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Abstract

This paper analyses the implications of heteroscedasticity for optimal macroeco-
nomic policy and welfare. We find that changes in the variance structure driven by
exogenous processes like GARCH affect welfare but not the optimal feedback rule. How-
ever, changes in the variance structure driven by state-dependent processes affect both.
We also derive Certainty-Equivalent Transformations of state-dependent volatility mod-
els that allow standard quadratic dynamic programming algorithms to be employed to
study optimal policy. These results are illustrated numerically using a reduced-form
model of the U.S. economy in which changes in volatility are driven by a GARCH
process and the rate of inflation

Keywords: Heteroscedasticity, Optimal Control, Macroeconomic Volatility, Optimal

Monetary Policy.

JEL classification: C32, C61, E52

1 Introduction

This paper explores the implications of heteroscedastic disturbances for the analysis of op-

timal policy. Our analysis is based on the observation that most time-varying volatility

models are essentially quadratic and therefore fit nicely into the linear-quadratic frame-

work of the optimal linear regulator problem, allowing a rigorous analysis of their policy

implications.

∗Correspondence to: Vito Polito, Department of Economics, 3 East, University of Bath, Bath, BA2 7AY,
UK. E-mail: v.polito@bath.ac.uk
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Three key findings emerge from this research. First, the certainty-equivalence (CE)

principle still holds in macroeconomic models with heteroscedastic disturbances if changes

in the variance structure are exogenous. Examples of this type include ARCH, GARCH or

stochastic volatility processes that, like homoscedastic volatility, influence the welfare loss

but not the optimal policy.

Second, we find that when changes in the variance structure are related to the variables

describing the state of the economy, the CE principle no longer holds and the specification

of the variance structure does influence the optimal decision rule. State-dependent models

of the variance structure are extensively used in the literature on the term structure of

interest rates and have been employed more recently in macroeconomic models. They

allow the variance of the shocks to depend in both a linear and a quadratic way upon

the state variables. The classic example is the Cox, Ingersoll and Ross (1985) square root

volatility model, in which the variance depends linearly upon the nominal rate of interest.

Dothan (1978) and Courtadon (1982) develop models in which the variance is a quadratic

function of the interest rate. Engle (1982) uses lagged values of the regressors as a way of

generalizing ARCH variance specifications. Recent examples of macro-finance models with

a state-dependent variance component include Spencer (2008), Bekaert, Cho and Moreno

(2010) and Campbell et al. (2014). We show that there is a hierarchy of effects if the error

structure is heteroscedastic. Quadratic state dependence affects all of the coefficients in the

optimal feedback rule, as well as welfare. Linear state dependence affects the intercept of

the optimal feedback rule and welfare. GARCH reinforces these state-dependent effects.

However, on its own, GARCH only affects welfare.

Third, we derive a Certainty-Equivalent Transformation (CET) of the heteroscedastic

optimal linear regulator problem with state-dependent volatility. This uses change of vari-

able techniques to write the problem as in the canonical homoscedastic form. This allows

researchers to use standard optimal control techniques to analyze optimal policy rules and

welfare losses. The transformation shows that state dependent volatility changes the effec-

tive welfare cost of variables like inflation and interest rates that may influence volatility.

CETs of dynamic optimization problems are common in both finance and macroeconomics.

Hansen and Sargent (2008) provide a textbook description of these in the context for robust
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optimal control of models with dynamic misspecification. Our work complements theirs by

examining the effect of stochastic misspecification.

We illustrate the theoretical results numerically using a small-scale VAR model of the

U.S. economy as a laboratory to revisit one of the most popular applications of dynamic

programming in macroeconomics: the analysis of optimal monetary policy. The model is

estimated by Maximum Likelihood (ML). The variance structure of the VAR includes both

GARCH and inflation-dependent components that are highly significant statistically. This

specification is consistent with the Okun-Friedman-Ball hypothesis that macroeconomic

uncertainty is related to the rate of inflation, see Okun (1971), Friedman (1977) and Ball

(1992). Fountas, Karanasos and Kim (2002) and Caporale and Kontonikas (2009) argue

that an increase in inflation should lead to a monetary tightening response to limit the

increase in macroeconomic volatility. Our model formalizes this proposition and provides

an argument for a low inflation target as well as a more aggressive response to inflation

shocks.1 Our numerical results show how misspecification of the variance structure can

lead researchers to mismeasuring both the welfare cost of inflation and the potential gains

from optimization.

The rest of the paper proceeds as follows. Section 2, supported by Appendices A and B,

sets out the general solution of the optimal linear regulator problem with heteroscedastic

disturbances; shows how this depends upon the source of heteroscedasticity; and derives the

CET under state dependence. Section 3, supported by Appendices B, C and D, describes

the empirical application used to illustrate the theoretical results. Section 4 concludes by

summarizing the findings of this research. Appendix F suggests extensions of the model

framework and highlights avenues for future research.2

2 Optimal control of heteroscedastic macroeconomic models

This section presents a general framework for optimization problems with linear-quadratic

heteroscedasticity, based on the Bellman equation. This includes expectations of quadratic

1There are arguments that point in the opposite direction, suggesting a higher target (Blanchard et al
(2010)) and a less aggressive response (Sack (2000)).

2Appendices are available online.
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forms in the state variables, which involve both means and variances. Since the latter are

linear-quadratic functions of the state variables, the value function remains quadratic and

the decision rules linear.

2.1 Specification

Let β ∈ (0, 1) be a discount factor and Et denoting mathematical expectation conditional

on information available in period t. Consider a decision maker that wants to choose an

infinite sequence of controls {it}
∞

t=0 to minimize the quadratic loss function

Vt =

∞∑

t=0

βtEt


 (xt − x

∗)′R (xt − x
∗) + (it − i

∗)′W (it − i
∗)

+2 (xt − x
∗)′H (it − i

∗)


 (1)

subject to the first-order stochastic linear difference equation

xt+1 = Axt +Bit +wt+1 (2)

with x0 given. In the above, xt is a n × 1 vector of state or non-policy variables; it is a

q × 1 vector of control or policy variables; R is a n× n positive definite symmetric matrix;

W is a q × q non-negative definite symmetric matrix; H is a n × q matrix; x∗ and i∗ are

vectors of targets of dimension n and q respectively; A is a n× n matrix of coefficients; B

is a n× q matrix of coefficients; and wt+1 is a n× 1 vector of independently and identically

distributed (i.i.d.) random variables with mean vector zero and heteroscedastic covariance

matrix

Σt+1 = K+C
′wtw

′

tC+G
′ΣtG+ Lx′ts+Qx

′

tSxt, (3)

with w0 and Σ0 given. The five terms on the right side of (3) denote the homoscedastic,

ARCH, GARCH, linear and quadratic state-dependent components of the covariance matrix

respectively: K is a positive definite n× n matrix; C, G, L and Q are n× n matrices that

are not necessarily symmetric.3 The vector s and the matrix S = ss′ select the variable(s)

3We assume that the sufficient conditions for the stability of the solution to the linear regulator prob-
lem are met, namely (i) the matrices B= B−CR−1

H
′ and C are stabilizable and (ii) the matrices

Λ= Λ−HR−1
H
′ and R are positive semidefinite. See Ljungqvist and Sargent (2004), Appendix B.3,

which transforms the system by removing the off diagonal H terms to get B̄ and Λ̄, and pages 116-118
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entering the linear and quadratic components of the covariance matrix respectively.

A wide range of macro models can be written in the form of the first-order stochastic

linear difference equation (2). For example, equation (2) can describe the non-policy part of

VAR models such as those used for the measurement of macroeconomic shocks by Bernanke

and Mihov (1998); and for optimal control by Sack (2000) and Polito and Wickens (2012).

It encompasses the Rudebusch and Svensson’s (1999) central bank model, which has been

extensively employed for the analysis of U.S. monetary policy. Equation (2) is also consistent

with the solution of a linear rational expectations model, as in Blanchard and Kahn (1980)

for example.

Further, the specification of the covariance matrix in equation (3) includes classes of

time-varying volatility models widely employed in macroeconomics and finance. For exam-

ple, it encompasses Engel (1982)’s model, which exhibits ARCH and inflation-conditional

dependence; and the constant-covariance version of the BEKK model of Engle and Kroner

(1995). The linear state-dependent component of the covariance matrix encompasses mod-

els in which time-varying volatility is related to a state variable. Prominent examples of this

include, the Cox, Ingersoll and Ross (1985) model where volatility is linked to the nominal

rate of interest; the inflation-conditional volatility model postulated by the Okun-Friedman-

Ball hypothesis and the macro-finance model formulated by Campbell et al. (2014) in which

volatility is linked to the output gap. Dothan (1978) and Courtadon (1982) give examples

of quadratic state-dependent volatility models where the driving factor is the nominal rate

of interest.

2.2 General solution

To find the policy function we need to express the optimal value of the original problem given

arbitrary initial conditions. In a standard homoscedastic quadratic dynamic programming

problem, the value function includes a constant term (for the steady-state variance) and

the state vector x0 (for any initial disequilibrium). This can also allow for linear-quadratic

which then applies the stability conditions. These assumptions imply that the solutions to the homoscedas-
tic and the GARCH optimal linear regulator problems - which are both certainty equivalent - are stable.
In section 2.2.4, we use the CET to infer that the stability properties of the optimal solution are preserved
under state-dependent volatility.
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(LQ) terms in the dynamic specification of the variance structure. The presence of ARCH

and GARCH terms in (3) implies that the value function depends also on the initial values

for w0 and Σ0. Thus we try a value function of the form:

V = V (x,w,Σ) = k − 2x′p+ x′Px+ c′ww′c+ g′Σg, (4)

where k is a scalar; P is a n×n positive semidefinite symmetric matrix, p, c and g are n×1

vectors.4 After using the transition law (2) and the covariance matrix (3) to eliminate next

period’s states in (1), taking expectations and recognizing that the vector w is orthogonal

to x and i, the Bellman equation becomes:

Homoscedastic Bellman equation︷ ︸︸ ︷
V = min

i
{(x− x∗)′R (x− x∗) + (i− i∗)′W (i− i∗) + 2 (x− x∗)′H(i− i∗) + βk + I

+β
[
tr(PC′ww

′
C) + c′(K+C′ww

′
C)c

]

︸ ︷︷ ︸
ARCH effect

+β
[
tr
(
PG′ΣG

)
+ g′(K+C′ww

′
C+G′ΣG)g + c′G

′
ΣGc

]

︸ ︷︷ ︸
Additional GARCH effect

+ βtr(PL)x′s︸ ︷︷ ︸
Linear dependence effect

+ βtr (PQ)x′Sx︸ ︷︷ ︸
Quadratic dependence effect

+ β
[
c′Lc+ g′Lg

]
x′s

︸ ︷︷ ︸
Linear + ARCH/GARCH effect

+ β
[
c′Qc+ g′Qg

]
x′Sx

︸ ︷︷ ︸
Quadratic + ARCH/GARCH effect

}, (5)

where

I = βtr (PK)− 2β (Ax+Bi)′ p+ β (Ax+Bi)′P (Ax+Bi) .

The first line in the Bellman equation shows the terms found in a standard homoscedastic

problem; the next two lines arise if there are ARCH or GARCH terms in the covariance

structure; the fourth line shows the effect of state-dependent components and the last line

shows the interaction if both of these effects are present. The first-order necessary condition

for the minimum problem on the right side of equation (5) yields the optimal linear feedback

4We omit time subscripts in an equation whenever it includes only variables observed in the same period.
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rule for the policy vector i:

i = f − Fx (6)

f =
(
W + βB′PB

)
−1 (

Wi∗ +H′x∗ + βB′p
)

(7)

F=
(
W + βB′PB

)
−1 (

H′ + βB′PA
)
. (8)

After substituting the trial solution (4) into the left side of equation (5) and the optimizer

(6) - (8) into the right side, collection of the coefficients for the quadratic terms in x and

those for w and Σ gives:

P = R+ βA′PA−
(
H+ βA′PB

) (
W + βB′PB

)
−1 (

H′ + βB′PA
)

(9)

+βtr (PQ)S+ βc′QcS+ βg′QgS

cc′ = βC
(
P+cc′+gg′

)
C′ (10)

gg′ = βG(P+ cc′ + gg′)G′. (11)

Equating the coefficients for the linear terms gives

p =
[
I−β (A−BF)′

]
−1




(R− F′H′)x∗ − (F′W −H) i∗

−1
2
β [tr (PL) + c′Lc+ g′Lg] s



 , (12)

while collecting the constant terms gives

k = (1− β)−1
{
(f − i∗)′W (f − i∗) + x∗′ [Rx∗ − 2H (f − i∗)] (13)

+ βf ′B′ (PBf − 2p) + β[tr(PK) + c′Kc+ g′Kg].

Equation (9) is a matrix Riccati difference equation for the symmetric matrix P, while

(10) and (11) are discrete Lyapunov equations for the square matrices gg′ and cc′ respec-

tively. This system can be solved by numerical iteration, starting from initial values for P,

g and c. This is recursive: given the solution for P in (9) the solutions for g and c are

obtained by joint numerical iteration of (10) and (11). Substituting P, g and c into (12)

and (13) then gives the solutions for p and k.
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Equations (6) to (13) show the solution to the heteroscedastic optimal control problem.

This encompasses a number of special cases that are now discussed separately to highlight

how alternative specifications of the variance structure might alter the optimal feedback

rule.5

2.2.1 Homoscedastic variance

If the variance structure is homoscedastic then equation (3) reduces to Σt+1 = K; the trial

solution is V (x) = k − 2x′p + x′Px; and the Bellman equation in (5) includes only the

first line since the matrices A, G, L and Q are zero matrices and the vectors g and c are

both null vectors. Differentiation with respect to the policy vector i yields the same optimal

feedback rule as in equations (6) - (8), but with:

P̂ = R+ βA′P̂A−
(
H+ βA′P̂B

)(
W + βB′P̂B

)
−1 (

H′ + βB′P̂A
)

(14)

p̂ =
[
I−β (A−BF)′

]
−1 [(

R− F′H′
)
x∗ −

(
F′W −H

)
i∗
]

(15)

and

k̂ = {(f − i∗)′W (f − i∗)+x∗′ [Rx∗ − 2H (f − i∗)]+βf ′B′
(
P̂Bf − 2p̂

)
+βtr

(
P̂K

)
} (1− β)−1 .

The solutions P̂ and p̂ are independent of the variance structure, therefore implying that

the optimal feedback rule satisfies the CE principle.

2.2.2 GARCH variance

When the variance structure is driven by a GARCH process, equation (3) reduces to Σt+1 =

K+A′wtw
′

tA+G
′ΣtG. The trial solution is given by (4), being different from that used

for the homoscedastic case. The Bellman equation in (5) does not include the last two lines

since the matrices L and Q are both equal to zero matrices. The solutions for P and p are

still given by the equations (14) and (15). Thus the policy rule is as in the homoscedastic

case.

5Appendix A provides more details on the computation of the solution in equations (6) to (13).
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This result shows that under GARCH volatility the CE principle still holds, since the

feedback rule in equations (6) - (8) is identical to the decision rule for the corresponding

nonstochastic linear regulator problem.6 Consequently the conditions sufficient for the

stability of the solution to the homoscedastic optimal control problem are also sufficient

for the stability of the solution with GARCH. This however affects welfare. Relative to

the homoscedastic case, the value function (4) includes the non-negative terms g′ww′g and

c′Σc. In addition, the constant k changes under GARCH, as it includes the positive term

β (g′Kg + c′Kc) that increases the welfare loss because K is positive definite.

2.2.3 State dependence

The CE principle no longer holds if the variance structure includes linear and quadratic

state-dependent components. Comparing (12) with (15) we can see that linear state de-

pendence means that the last term in the square brackets on the right side of equation

(12) is not zero. This shifts p and hence the intercepts f in the optimal feedback rule

through (7). This shift is the sum of two effects. The first is direct, working through the

term 1
2
βtr (PL) s that occurs whenever there is linear state dependence in the variance

structure. The second term −1
2
β (c′Lc+ g′Lg) s is a secondary effect that arises only when

there is both GARCH and linear state dependence. Importantly, because L does not appear

in the solution for P given by equations (9) - (11), linear state dependence does not affect

the response coefficients F in (8). However, it affects the welfare loss from (4) as it changes

p and consequently the constant term k in (13).

The impact of quadratic state dependence can be seen by comparing the solutions for P

in equations (9) and (14). Under quadratic dependence, the term Q is no longer zero. This

adds three extra terms on the right side of P in equations (9). The first, 1
2
βtr (PQ)S, is a

direct effect that occurs whenever there is quadratic state dependence. The next two terms,

βc′QcS and βg′QgS, show a secondary effect on the response coefficients that occurs if

there are both quadratic and GARCH components in the variance structure. Since PQ

is positive semi-definite, and c′Qc and g′Qg are non-negative, these three terms are non-

6This result also applies to other time-varying specifications of the volatility that, like GARCH, are
exogenous to the state variables, as for example the stochastic volatility and GARCH-X specification.
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negative. They shiftP through (9) and therefore p through (12). This affects the coefficients

f and F in the optimal feedback rule through (7) and (8) and hence the welfare loss through

(4).

In summary, there is a hierarchy of effects if the error structure is heteroscedastic.

Quadratic state dependence affects all the coefficients in the optimal feedback rule as well

as welfare. Linear state dependence affects the intercept of the optimal feedback rule and

welfare. GARCH can reinforce these effects, but on its own this only affects welfare.

2.2.4 The Certainty-Equivalent Transform (CET)

Although the CE principle does not hold under linear-quadratic state-dependent volatility,

a CET of the Bellman equation can be obtained by appropriately consolidating the linear

and quadratic terms of the variance structure with the linear and quadratic terms in the

objective function of the decision maker. This allows the value function to be expressed in

the canonical homoscedastic form. Standard dynamic programming algorithms can then be

used to solve problems that do not satisfy CE. We derive the CET for the general case of

the heteroscedastic variance structure in equation (3).

The Bellman equation (5) can be re-parametrized in a certainty-equivalent form by

setting L and Q to zero and replacing the welfare parameters R, x∗, i∗ in (1) and k in (4)

with R̃, x̃∗, ĩ∗ and k̃ to obtain the re-parametrized objective function:

∞∑

t=0

βtEt


 (xt − x̃

∗)′ R̃ (xt − x̃
∗) +

(
it − ĩ

∗

)
′

W
(
it − ĩ

∗

)

+2 (xt − x̃
∗)′H

(
it − ĩ

∗

)


 , (16)

where

R̃ = R+β
[
tr (PQ) + c′Qc+ g′Qg

]
S

x̃∗ = [R̃−HW−1H′]−1{(R−HW−1H′)x∗ −
1

2
βs[tr(PL) + c′Lc+ g′Lg]}

ĩ∗ = i∗ +W−1H′(x∗ − x̃∗)

k̃ = k + β−1[x∗′Rx∗ − x̃∗′R̃x̃∗ − (i∗ − ĩ∗)′W(i∗ − ĩ∗)− 2x̃∗′HW−1H′(x∗ − x̃∗)].
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It then follows that the trial solution can be expressed as

Ṽ (x,w,Σ) = k̃ − 2x′p̃+ x′P̃x+ c′ww′c+ g′Σg (17)

and the certainty-equivalent Bellman equation can be written as:

Ṽ = min
i
[(x− x̃∗)′ R̃ (x− x̃∗) + (i− ĩ∗)′W(i− ĩ∗) + 2 (x− x̃∗)′H(i− ĩ∗) (18)

+ βk̃+I+βtr((P̃C′ww
′

C)+βtr(P̃G′ΣG)

+ βc′(K+C′ww
′
C+G′ΣG)c+ βg′(K+C′ww

′
C+G′ΣG)g],

where I still defined as in section 2.2, with P̃ and p̃ replacing P and p respectively. Equation

(18) shows that after transformation the Bellman equation has the same structure as in the

GARCH model and thus satisfies the CE principle.

Appendix B derives the CET and shows that the Bellman equations in (5) and (18)

are mathematically equivalent. Differentiation of (18) with respect to the vector of policy

instruments i yields the feedback rule (6) but with coefficients determined as:

f̃ =
(
W + βB′PB

)
−1
(
Wĩ∗ +H′x̃∗ + βB′p̃

)
(19)

F̃=
(
W + βB′P̃B

)
−1 (

H′ + βB′P̃A
)
. (20)

where:

P̃ = R̃+ βA′P̃A−
(
H+ βA′P̃B

)(
W + βB′P̃B

)
−1 (

H′ + βB′P̃A
)
, (21)

p̃ =
[
I−β (A−BF)′

]
−1
[(
R̃− F′H′

)
x̃∗ −

(
F′W −H

)
ĩ∗
]
. (22)

The solution to the transformed problem is equivalent to that in equations (6) to (13). The

definition of R̃ implies that the solution for P from (9) is the same as the solution for P̃

from (21). Thus F̃ = F. The equality between p and p̃ is shown by replacing x̃∗ and ĩ∗ in

(22) and then simplifying. Substitution of x̃∗ and ĩ∗ into (20) shows that f̃ = f . Thus the

policy rules from the general and the transformed control problem are the same. The value

functions (4) and (17) differ by a constant, but this does not affect the decision rules.
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The CET shows how heteroscedasticity affects the optimal policy. Since Q is non-

negative definite, the scalar [tr(PQ) + c′Qc+ g′Qg] in R̃ is non-negative and adds to the

welfare weights of the variables identified by the selection vector s (and hence the matrix

S = ss′). Similarly the non-negative scalar [tr(PL) + c′Lc+ g′Lg] in x̃∗ and the selection

vector s shift the intercept vector in (19).

The solution under the CET is stable since the matrix R̃ is positive semidefinite while

the matrixW is unchanged in the transformed problem.

3 An illustrative empirical model

3.1 Data and model

We specify a second order VAR model of the U.S. economy based on 242 observations from

1953:1 to 2013:2 of unemployment (ut), inflation (πt) and the rate of interest (rt).
7

Let zt =
[
y′t rt

]′
, with yt =

[
ut πt

]′
denoting the block of non-policy variables,

and et =
[
e′yt ert

]′
denoting the corresponding vector of residuals. Then the VAR model

can be written as:

zt+1 = Φ1zt +Φ2zt−1 + et (23)

with Φ1 =
[
Φ11 Φ21

]′
and Φ2 =

[
Φ12 Φ22

]′
. The residuals can be written as et+1 =

Ξt+1vt+1, with vt ∼ N (0, I), and their variance, E[Ξt+1Ξ
′

t+1|zt, et,Ωt], as:

Ωt+1 = Ω0 +Ω1z
′

ts+Ω2z
′

tSzt +Mete
′

tM
′+NΩtN

′ (24)

where Ω0, Ω1 and Ω2 are 3× 3 real and symmetric matrices; M and N are 3× 3 real and

diagonal matrices; s′ =
[
0 1 0

]
so that z′ts =πt; and z

′

tSzt=π
2
t (since S = ss

′).

Equation (24) describes an encompassing (EN) model of the variance structure that

nests four alternative models of volatility: the homoscedastic (HO) model (Ωt =Ω0);

the linear-dependence (LN) model (Ωt+1 =Ω0+Ω1z
′

ts); the linear-quadratic (LQ) model

7We use the civilian unemployment rate for all workers over the age of 16; the annual percentage change
in the implicit GDP price deflator; and the three-month Treasury bills. The data are demeaned, consistent
with (2). The data are from http://research.stlouisfed.org/fred2.
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(Ωt+1 =Ω0+Ω1z
′

ts+Ω2z
′

tSzt); and the pure GARCH (GH) model (Ωt+1 =Ω0+Mete
′

tM
′+NΩtN

′).

The unconditional covariance matrix of the residuals Ω is determined from the uncon-

ditional expectations on the right side of (24), as explained in Appendix C.1. Since Ω is

a real symmetric positive definite matrix, the triangular factorization Ω = TDT′ applies,

where T is a 3 × 3 lower triangular matrix with σπu, σru and σrπ being the off-diagonal

items and D is a 3× 3 diagonal matrix with σuu, σππ and σrr in the main diagonal.

3.2 Optimal monetary policy

The Fed chooses the sequence {rt}
∞

t=0 that minimizes the loss function

∞∑

t=0

β[λuu
2
t + λππ

2
t + λ∆r (∆rt)

2],

where u2t , π
2 and (∆r)2 are the volatility of unemployment, inflation and changes in the

policy instrument; while λu, λπ and λ∆r are weights attached to each of the three goals

respectively.8 The optimization is subject to the constraints described by the non-policy

block of the VAR in equations (23) and (24). As described in Appendix C.2, this is a

special case of the general model in sections 2.1 and 2.2. Using these restrictions to simplify

equation (16) and R̃, x̃∗, ĩ∗ and k̃ gives the CET of the loss function

∞∑

t=0

β
{
λuu

2
t + λ̃π (πt − π̃

∗) + λ∆r

[
(rt − r̃

∗)2 + (rt−1 − r̃
∗)2 − 2rt−1rt

]}

where

λ̃π = λπ + β[tr (PQ) + c
′Qc+ g′Qg] ≥ λπ

π̃∗ = −β[tr (PL)+c′Lc+ g′Lg]/2λ̃π

r̃∗ = π̃∗

k̃ = (1− β)−1 βtr(PK)− β−1λ̃π(π̃
∗)2.

8Woodford (2003) shows that quadratic loss functions provide a good approximation to the expected
lifetime utility of a representative household derived from a fully micro-founded macroeconomic model of
the economy, in which inflation brings efficiency costs by distorting relative prices.
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The re-parametrization, based on the solution in Appendix B, illustrates the effect of

GARCH and state-dependent volatility on the optimal feedback rule. The term βtr(PQ) ≥0,

due to the presence of quadratic dependence in (24), makes policy more aggressive as would

an increase in the welfare weight λπ. GARCH further reinforces this effect since both c
′Qc

and g′Qg are non-negative. The linear dependence term L reduces the effective target on

inflation and interest rates from r̃∗ = π∗ = 0 to r̃∗ = π̃∗ ≤ 0 since βtr(PL) ≥ 0. Provided

that π∗ ≥ 0 then π̃∗ ≤ π∗ (since λπ ≤ λ̃π). Thus linear dependence reduces the effective

target and steady-state inflation and interest rates as a reduction in π∗ would. This effect

is reinforced by the presence of GARCH as both c′Lc and g′Lg are non-negative. Further

the intercept in the value function shifts from k to k̃ but, as noted, this does not affect the

decision rule.

The optimal feedback rule can be combined with the non-policy block equations to study

the dynamic of the VAR model under the optimal policy. We denote the VAR models under

the optimal feedback rule as HO∗, LN∗, LQ∗, GH∗, EN∗.9

We write the steady-state solution to the policy rate equation as r = κ̄+φ̄uu+φ̄ππ̄, with

κ̄, φ̄u and φ̄π denoting the long-run coefficients of the policy rule. In particular, κ̄ = 0 for

models based on mean-adjusted data, but can be non-zero when the steady-state is shifted

by the linear dependence effect under the optimal rule. With r = π̄ = π̄∗ and u = 0 we have

π̄∗ = κ̄/(1 − φ̄π), where the denominator is negative under the Taylor principle requiring

φ̄π > 1, see Woodford (2003). This defines the stationary rate of inflation implicit in the

long-run solution of the empirical and optimal feedback rule.

3.3 Maximum likelihood estimation

The VAR model in equations (23) and (24) is estimated by ML. First, we estimate the para-

meters in (24) while fixing the parameters Φ1 and Φ2 of the transition system (23) at their

OLS values. This gives estimates for the homoscedastic model HO and four heteroscedastic

models, labelled as LNX, LQX, GHX and ENX respectively. Next, we re-estimate all

9Appendix C.2 describes how this dynamic optimization problem is mapped into a form compatible with
equations (1), (2) and (3) for the purpose of dynamic optimization. It also describes the derivation of the
VAR under the optimal feedback rule.
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the parameters in (23) and (24) simultaneously.10

Panels A and B in Table 1 show the likelihood statistics from the ML estimates. Under

the log-likelihood ratio (LR) test, all restricted models are rejected at the 5 per cent sig-

nificance level against the unrestricted ENX model. To guard against over-fitting, Table 1

also reports the difference in the Schwarz approximation to the Posterior Odds ratio (SCA)

proposed by Canova (2007). Under this criterion only the HO model is rejected against the

ENX model. Panel B shows that simultaneous estimation of all parameters in equations

(23) and (24) produces a further, though modest, improvement in fit.

Panels C and D in Table 1 report the coefficients of the unconditional covariance matrix

of the VAR innovations, Ω, implied by the ML estimates. The differences in the uncondi-

tional variances across models are important in understanding the welfare results reported in

Section 3.5. Model LQX delivers the lowest unconditional variances for all three variables.

This is particularly evident for the unconditional variance of (orthogonalized) interest rate

shocks, σrr. Consequently, the unconditional variances are also low under the EN (ENX)

model. The unconditional covariances are relatively stable across alternative specifications

of the variance structure. In most cases, the GARCH model yields marginally lower esti-

mates of the unconditional covariances than the other models.

3.4 The optimal policy rule

Table 2 reports the long-run coefficients of the interest rate equation and the rate of inflation

described in section 3.2. The first column of numbers (headed ‘Empirical’) reports the

estimates from the empirical policy rule. With the exception of model EN, these are by

construction the same for all these models. The remaining columns (headed ‘Optimal’)

report the coefficients for the long-run optimal feedback rule. We consider four different

sets of welfare weights. The first gives equal weight to the three goal variables. The others

show the effect of halving the weight on each goal variable.

Reading across Table 2 shows the effect of moving from the empirical to the optimal rule

under different welfare specifications. Reading down this table shows the effect of different

10Appendix D describes the likelihood and the impulse response functions. The results from the ML
estimates are available upon request.
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models of volatility on the policy rule, to illustrate the theoretical findings of section 2.

We highlight the following results. First, optimization of model HO to get HO∗ in-

creases the response coefficients, with changes in the the optimal rule being consistent with

the alternative specifications of the welfare weights. Second, the policy rule coefficients

from model GHX∗ are the same as in HO∗, since GARCH satisfies CE. Third, linear de-

pendence introduces a positive intercept (κ̄) into the interest rate equation of model LNX∗,

thereby reducing steady-state inflation (π̄∗), while leaving the optimal response coefficients

unchanged relative to models HO∗ and GHX∗. Fourth, in the LQX∗ model, quadratic

dependence also makes policy more responsive to inflation. The shift in κ̄ is slightly larger

than in LNX∗, leading to lower steady-state inflation. Fifth, the coefficients from model

ENX∗ are very similar to those in model LQX∗, and the intercepts are only marginally

higher. Thus the secondary effects of including GARCH as well as state-dependent volatility

appear to be empirically small.11 Six, comparison of the results for ENX and EN shows

that re-estimating the transmission coefficients has little effect on the long-run policy rule.

3.5 Welfare analysis

Table 3 shows how heteroscedasticity affects the measurement of welfare by reporting the

losses obtained from the stochastic simulation of the six models.12 The analysis is presented

along three different dimensions. The first column of numbers illustrates how heteroscedas-

ticity affects welfare under the empirical rule. The third column of numbers shows the

effects under the optimal policy rule. The last column shows the welfare gains from the op-

timization of policy. In parenthesis we report the welfare changes due to different variance

structures relative to the homoscedastic model.

The first column shows that GARCH (GHX) and linear dependence (LNX) increase the

loss, while the quadratic effect reduces it. The lowest loss occurs for model LQX, consistent

with the observation in section 3.3 that this is less sensitive to interest rate shocks than

other models. The comparison of models HO∗ and GHX∗ suggests that adding GARCH

11This is consistent with the result in Table 1 that changes in the variance structure are mainly driven by
state-dependence rather than the GARCH.
12Appendix E describes the methodology used for the stochastic simulation.
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to model HO∗ is broadly the same as adding GARCH to model HO.13 There is nothing

policy can do about the increase in variability, the variance of one goal variable can only be

traded off against that of another. In LNX∗ however, policy can reduce the overall volatility

of the system by reducing the steady-state rate of inflation (as shown in Table 2). This

mitigates the effect of introducing linear state-dependent heteroscedasticity.14 Introducing

quadratic state dependence into the empirical model lowers the welfare loss (about 4% on

average across the four sets of welfare weights), but this reduction is greater (about 13% on

average) under the optimal rule. It achieves this by combining a reduction in steady-state

inflation with a more aggressive policy stance.

The last column shows that the gain from optimization is generally higher when allowing

for inflation-conditional volatility in the variance structure. In model LNX∗ it is optimal to

lower the steady-state inflation rate, thereby shifting the trade-off and reducing the overall

volatility of the system. This makes the optimization gain bigger than in the standard

homoscedastic model, where the gain only reflects increase in the level of aggression in the

systematic response of policy.15 The LQX∗ model, which combines a shift in the steady state

with a more aggressive stance, gives an average welfare gain across the four specifications

of preferences that is almost twice that implied by model HO∗. The welfare gains from the

optimization of model GHX are broadly the same as under model HO, since both satisfy

the CE principle. Models ENX and EN lead to an average welfare improvement, between

30-45 per cent, that is still higher than that from the optimization of the HO and GHX

models.

The numerical analysis is based on a reduced-form model. In this respect, we followed

a large literature on the implications of changes in monetary policy for macroeconomic

dynamics and welfare also based on reduced-form models like ours. Examples include

13For example, the top panel of Table 3 shows that with equal welfare weights, this increases the loss by
8.43% compared with 8.55% with the empirical rule. Introducing GARCH into LQX∗ to get ENX∗ also
has a similar effect under the optimal rule (an increase in the loss of 100 ln(5.9/5.18) = 13%) as it does
under the empirical rule (100 ln(7.30/6.34) = 14.1%). These increases are also similar under the alternative
welfare specifications shown in the other panels.
14Looking at the top panel again, this increases the welfare loss by 8.97% comparing HO and LNX but

by just 6.55% comparing HO∗ and LNX∗, with similar reductions in the other panels.
15The average welfare gain across the four set of welfare specifications is about 11 per cent in model HO∗

(compared to HO) and 17 per cent in model LNX∗ (compared to LNX).
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Bernanke and Mihov (1998), Sack (2000), Sims and Zha (2006a, 2006b) and Polito and

Wickens (2012).

Reduced-form models are subject to the Lucas (1976) critique that the transition mech-

anism in the economy is in theory not invariant to policy changes.16 The empirical relevance

of this observation is however still debated. Our VAR model is based on Primiceri (2005)

who finds no significant changes in the responses of inflation and unemployment to the

policy rate under Burns, Volcker and Greenspan chairmanships of the Fed. Sims and Zha

(2006a, 2006b) come to a similar conclusion. Polito and Wickens (2012) also find not sig-

nificant evidence of the sort of structural instability predicted by the Lucas critique in a

VAR of the US economy over the period 1964:2-2009:3. But to set against this evidence,

see Benati and Surico (2009) and Benati (2010).

An alternative is to use a structural model like that of Rudebusch and Svensson (1999)

that is less vulnerable to the Lucas critique. However, structural models employ dynamic

restrictions which could induce heteroscedasticity through misspecification. Nevertheless,

companion papers for the U.S., Polito and Spencer (2011a), and for the U.K., Polito and

Spencer (2011b), give results based on Rudebusch and Svensson (1999) that are similar

to those reported here, thus suggesting that these findings are likely to be robust across a

wider range of models.

4 Conclusion

It is well known that the optimal feedback rule satisfies CE if volatility is homoscedastic. We

show that this result also holds in any model in which the source of change in the variance

structure is exogenous. However, volatility can also be state dependent. The CE principle no

longer holds if changes in the variance structure are endogenously driven, because volatility

affects welfare and state dependence puts the policy maker in a position to influence this.

We show that if the variance structure is linear-quadratic, a CET of the optimal linear

regulator problem can be obtained so that it resembles a standard homoscedastic model

16 In Table 3, the Lucas critique does not apply to the welfare effects of heteroscedasticity under the em-
pirical rule (first column of numbers) and the optimal rule for homoscedastic, GARCH and linear-dependent
variance (third column of numbers) since these share the same policy response coefficients.
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problem. This allows the researcher to use the algorithms and insights provided by existing

methodologies.

Optimization under state-dependent volatility brings two main effects. Linear state

dependence affects the overall variance of the system by shifting its steady state, while

quadratic dependence changes the systematic component of policy. These two effects are

mathematically equivalent to changes in the targets and welfare weights in the homoscedas-

tic linear regulator problem. If GARCH is also present, this has the effect of amplifying

these shifts.
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Table 1: ML results
Likelihood and test statistics

Panel A: First stage

HO LNX LQX GHX ENX

LogL 311.20 356.70 379.70 354.40 394.00
BIC 582.92 654.19 680.45 629.85 630.10
N 6 9 12 12 24
LR test 165.60 74.60 28.60 79.20
SCA test 23.59 -12.04 -25.17 0.12
M (χ2

M
) 18 (28.87) 15 (25) 12 (21.03) 12 (21.03)

Panel B: Second stage

HO LN LQ GH EN

LogL 311.20 359.20 397.00 370.10 401.00
BIC 464.50 540.76 596.62 542.82 565.15
N 24 27 30 30 36
LR test 179.60 83.60 8.00 61.80
SCA test -50.32 -12.19 15.73 -11.16
M (χ2

M
) 12 (21.03) 9 (16.92) 6 (12.59) 6 (12.59)

ML estimates of the unconditional covariance matrix

Panel C: First stage of ML estimation

HO LNX LQX GHX ENX
σuu 0.074 0.085 0.060 0.083 0.070
σππ 0.104 0.113 0.100 0.110 0.115
σrr 0.467 0.437 0.176 0.541 0.253
σuπ -0.037 -0.055 -0.040 -0.079 -0.048
σur -0.577 -0.559 -0.560 -0.665 -0.605
σrπ 0.331 0.356 0.375 0.301 0.367

Panel D: Second stage of ML estimation

LN LQ GH EN
σuu 0.091 0.064 0.082 0.061
σππ 0.120 0.105 0.110 0.106
σrr 0.441 0.234 0.545 0.275
σuπ -0.067 -0.091 -0.064 -0.085
σur -0.562 -0.576 -0.655 -0.564
σrπ 0.342 0.358 0.299 0.348

Note: LogL is the log-likelihood; BIC is the Bayesian information

criterion; N is the number of estimated parameters; LR test is the

log-likelihood ratio test relative to EN (X); SCA test is the Schwarz

statistic. The LR and SCA tests have a χ2
M
distribution, withM being

the number of restrictions based on the difference in the parameters of

the unrestricted and restricted model. The figures in the χ2
M

rows

are the 95% critical values. The ML estimates of the unconditional

covariance matrix are based on the solution of the matrix equation

(40) in the Online appendix.
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Table 2: Long-run responses of estimated and optimal policy rules

Empirical
Optimal
weights

λu = λπ = λ∆r = 1
λu = 0.5
λπ = λ∆r = 1

λπ = 0.5;
λu = λ∆r = 1

λ∆r = 0.5;
λu = λπ = 1

HO HO∗ (κ̄ = π̄∗ = 0)
φ̄u -0.39 -1.97 -1.51 -2.04 -2.56
φ̄π 1.38 4.00 4.38 2.76 5.06

GHX GHX∗ (κ̄ = π̄∗ = 0)
φ̄u -0.39 -1.97 -1.51 -2.04 -2.56
φ̄π 1.38 4.00 4.38 2.76 5.06

LNX LNX∗

κ̄ (-) 0.61 0.53 0.43 1.09
φ̄u -0.39 -1.97 -1.51 -2.04 -2.56
φ̄π 1.38 4.00 4.38 2.76 5.06
π̄∗ (-) -0.20 -0.16 -0.25 -0.27

LQX LQX∗

κ̄ (-) 1.04 0.93 0.71 1.90
φ̄u -0.39 -1.96 -1.52 -2.01 -2.55
φ̄π 1.38 4.33 4.61 3.17 5.43
π̄∗ (-) -0.31 -0.26 -0.33 -0.43

ENX ENX∗
κ̄ (-) 1.14 0.98 0.83 2.05
φ̄u -0.39 -1.96 -1.52 -2.01 -2.55
φ̄π 1.38 4.29 4.57 3.14 5.38
π̄∗ (-) -0.35 -0.27 -0.39 -0.47

EN EN∗

κ̄ (-) 1.76 1.29 1.23 4.57
φ̄u -0.35 -1.20 -0.95 -1.32 -1.45
φ̄π 1.19 3.42 3.51 2.73 4.17
π̄∗ (-) -0.73 -0.51 -0.71 -1.44

Note: the long-run interest rate rule is r = κ̄+ φ̄uu+ φ̄ππ. The intercept is zero for all models
under the empirical rule since the data is de-meaned prior to estimation and optimization, and

also for models HO∗ and GHX∗ since these are certainty equivalent. Linear-dependence in the

variance structure has the effect of inducing a positive κ̄ intercept in the optimal feedback rule; this
reduces the steady-state inflation rate by π̄∗ = κ̄/(1− φ̄π) in models LNX

∗, LQX∗, ENX∗

and EN . The loss function is described in section 3.2; λu, λπ and λ∆r are weights attached to
unemployment, inflation and changes in the rate of interest volatility respectively.
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Table 3: Welfare measurement and heteroscedasticity

Empirical rule Optimal rule

Model
Welfare
loss

change
on HO
(%)

Model/
Case

Welfare
loss

change
on HO∗

(%)

Gain (%)
from model
Optimisation

Case 1: λπ = λ∆r = 1
HO 6.61 HO∗ 5.91 11.19

GHX 7.2 (8.55) GHX∗ 6.43 (8.43) 11.31
LNX 7.23 (8.97) LNX∗ 6.31 (6.55) 13.61
LQX 6.34 (-4.17) LQX∗ 5.18 (-13.18) 20.21
ENX 7.3 (9.93) ENX∗ 5.9 (-0.17) 21.29
EN 6.46 (-2.30) EN∗ 4.66 (-23.76) 32.66

Case 2: λu = 0.5; λπ = λ∆r = 1
HO 5.53 HO∗ 4.8 14.16

GHX 6.03 (8.66) GHX∗ 5.23 (8.58) 14.23
LNX 6.02 (8.49) LNX∗ 5.13 (6.65) 16.00
LQX 5.29 (-4.44) LQX∗ 4.21 (-13.12) 22.84
ENX 6.07 (9.32) ENX∗ 4.82 (0.42) 23.06
EN 5.12 (-7.70) EN∗ 3.67 (-26.84) 33.30

Case 3: λπ = 0.5; λu = λ∆r = 1
HO 4.69 HO∗ 4.44 5.48

GHX 5.13 (8.97) GHX∗ 4.85 (8.83) 5.61
LNX 5.12 (8.77) LNX∗ 4.72 (6.12) 8.13
LQX 4.48 (-4.58) LQX∗ 3.95 (-11.69) 12.59
ENX 5.17 (9.74) ENX∗ 4.47 (0.67) 14.55
EN 4.82 (2.73) EN∗ 3.8 (-15.57) 23.78

Case 4: λ∆r = 0.5; λπ = λu = 1
HO 6.3 HO∗ 5.26 18.04

GHX 6.84 (8.22) GHX∗ 5.7 (8.03) 18.23
LNX 6.93 (9.53) LNX∗ 5.6 (6.26) 21.31
LQX 6.08 (-3.55) LQX∗ 4.52 (-15.16) 21.65
ENX 7.01 (10.68) ENX∗ 5.15 (-2.11) 30.83
EN 6.18 (-1.92) EN∗ 3.96 (-28.39) 44.51

Note: This table shows the welfare losses obtained by simulating the various models under the

empirical and optimal feedback rules. Reading down the table shows the effect of introducing

different models of the variance structure upon the welfare rule. Reading across this table shows

the effect of moving from the empirical interest rate rule to an optimal rule under different welfare

specifications. The final column shows the logarithmic percentage increase in welfare.
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