ageing, a key risk
factor for neurodegenerative disease, and neuroinflammation, a
common pathogenic mechanism (Soreq and Wolf, 2011; Nissan
et al., 2012). However, these miRNAs are also reported as brain
enriched or neuron specific and may therefore be affected by pub-
lication bias as they are the most frequently investigated in the
field to date.

The studies highlighted in this review generally have small
sample sizes, and results may reflect individual variability within
the cohort rather than true disease specific changes in miRNA
expression. In addition, many of the studies have focused on
miRNA targets related to already known disease genes, such as
LRRK2 in Parkinson’s disease and BACE1 in Alzheimer’s dis-
ease. A key feature of miRNAs is their short length, making
them ideal candidates for non-biased expression profiling tech-
niques, such as next generation sequencing. Such approaches
would also address the concern of publication bias that may
have affected the field to date. The challenge of unraveling
complex gene regulatory networks calls for large, systematic
studies of miRNAs in the CNS and continuous development
of robust experimental approaches for studying miRNA func-
tion. These will need to take into account the issue of dis-
parate CNS/brain regions with divergent cell type composition.
Techniques such as laser capture microdissection and induced
pluripotent stem cells, in combination with the increased avail-
ability of more sophisticated sequencing technologies, means
that we can anticipate larger, non-biased, cell type enriched or
specific studies of miRNAs for neurodegeneration in the near
future.

While the clinical application of miRNAs as biomarkers
and therapies in neurodegeneration is perhaps premature, the
rate of discovery is promising. In an era of personalized
medicine, the use of miRNA expression signatures to sub-
classify neurodegenerative disease, provide markers for thera-
peutic effectiveness and prognosis prediction, is an attractive
prospect. Despite the anticipated off-target effects which can-
not be fully predicted, saturation of the miRNA biogenesis
pathway and possible immune activation, miRNA-based ther-
apy has shown promise in animal models of neurodegeneration.
Considerably more groundwork is needed in terms of func-
tional studies to characterize miRNA targets and identify the
most appropriate candidates before their potential in clinic can be
realized.
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