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Department of Automatic Control and Systems Engineering

University of Sheffield, United Kingdom

{amkiring1, n.salman, cliu47, esnaola, l.s.mihaylova}@sheffield.ac.uk

Abstract—This paper studies the problem of tracking with
wireless sensor networks (WSNs) using received signal strength
(RSS) measurements. The log-normal shadowing associated with
RSS measurements from a mobile terminal is correlated both
in space and time. We propose a particle filter that exploits the
temporal and spatial correlation and estimates the covariance
matrix of the measurement noise using the shrinkage technique.
Simulation results show that using the estimated covariance
matrix in the tracking filter improves considerably the filter
performance. It is also demonstrated via simulations that the
shrinkage-based particle filter exhibits superior performance to
the particle filter without shrinkage when limited measurements
are available. Results with high accuracy of tracking using the
proposed method are presented.

I. INTRODUCTION

A wireless sensor network (WSN) usually consists of hun-

dreds or thousands of multi-functional sensors, which are

randomly deployed in a surveillance area. These sensor nodes

are able to sense and communicate wirelessly to exchange

information. Wireless sensor technologies are widely used in

many applications, e.g., in health-care, earth sensing, defence

and agriculture. Tracking in WSNs is based on different types

of measurements, such as the angle of arrival (AOA) [1], time

of arrival (TOA) [2], time difference of arrival (TDOA) [3] and

the received signal strength (RSS) [4], [5]. Both the AOA and

TOA provide better accuracy in distance estimation than the

RSS. However, the AOA technique relies on the presence of a

multi-antenna array, while the TOA technique requires highly

synchronized clocks between the transmitter and the receiver.

Therefore, these techniques require additional hardware to be

implemented. The RSS techniques have less accuracy, but offer

simplicity and low cost of implementation.

The Kalman filter (KF) is a widely used estimator method

that provides an optimal solution when the system is linear.

However, if the system is non-linear, the KF faces challenges.

Alternative KF variants are the extended Kalman filter (EKF)

[6], [7] and the unscented Kalman filter (UKF) [8]. The EKF

operates by linearizing the non-linear system model and mea-

surement model, and the UKF improves on this by providing

an estimate with higher-order accuracy [9]. However, when

the non-linearities in the system model or in the measurement

model become too severe, these filters produce unreliable

estimates. Most of the non-linear KF and their variants assume

that the system states follow a Gaussian distribution but

in practical applications, this assumption is often invalid.

Remarkably, the particle filter (PF) can be applied to non-

linear systems with non-Gaussian signals. PF operates by

estimating the time varying state of a dynamic system that

cannot be observed directly and is observed through alternative

related measurements instead. The tracking accuracy of PF is

influenced by several design parameters in the algorithm, such

as the number of generating particles, measurement noise and

sampling frequency. When large number of particles is used,

the tracking accuracy of the PF improves. However, this comes

at a heavy computational cost.

Most PF tracking algorithms and measurement methods

assume that the measurement noise is additive and has a con-

stant covariance matrix describing the second order moments.

Unfortunately, this assumption is only applicable if the target

is static. However, when the target is moving, the distance

between each sensor and the target varies greatly. Conse-

quently, the measurement noise covariance also varies with

time. Furthermore, most of the RSS-based location estimation

methods assume that, individual channels between the target

and sensor nodes are independent of each other. This is not

valid as readings from the mobile target at the sensor nodes

introduce an element of spatial-temporal correlation. In this

study, the correlated measurements are simulated using the

Gudmundson correlation model [10].

Covariance is a measure of the relationship between two

variables and plays an important role in many applications.

In finances, the covariance matrix of stock indexes is used

to estimate the stock returns [11] and in bioinformatics, the

covariance matrix of genes is used to perform gene classifica-

tions [12]. A simple method to estimate the covariance matrix

is to use a sample estimator. The sample estimator can give an

accurate estimation of the covariance matrix if a large number

of observations is available. However, in many applications,

only small and limited number of observations are available.

That being the case, the shrinkage method is introduced. In this

paper, the shrinkage method is used to estimate the covariance

between readings of different sensor nodes from a single target

to enhance the performance of the PF algorithm.

The rest of the paper is organized as follows. Section II

describes the tracking system model for single target tracking.

Section III, reviews the shrinkage method. Section IV, presents

the details of the proposed shrinkage-based PF for dealing



with correlated measurements. Section V evaluates the perfor-

mance of the proposed shrinkage-based PF. Finally, section VI

presents the conclusion.

II. TRACKING SYSTEM MODEL

A single mobile node in a two-dimensional (2-D) plane

with coordinates (x, y) is considered. Sensors are uniformly

deployed in the field of interest with known locations (xi, yi)
for i = 1, 2, . . . , ns, where ns is the number of sensor nodes.

These coordinates can be obtained using a global positioning

system (GPS), or by installing sensors at points with known

coordinates. The following notations are defined; (·)T is the

transpose operator, E[·] is the expectation operation, and I

denotes the identity matrix.

A. Target Mobility Model

Various mobility models have been developed over time

such as random walk mobility models, pursue mobility mod-

els, and Singer-type mobility models [13], [14]. The discrete-

time Singer-type mobility model [15] is adopted because it

represents strongly correlated accelerations and allows the

prediction of the position, speed, and acceleration of the target.

Assume that the observations are taken at discrete time points

T.k, with a discretisation time step, T . The target state at time

k is expressed by

xk = [xk, ẋk, ẍk, yk, ẏk, ÿk]
T , (1)

where xk and yk represent the position, ẋk and ẏk represent the

velocity, and ẍk and ÿk represent the acceleration respectively.

The Singer model [16], [15] yields

xk = A(T, α)xk−1 +Bu(T )uk +Bu(T )wk, (2)

where uk = [ux,k, uy,k]
T is the unknown discrete time

command process inducing the dynamics of the system. The

command process, uk is modelled as a Markov chain with a

finite number of states at possible levels of accelerations [16].

The matrices in (2) are given by

A(T, α) =

(
Ã 03×3

03×3 Ã

)
, Ã =



1 T T 2/2
0 1 T
0 0 α


 ,

Bu(T ) =

(
B̃u 03×1

03×1 B̃u

)
, B̃u =



T 2/2
T
0


 ,

where wk = [wx,k, wy,k]
T is a zero mean Gaussian distributed

random variable, representing the process noise, with a covari-

ance matrix E[wkw
T
k ] = Q = σ2

wI. The standard deviation is

denoted as σw and α is the reciprocal of the manoeuvre time

constant.

B. Measurement Model

The RSS measurement zik between the i − th sensor and

the target at time instant k is modelled as [17]

zik = z0k + 10βlog10(d
i
k) + vik, (3)

where z0k is the path loss at the reference distance d0, (d0

is normally taken as 1 m or (d0 ≤ di)); dik is the distance

between the i − th sensor and the target, β is the path loss

exponent, and vik ∼ N (0, (σi
k)

2), is a zero mean Gaussian

distributed random variable representing the shadowing noise.

Both parameters β and σi
k are environment dependent. This

model is suitable for both indoor and outdoor environments

and its parameters can be configured according to different

environments. To enable accurate tracking, a minimum of

three distance measurements are needed. For multiple sensor

measurements, the RSS between the sensors and target can be

written in vector form as

zk = h(xk) + vk, (4)

where zk represents the measurements at ns sensor

nodes, i.e., zk = (z1k, z
2
k, . . . , z

ns

k )T and h(xk) =
(h(x1

k), h(x
2
k), . . . , h(x

ns

k ))T is vector with entries given by

the non-linear function hi
k = z0k + 10βlog10(d

i
k), for i =

1, . . . , ns, zk ∈ R
ns , and ns ≥ 3. The vector, vk represents the

measurements noise, with covariance matrix E[vkv
T
k ] = Ck,

and is assumed to be correlated in space and time.

C. Correlated Data Model for Measurements Generation

The measurements described by (4) are assumed to have

correlated noise. The correlation is both in space and time. In

practice, this correlation is unknown. In the measurements, the

spatial and temporal correlations are modelled as described in

the following paragraph, which is based on the Gudmundson

model [10]. The developed filter is used to validate the

correlated measurements with the proposed shrinkage-based

PF.

1) Spatial Dependence: The covariance between the mea-

surements at i− th and j− th sensor nodes, at time instant k
is formulated as follows

C
(i,j)
k = ρ

(i,j)
k σ

(i)
k σ

(j)
k , (5)

where ρ
(i,j)
k is the spatial correlation given by

ρ
(i,j)
k = exp(−d

(i,j)
k

/Dc), (6)

where d
(i,j)
k is the relative distance between the two sensors

and Dc is the decorrelation distance [5].

2) Temporal Dependence: The covariance at the i − th
sensor, between a target measurements at time instant k and l
is given as follows

Ci
(k,l) = ρ̃i(k,l)σ̃

i
(k)σ̃

i
(l), (7)

where ρ̃i(k,l) is the temporal correlation given by

ρ̃i(k,l) = exp(−di
(k,l)/Dc), (8)

where di(k,l) represents the distance travelled by the target from

time instant k to l, which is given by di(k,l) =
√
ẋ2 + ẏ2 ×

∆t(k,l); ∆t(k,l) = t(l) − t(k).



3) Spatio-Temporal Dependence: Correlated measurements

based on (6) and (8) up to time instant k are given by

z = [(zns

1 )
T
, (zns

2 )
T
, . . . , (zns

k )
T
]T , (9)

with the covariance matrix given by

C =




C1,1 C1,2 . . . C1,k

C2,1 C2,2 . . . C2,k

...
...

. . .
...

Ck,1 Ck,2 . . . Ck,k


 , (10)

where the diagonal elements of the covariance matrix captures

the spatial dependence, given by

Ck,k =


(σ
(1)
k )2 ρ

(1,2)
k σ

(1)
k σ

(2)
k · · · ρ

(1,ns)
k σ

(1)
k σ

(ns)
k

ρ
(2,1)
k σ

(2)
k σ

(1)
k (σ

(2)
k )2 · · · ρ

(2,ns)
k σ

(2)
k σ

(ns)
k

...
...

. . .
...

ρ
(ns,1)
k σ

(ns)
k σ

(1)
k ρ

(ns,2)
k σ

(ns)
k σ

(2)
k · · · (σ

(ns)
k )2



,

and the off-diagonal elements of the covariance matrix cap-

tures the temporal dependence, given by

Ck,l =




ρ̃1(k,l)σ̃
1
(k)σ̃

1
(l) 0 · · · 0

0 ρ̃2(k,l)σ̃
2
(k)σ̃

2
(l) · · · 0

...
...

. . .
...

0 0 · · · ρ̃ns

(k,l)σ̃
ns

(k)σ̃
ns

(l)


.

The measurements at time instant k are temporally correlated

with the measurements at all the previous time instants.

However, to limit the dimensionality of the covariance matrix,

a time window retaining the measurements in the preceding

time instant is used.

III. SHRINKAGE METHOD

A. Covariance Matrix

In practise, the covariance matrix is unknown and needs

to be estimated. A simple method to estimate the covariance

matrix is using the sample covariance estimator. Given a vector

of RSS measurements, zk, at time k, the sample covariance

matrix estimator is defined as

Ĉk =
1

P − 1

P∑

p=1

(zkp − z̄k)(zkp − z̄k)
T , (11)

where z̄k is the sample mean and P is the number of

observations. The sample covariance estimate in (11) is un-

biased. However, when P < ns, the sample covariance matrix

estimate is ill-conditioned, non-invertible, and introduces a

large estimation error. This problem can be addressed by

providing structure to the sample covariance matrix.

B. Shrinkage Estimator

The shrinkage estimator combines the sample estimator with

other available information in order to get better estimates of

the covariance matrix. The shrinkage estimator introduced in

[18] is well conditioned for small number of observations,

(P ≪ ns) and defined as

S = λT+ (1− λ)Ĉ, (12)

where T is the target matrix and Ĉ is the sample covariance

matrix. The target matrix, T is a highly structured matrix. As a

result, it has a low variance but is biased. On the other hand, Ĉ

has a high variance but is an unbiased estimate. The shrinkage

intensity, λ ∈ [0, 1] captures a trade-off between the target

matrix and the sample covariance matrix. There are six types

of target matrix structures in [12] and each target matrix has

a different variance-bias trade-off. Here, the following target

matrices are used. The first target matrix is the diagonal, unit

variance shrinkage target covariance given by

T1 =

{
1, if i = j

0, if i 6= j
, (13)

with shrinkage intensity determined by

λ̂T1
=

∑
i 6=j V̂ ar

([
Ĉ
]
ij

)
+
∑

i V̂ ar
([

Ĉ
]
ii

)

∑
i 6=j

[
Ĉ
]2
ij
+

∑
i

([
Ĉ
]
ii
− 1

)2 , (14)

where
[
Ĉ
]
ij

refers to the elements at the i − th row and

j − th column of the matrix Ĉ. The variance of the sample

covariance matrix is defined as

V̂ ar
([

Ĉ
]
ij

)
=

P

(P − 1)3

P∑

p=1

(vijp − v̄ij)
2, (15)

vijp = (zip − z̄i)(zjp − z̄j), (16)

v̄ij = P−1
P∑

p=1

vijp, (17)

where z̄i and z̄j represent the sample means, respectively. The

second target matrix is the constant correlation shrinkage target

covariance given by

T2 =





[
Ĉ
]
ii

, if i = j

ρ̄

√[
Ĉ
]
ii

[
Ĉ
]
jj
, if i 6= j

, (18)

with shrinkage intensity determined by

λ̂T2 =

∑
i 6=j V̂ ar

([
Ĉ
]
ij

)
− ρ̄fij

∑
i 6=j

([
Ĉ
]
ij
− ρ̄

√[
Ĉ
]
ii

[
Ĉ
]
jj

)2
, (19)

fij =
1

2

{
√√√√√√

[
Ĉ
]
jj[

Ĉ
]
ii

Ĉov
([

Ĉ
]
ii
,
[
Ĉ
]
ij

)
+

√√√√√√

[
Ĉ
]
ii[

Ĉ
]
jj

Ĉov
([

Ĉ
]
jj
,
[
Ĉ
]
ij

)}
. (20)

The parameter ρ̄ is the average correlation of all the correla-

tions between the measurements

ρ̄ =
1

ns(ns − 1)

ns∑

i=1

ns∑

j 6=1

[
Ĉ
]
ij[

Ĉ
]
ij

[
Ĉ
]
ij

. (21)



The covariance elements are given by

Ĉov
([

Ĉ
]
ii
,
[
Ĉ
]
ij

)
=

P

(P − 1)3

P∑

p=1

{[
(zip−z̄i)

2−v̄ii

][
(zip−z̄i)(zjp−z̄j)−v̄ij

]}
,

(22)

and similarly

Ĉov
([

Ĉ
]
jj
,
[
Ĉ
]
ij

)
=

P

(P − 1)3

P∑

p=1

{[
(zjp−z̄j)

2−v̄jj

][
(zip−z̄i)(zjp−z̄j)−v̄ij

]}
.

(23)

In most cases, λ̂ ∈ [0, 1]. However, in cases where λ̂ 6∈ [0, 1],
the following bound is imposed:

λ̂ = max(0,min(1, λ̂)).

IV. PARTICLE FILTERING WITH SHRINKAGE FOR DEALING

WITH CORRELATED MEASUREMENTS

Particle filtering, also known as sequential Monte Carlo

method is one of the powerful methods that can be used for

tracking applications. The target motion model in (1)-(2) and

the observation model in (3)-(4) can be written in the following

general form: xk = f(xk−1,wk), (24)

zk = h(xk,vk), (25)

where wk and vk are independent noise processes with known

probability distribution function. Functions f(·) and h(·) are

non-linear in general. In this section, (24) and (25) constitute

the whole model for the target mobility and correlated sensor

measurements. In PF tracking, the target state, xk has to be

estimated recursively based on the received sensor measure-

ments zk = {z1k, z
2
k, . . . , z

ns

k },xk ∈ R
ns . From a Bayesian

point of view, this implies obtaining estimates of the state

posterior density function, that is

p(xk|zk) =
p(zk|xk)× p(xk|zk−1)

p(zk|zk−1)
, (26)

where p(zk|xk) is the likelihood function, p(xk|zk−1) is the

state prior density function, and p(zk|zk−1) is the normalizing

constant. By using a set of particles x
(i)
k , i = 1, . . . , Np, where

Np is the total particles, and their corresponding weights W
(i)
k ,

the state posterior density function can be further described as

follows

p(xk|zk) =

Np∑

i=1

Ŵ
(i)
k × x

(i)
k , (27)

where the weights are normalized such that
∑

i Ŵ
(i)
k = 1. The

estimated position of the target is obtained by the weighted

sum of particles. In general, the PF works based on three

important stages which are the prediction stage, measurement

stage and resampling stage. During the prediction stage, each

particle transition state is generated according to the target mo-

bility model. In the measurement stage, each particle’s weight

is re-evaluated based on the likelihood function. Finally, in

the resampling stage, those particles with small weights are

eliminated and larger weights are replicated. The residual

resampling algorithm [19], [8] is applied in this paper.

A. Likelihood Function of Particle Filter

The likelihood function is used to re-evaluated the weight

of the particle which is given by

L(zk|xk) = {(2π)ns |Ck|}
− 1

2 exp{−0.5(z−ẑ)TC
−1
k

(z−ẑ)},
(28)

where the parameters, z and ẑ represent the actual and

predicted RSS measurements, Ck is the measurement noise

covariance matrix at time k, and ns is the number of sensors,

and | · | denotes the matrix determinant. In this paper, the

shrinkage estimator in (12) is introduced to estimate the

covariance matrix in (28) to improve the tracking performance

of the PF.

B. A Particle Filter with Shrinkage

The developed PF combined with the shrinkage method is

based on the models proposed in [16]. The following algorithm

describes the proposed method.

I. For k = 0, and i = 1, . . . , Np

(1) Initialization

Draw Np particles x
(i)
0 from the prior distribution

p(x0) and set the initial weights W
(i)
0 = 1/Np.

II. For k = 1, 2, . . . , and i = 1, . . . , Np

(2) Prediction Step

Predict the new particles using (2)

x
(i)
k = A(T, α)x

(i)
k−1 +Bu(T )u

(i)
k +Bu(T )w

(i)
k ,

with noise realisations w
(i)
k ∼ N (0,Q).

(3a) Shrinkage Covariance Estimator

Estimate the covariance matrix using the shrinkage

estimator given by S = λT+ (1− λ)Ĉ.

This estimator is explicitly defined in (12) − (23).

(3b) Measurement Update

Compute the weights of the received measurements

using W
(i)
k = W

(i)
k−1 × L(xk|zk), where L(xk|zk) is

given in (28) where the estimated covariance matrix

C = Ŝ is used. After that, normalize the weights

using Ŵ
(i)
k = W

(i)
k /

Np∑

i=1

W
(i)
k .

(4) Output Estimate

The posterior mean E[xk|zk], is defined as

x̂k = E[xk|zk] =
∑Np

i=1 Ŵ
(i)
k × x

(i)
k .

(5) Resampling Step

The residual resampling algorithm [19], [8], [20]

is applied.

Set k → k + 1 and return to step 2.



V. PERFORMANCE EVALUATION

The shrinkage-based PF, with a target matrix T1 in (13) and

T2 in (18) is used to track the movement of a single target.

The performance of the PF is compared with and without the

shrinkage. The sensor nodes (ns = 9) are uniformly deployed

and form a square grid. In order to maintain full coverage and

reduce the tracking error, all sensors move in the direction

towards the target but do not cross their designated grid. The

speed of the mobile sensors varies within a specified range.

A time window, ∆t = 1 is used to capture the temporal

correlation of the measurements at the sensor nodes. The other

parameters are given in Table I.

TABLE I: Simulation Parameters for Target Tracking

Number of sensor (anchor) nodes ns 9
Speed of sensor node (0.05− 0.15) ms−1

Number of target node 1
Minimum speed of target node Vmin 0.05 ms−1

Maximum speed of target node Vmax 5.04 ms−1

Reciprocal manoeuvre time constant α 0.5
Discretisation time step T 1.0 s

Number of Particles Np 500

Standard deviations σi
k
, σ

j

k
in (5) [0− 4] dB

Standard deviations σ̂i
k
, σ̂i

l
in (7) [0− 4] dB

Path loss index β 3
Decorrelation distance Dc 40 m

Time window for temporal correlation ∆t 1

Command Processes uk {[1.0 0.0]T , [0.0 1.0]T }

The performance validation is carried out using a PC

computer with an Intel core 3.3 GHz processor, 4 GB RAM,

and 465 GB hardrive. The proposed algorithm is repeatedly

executed with a single execution would take 1.37 seconds

to complete. Figure 1 compares the performance of the PF

method when the shrinkage covariance matrix estimate is

applied (C = S) and when no covariance matrix is used

(C = I). In the measurement stage of the PF method, the

likelihood is calculated using (28). The tracking accuracy

of the methods is evaluated using root mean square error

(RMSE). This measure is used to assess the difference between

the true and the estimated position of the target. In the sim-

ulation, the shrinkage-based PF performs considerably better

than PF without shrinkage for all number of observations. The

accuracy of the target tracking increases when a large number

of observations is available. The shrinkage-based PF with the

target matrix T1 achieves lower RMSE value compared to that

with target matrix T2 when dealing with a limited number

of observations. When target matrix T1 is used in (12), the

estimated covariance matrix, Ŝ is calculated by an equally

weighted terms. However, when target matrix T2 is used, then

the estimated covariance matrix, Ŝ is closer to the first term

in (12). For a larger number of observations, (P > 8) there is

no obvious difference in the position RMSE between the two

target matrices.

In Figure 2, the tracking accuracy is compared for different

values of shadowing variance in the path-loss measurements.

When the value of the noise variance is increased, the position

RMSE value also increases for all the methods. However, the
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Fig. 1: Performance comparison between PF tracking with and

without shrinkage covariance matrix estimation.
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shrinkage-based PF still outperforms the PF without shrinkage.
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Fig. 4: Sensor deployment and trajectory of moving target

The shrinkage-based PF with the target matrix T1, has lower

tracking error compare to shrinkage estimator with the target

matrix T2.

Figure 3 shows the value of the position error (RMSE)

against the number of sensor nodes. The result confirms that

when a larger number of sensor nodes is used to perform

tracking, position estimation is improved due to the availability

of more data in the estimation process. The shrinkage-based

PF with the target matrix T1 has a slightly smaller position

error (RMSE) compared to the case with target matrix T2.

Overall, the shrinkage-based PF has significantly better results

compared to the PF without the shrinkage estimator. Figure

4 shows the sensor nodes deployment, true target trajectory

and estimated target trajectory using the shrinkage-based PF

with the target matrices T1 and T2.

VI. CONCLUSIONS

Target tracking in WSNs with correlated spatial and

temporal measurement noise is studied. A shrinkage-based

PF algorithm for a single target tracking is proposed.

The shrinkage estimate is used in the PF to calculate the

likelihood function. Finally, a performance evaluation of the

shrinkage-based PF is carried out through simulations. The

results show that the shrinkage-based PF outperforms the PF

without the shrinkage for a single target tracking.
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