
This is a repository copy of Artificial Epigenetic Networks:Automatic Decomposition of
Dynamical Control Tasks using Topological Self-Modification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/93468/

Version: Published Version

Article:

Turner, Alexander Phillip, Caves, Leo orcid.org/0000-0002-8610-1114, Stepney, Susan
orcid.org/0000-0003-3146-5401 et al. (2 more authors) (2017) Artificial Epigenetic
Networks:Automatic Decomposition of Dynamical Control Tasks using Topological Self-
Modification. IEEE transactions on neural networks and learning systems. 7372471. pp.
218-230. ISSN 2162-237X

https://doi.org/10.1109/TNNLS.2015.2497142

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Artificial Epigenetic Networks: Automatic

Decomposition of Dynamical Control Tasks

Using Topological Self-Modification
Alexander P. Turner, Member, IEEE, Leo S. D. Caves, Susan Stepney, Andy M. Tyrrell, Senior Member, IEEE,

and Michael A. Lones, Senior Member, IEEE

Abstract— This paper describes the artificial epigenetic
network, a recurrent connectionist architecture that is able
to dynamically modify its topology in order to automatically
decompose and solve dynamical problems. The approach is moti-
vated by the behavior of gene regulatory networks, particularly
the epigenetic process of chromatin remodeling that leads to
topological change and which underlies the differentiation of cells
within complex biological organisms. We expected this approach
to be useful in situations where there is a need to switch between
different dynamical behaviors, and do so in a sensitive and robust
manner in the absence of a priori information about problem
structure. This hypothesis was tested using a series of dynam-
ical control tasks, each requiring solutions that could express
different dynamical behaviors at different stages within the task.
In each case, the addition of topological self-modification was
shown to improve the performance and robustness of controllers.
We believe this is due to the ability of topological changes
to stabilize attractors, promoting stability within a dynamical
regime while allowing rapid switching between different regimes.
Post hoc analysis of the controllers also demonstrated how the
partitioning of the networks could provide new insights into
problem structure.

Index Terms— Epigenetic networks, intelligent control,
recurrent neural networks (RNNs), self-modification, task
decomposition.

I. INTRODUCTION

COMPLEX real world tasks can often be reduced to

multiple interacting subtasks. It has long been realized

that there are advantages to capturing the structure of this

subtask decomposition within the topology of a neural net-

work architecture, especially when compared with monolithic

networks [1]. Conventionally, this is done using various kinds

Manuscript received February 17, 2015; revised October 19, 2015; accepted
October 21, 2015. This work was supported by the Engineering and
Physical Sciences Research Council through the Project entitled Artifi-
cial Biochemical Networks: Computational Models and Architectures under
Grant EP/F060041/1 and through the Project entitled Bio-Inspired Adaptive
Architectures and Systems under Grant EP/K040820/1.

A. P. Turner, L. S. D. Caves, S. Stepney, and A. M. Tyrrell are with the Uni-
versity of York, York YO10 5DD, U.K. (e-mail: alexander.turner@york.ac.uk;
leo.caves@york.ac.uk; susan.stepney@york.ac.uk; amt@ohm.york.ac.uk).

M. A. Lones is with the School of Mathematical and Computer
Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K. (e-mail:
m.lones@hw.ac.uk).

Data created during this research is available at the following DOI:
10.15124/45427dd0-fa53-4e78-b86a-8a9a177541e0.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2015.2497142

of modular neural network [2], [3], which typically structure

solutions as a decision tree whose leaves are subnetworks, each

trained to solve a particular subtask. In this respect, modular

neural networks resemble the macrostructure of the human

brain, which is also known to be structured as a hierarchy of

special-purpose neural circuits [4].

The brain is not the only naturally occurring connectionist

architecture known to solve complex tasks. Another prominent

biological network, which we consider in this paper, is a

cell’s gene regulatory network. There are many similarities

between neural and genetic networks; indeed, artificial neural

networks (ANNs) have been used as a modeling tool for

capturing the structure and dynamics of genetic networks [5].

However, there are also some prominent differences between

the two [6]. One of these is the widespread existence of self-

modifying processes within genetic networks, whereby the

cellular machinery expressed by the genetic network induces

physical changes within the network’s topology. In this paper,

we focus upon a self-modifying process that is central to

task specialization within biological cells: chromatin remod-

eling [7]. Chromatin remodeling is described in Section II

in detail. However, in a nutshell, it is a mechanism that

turns genetic subnetworks ON and OFF by regulating their

exposure to the cell’s gene expression machinery. Signifi-

cantly, the biochemical components that control chromatin

remodeling are expressed by the genetic network; so, in

essence, the genetic network regulates changes to its own

topology.

The premise of this paper is that the topological

self-modification can be used as a novel mechanism for achiev-

ing task decomposition within connectionist architectures.

In the conventional modular approach to task decomposition,

processing is divided into independent subnetworks, which

are always turned ON, and whose outputs are integrated

by some higher level decision node. In our approach, by

comparison, the subnetworks used to solve different subtasks

can be overlapping, are only turned ON when in use, and the

output is determined by whichever subnetwork is currently

expressed. We expect the resulting approach to be useful in

situations where there is no a priori knowledge of how a task

can be decomposed, where there is significant overlap between

subtasks, and where highly dynamic solutions are beneficial.

We demonstrate this by showing that a self-modifying con-

nectionist architecture is able to solve three difficult control

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

tasks. This paper builds upon an earlier model [8], in which

task decomposition was prespecified, and upon initial results

reported in [9].

This paper is structured as follows. Section II introduces

genetic networks and the form of topological self-modification

carried out by chromatin remodeling. Section III summarizes

the related work on computational models of genetic net-

works, task decomposition in ANNs, and self-modification.

Section IV describes the self-modifying mechanism used in

this paper. Section V outlines the dynamical control tasks.

Section VI presents the results and analysis. Finally, the

conclusion is drawn in Section VII.

II. GENETIC NETWORKS AND CHROMATIN REMODELING

A gene is a region of DNA that describes a protein. In order

for this protein to be expressed within a cell, the gene must

be transcribed (and later translated) by the cell’s processing

machinery. In higher organisms, such as humans, this involves

the binding of a group of around 5–20 interacting proteins,

known as a transcription complex. These proteins, in turn,

are the products of other genes. Hence, genes are regulated

by other genes, and this pattern of regulatory interactions,

when extended to all genes, forms the cell’s genetic network.

Genetic networks have many similarities with recurrent neural

networks (RNNs). After abstracting away the detailed bio-

chemical mechanisms, both can be considered to be a set

of interacting nodes with connection weights, and both can

be viewed as dynamical systems operating on a network.

In many cases, gene regulation, such as neurone activation,

can be modeled as a sigmoidal function [5].

However, there are also some fundamental differences

between neural and genetic networks [6]. Perhaps most signif-

icantly, there is no analog of physical wiring (i.e., axons and

synapses) in a genetic network. Rather, regulatory pathways

emerge from stochastic spatial processes of dynamic molecu-

lar association and dissociation. In practice, this means that

interactions between biochemical components are relatively

unconstrained and, as a consequence, evolution is free to

explore interactions between different cellular components.

Chromatin modification is a good example of this. Chromatin

is an assembly of structural proteins (histones) organized into

spindles (nucleosomes) over which DNA is wound [10]. It was

originally seen as a spatial compression mechanism that allows

very long strands of DNA to fit into the cell’s relatively

compact nucleus. However, in recent years, it has become

clear that the structure of chromatin is closely regulated by

the genes it contains, whose products are able to locally wind

or unwind the nucleosomes in order to permit or block access

to the transcription machinery.

Hence, a different view of chromatin has emerged as

a dynamic mechanism for modifying the complement of

expressed genes and, hence, the topology of the cell’s genetic

network. Nowadays, chromatin remodeling is believed to play

a significant role in determining cell fate. Exactly, how this

is achieved in biological systems remains a topic of con-

temporary research; however, it has been hypothesized that

it is due to the stabilization of the attractor states of the

underlying genetic network [11], presumably by removing

extraneous genetic pathways. Nevertheless, it is clear that

chromatin remodeling plays a key part in this cellular analog

of subtask specialization. Given the underlying similarities

between genetic and neural networks, it is intriguing to con-

sider whether an analogous mechanism could be used for task

decomposition within ANNs.

III. RELATED WORK

A. Artificial Gene Regulatory Networks

Historically, the development of computational models of

genetic networks has focused on their role in understand-

ing biological systems, for instance inferring computational

models from measurement data [12] or using computational

models to understand systems-level properties of genetic net-

works [13]. Another, less well-known role, involves using

these models to carry out computation, in a manner akin to the

relationship between ANNs and biological neural networks.

These artificial gene regulatory networks take on various forms

(see [14] for a recent review). In some cases, representa-

tions are borrowed from the wider genetic network modeling

community. For instance, Boolean networks, which model

genetic networks as the networks of interacting logic functions,

have been used to control robots [15]. In other cases, new

models have been developed. This includes work on artificial

genomes [16] and fractal gene regulatory networks [17].

Given the relative immaturity of the field, it is unclear

which model is most suitable for doing a particular kind

of computation. In practice, there are likely to be different

tradeoffs between expressiveness, efficiency, compactness, and

robustness. Since these models are often optimized using

evolutionary algorithms, there is also a difficulty discriminat-

ing between the influence of expressiveness and evolvability.

In this paper, we are interested in understanding the potential

benefits of introducing topological modification to connec-

tionist models. Hence, we make use of a relatively simple

representation that closely resembles an ANN. Such models

have previously been used to model genetic networks [5],

and their optimization using evolutionary algorithms has also

been well studied [18]. This approach also has the benefit that

lessons learnt can be directly applied to the wider field of

ANN research.

B. Task Decomposition Using Modular Neural Networks

We are interested in how topological self-modification can

be used for achieving automatic task decomposition. As we

have already remarked, the mechanism currently most used for

achieving task decomposition in ANNs is the partitioning of a

network into modules, each of which is used to solve a partic-

ular subtask. How this is done varies considerably [19], [20],

although all approaches must have some mechanism for iden-

tifying modules and then determining which modules to use

in a given situation. Modular ANNs are most often applied in

domains, such as classification, where a priori knowledge of

the task domain is available.

When a priori knowledge is available, it may be possi-

ble to identify the subtasks in advance and train modules

accordingly. However, in the more general case, it is also

necessary to determine the correct number of modules required

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 3

to solve the task. This is arguably easier using neuroevolution

approaches, where it is relatively easy to adapt the gross

structure of the collective network. An interesting example

of this is the use of coevolution [21], where a population

of modules is evolved in parallel with a population of mod-

ule combinators, allowing the algorithm to explore different

combinations of modules in a relatively open-ended fashion.

It should be noted, however, that coevolutionary algorithms

are inherently complex, requiring significant expertise in order

to avoid pathological conditions. Where a priori knowledge

is available, choosing between modules may be as simple as

matching input cases. Other approaches include asking mod-

ules to vote on their applicability for a particular subtask [1],

or the construction of decision trees to determine transitions

between modules [22].

Our approach differs from the existing modular ANNs in a

number of ways. First, there is no need to explicitly identify

the modules. In fact, there is no reason why modules should

be completely segregated, since in many cases, it might be

advantageous (in terms of size and training cost) for processing

to be shared between subtasks. In this paper, this can be

achieved using overlapping subnetworks. Second, transitions

between subnetworks are handled by the subnetworks them-

selves, by turning ON or OFF other subnetworks. In effect, the

system can transition between subnetworks at all points during

execution, suggesting that this might lead to far more dynamic

and context-sensitive solutions.

C. Topological Rewriting in Artificial Neural Networks

A number of authors have looked at applying topological

rewriting processes during the learning phase of an ANN.

This includes learning algorithms that add or remove nodes

and links to or from the network. Examples include the early

work by Ash [23] on dynamic node creation during backprop-

agation, and more recent work by Forti and Foresti [24] on

dynamic self-organizing maps. Another prominent application

of a self-modification process during learning is the work

by Schmidhuber et al. [25], who looked at self-modification

of the learning algorithm itself. There have also been a

number of examples of self-modifying and self-organizing

processes applied prior to the execution of an ANN, in the

form of a developmental mapping. This includes the early

work by Gruau [26] on rewriting grammars, and work by

Astor and Adami [27] who made use of an artificial chemistry

to determine the topology of an ANN. However, in all of these

examples, the topology of the network remains fixed during

the execution of the ANN.

There are very few examples of ANNs which use

self-modifying processes during execution. GasNets [28] are

perhaps the best known of these, an ANN model in which

diffusive neurotransmitters are able to change the function

of nodes within a network in a dynamic fashion. A more

recent approach, termed artificial neural tissue [29], is also

based around diffusive chemical gradients, but uses them to

turn ON and OFF sparsely coded neural circuits in response

to external cues. This is arguably the closest related work

to our own, though prominent differences in our work

include its relative simplicity (e.g., no developmental process),

the use of comparatively small networks, and our emphasis on

overlapping subnetworks and regulatory interactions between

subnetworks.

D. Self-Modification in Artificial Biochemical Networks

The idea of self-modification has also previously been

explored within computational models of biochemical

networks. In [30], we considered an artificial biochemical

network model in which a computational analog of a genetic

network both expresses and modifies a computational analog

of a metabolic network. This was effective at certain tasks,

which benefited from decomposition; however, the complexity

and appropriate parameterization of the system was a signifi-

cant issue. Self-modification was also explored in [31] within

the context of a model of mobile DNA applied to Boolean

networks, in which the author found it to be beneficial in terms

of access and stability of attractors. We have also explored a

simpler model of chromatin remodeling in which subtasks are

prespecified [8], and published initial results using the current

approach [9] which have been significantly extended in this

paper.

IV. TOPOLOGICAL SELF-MODIFICATION

A. Architecture

In this section, we describe how an analog of epigenetic

remodeling can be implemented within a connectionist archi-

tecture. We use a fairly conventional RNN as a baseline

architecture, general enough to be considered an abstract

model of both a biological neural network and a genetic

network.

Formally, this RNN architecture can be defined by the tuple

〈N, L, In, Out〉, where N is a set of nodes {n0 . . . n|N | : ni =

〈ai , Ii , Wi 〉}, where ai : R is the activation level of the node,

Ii ⊆ N is the set of inputs used by the node, and Wi is a

set of weights, where 0 ≤ wi ≤ 1, |Wi | = |Ii |. L is a set of

initial activation levels, where |L N | = |N |. In ⊂ N is the set

of nodes used as external inputs. Out ⊂ N is the set of nodes

used as external outputs.

Chromatin modules can be considered to be context-

dependent switches that add or remove network components

based on the network’s current activation state. This form

of topological self-modification can be introduced to the

RNN model by adding extra nodes that act as Boolean

switches, each adding or removing specified groups of nodes

from the network based on the activation levels of one or more

nodes.

The resulting artificial epigenetic network (AEN) architec-

ture can be defined by the tuple 〈N, S, L, In, Out〉, where S is

a set of switches {s0 . . . s|S| : si = 〈ai , Ii , Wi , Ci 〉}, where

as
i ∈ {0, 1} is the activation level of the switch, I s

i ⊆ N is the

set of inputs to the switch, W s
i is the set of weights, where

0 ≤ wi ≤ 1, |Wi | = |Ii |, and Cs
i ⊆ N is the set of nodes

controlled by the switch. The other variables are as defined

for the RNN. Nodes N and switches S both use a sigmoid

function. In the case of nodes, the activation level ai is the

output of the sigmoid function applied to the weighted sum of

its input activations. For switches, a threshold of 0.5 is applied.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Training AENs With NSGA-II

1: P ← {}

2: for popsi ze times do ⊲ initialize population

3: P ← P ∪ {new random AEN}

4: end for

5: for maxgen times do

6: for each p ∈ P do ⊲ evaluate population

7: EVALUATE(p) ⊲ see Algorithm 2

8: end for

9: P ← RANK(P) ⊲ NSGA-II style ranking [32]

10: P ← {p0, . . . , ppopsize/2} ⊲ remove lower ranks

11: P ′ ← P

12: repeat ⊲ breed child population

13: p1, p2 ← SELECT(P) ⊲ rank-based selection

14: child ← RECOMBINE(p1,p2)

15: child ← MUTATE(child)

16: P ′ ← P ′ ∪ {child}

17: until |P ′| = popsi ze

18: P ← P ′ ⊲ replace with child population

19: end for

If the output of the sigmoid function is less than this value,

the activation level as
i of the switch is 1; otherwise, it is 0.

If as
i = 1, then the switch has no effect upon the network.

If as
i = 0, then the activation levels of its controlled nodes

are set to 0, i.e., ∀ni ∈ Cs
j , ai = 0. In effect, these nodes are

removed from the network.

Note that the network uses a sparse encoding, i.e., zero-

weighted edges are not included in the model. Compared with

a fully connected network, this is a more appropriate model of

the pattern of connectivity seen within most genetic networks.

B. Training

We train both the RNN and AEN models using an evolution-

ary algorithm. Traditional neural network training methods,

such as backpropagation, do not readily generalize to nonstan-

dard architectures. Evolutionary algorithms, by comparison,

are relatively flexible in this respect. They are also less

sensitive to local optima, and are able to optimize both the

parameters of individual nodes and the topology of the net-

work. Since biological evolution is the mechanism responsible

for designing biological genetic networks, it is particularly

fitting to use an evolutionary algorithm to train a connectionist

architecture that is motivated by genetic networks.

The nondominated sorting genetic algorithm,

version II (NSGA-II) [32] is used for the experiments

reported in this paper. This is a multiobjective evolutionary

algorithm, allowing solutions to be evaluated with respect

to more than one objective. Algorithm 1 gives an outline of

NSGA-II and describes how it is used to train AENs.

C. Encoding

Given the close relationship between biological evolution

and genetic networks, there is value in considering how genetic

networks are encoded in biological systems, since this is

known to have a significant bearing on their evolvability.

Fig. 1. Illustration of the indirect encoding between the nodes and switches
of the network. In this example, the single switch interacts with genes 3 and 4,
modulating their functionality.

A notable aspect of this paper is that we use a low-level

network encoding in which connections between networks

nodes are defined indirectly. Hence, during evolution, the

connections, Ii , I s
i , and Cs

i , are not represented by absolute

node identifiers, but by locations within an indirect reference

space. Several properties of the biological encoding of genetic

networks motivate this approach.

First, gene–gene interactions are positionally independent,

meaning that a gene retains its function irrespective of its

position within a chromosome. This means that the posi-

tional changes due to biological recombination and mutation

events preserve the existing structure of the genetic network.

By comparison, when positionally sensitive encodings are

used in evolutionary algorithms, ordering changes are gen-

erally disruptive, leading to child solutions with poor

fitness [33], [34].

Second, and related to this, biological components recognize

one another based upon their physicochemical properties.

In effect, this physicochemical space is used as an indirect

reference system in which genes, and other biochemical com-

ponents, address one another. This observation has motivated a

number of positionally independent encodings based upon the

use of indirect reference spaces, including our own previous

work on implicit context representation [34], and the template

matching approach used in some computational models of

genetic networks [35], [36].

Third, biological genetic networks display epistatic cluster-

ing [37], such that the genes that encode interacting gene prod-

ucts are often found located together within the genome [38].

This means that genetic pathways tend to be encoded in

contiguous regions of DNA. From an evolutionary perspective,

this leads to compartmentalization, which in turn promotes

evolvability [39]. It also means that the winding and unwinding

of chromatin modules tends to affect distinct subnetworks,

arguably providing a less disruptive means of regulating bio-

logical function.

For simplicity, we use a 1-D reference space in which

each node and switch has a location in the range [0, 1]. The

inputs to a node or switch are defined as a continuous interval

within this range. Furthermore, this interval overlaps with the

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 5

location of the node or switch. Hence, nodes and switches

located proximally within the reference space are encouraged

to interact, generating an effect similar to epistatic clustering.

In particular, this means that the epigenetic switches will tend

to operate upon complete subnetworks. It should be noted that

this results in biases in the network landscape, since some

patterns of connectivity are more likely to occur than others.

Nevertheless, our initial experiments showed that a lack of

epistatic clustering results in poor performance, and that this

outweighs any issues associated with network shape bias.

Before being executed, an encoded network is mapped into

the directly connected form defined in Section IV-A. Conse-

quently, the indirect encoding does not lead to a performance

penalty during execution. There is an overhead associated with

this mapping, but it is small compared with the execution time.

V. TASK DEFINITIONS

We hypothesize that topological self-modification will be

useful in situations where task decomposition is not apparent

a priori, where tasks are overlapping, and/or where there

is a need to switch often between different behaviors. The

control of dynamical systems is a class of problems that

exhibits all of these characteristics. In particular, we focus

on three interesting problems in dynamical systems control:

1) state-space targeting in a numerical dynamical system;

2) balancing a system of coupled inverted pendulums; and

3) controlling transfer orbits in a gravitational system. These

are all challenging to solve, and each has qualitatively different

dynamics. Although these kind of systems are traditionally

controlled using analytical feedback methods [40], [41], our

approach reflects the methodology of previous computational

intelligence applications, such as [42] and [43], which do not

require a priori knowledge about the state space of the system

under control.

A. State-Space Targeting in a Numerical Dynamical System

This task involves controlling a trajectory so that it moves

back and forth between two boundary points in Chirikov’s

standard map. This is a numerical dynamical system that

models the behavior of a large class of conservative dynamical

systems that have coexisting chaotic and ordered dynamics.

While the exact definition of the task is to some extent

arbitrary, it demonstrates the general concept of trajectory

targeting in a complex state space.

Chirikov’s standard map [44] is defined within the unit

square by the following system of difference equations:

xn+1 = (xn + yn+1) mod 1

yn+1 = yn −
k

2π
sin (2πxn). (1)

For low values of k, the dynamics of the system are ordered,

with initial points converging to cyclic orbits which remain

bounded to small intervals on the y-axis. As k increases,

islands of chaotic dynamics begin to appear. As k increases

further, these begin to dominate the upper and lower regions

of the map, with a band of ordered dynamics remaining

in the central region. This central band prevents trajectories

TABLE I

SENSORY INPUTS FOR THE STANDARD MAP TASK.
EACH IS MAPPED TO THE RANGE [0, 1]

Fig. 2. Chirikov’s standard map showing both ordered and chaotic dynamics.
The top and bottom regions, which are used as initial and target regions for
the control task, are shown as gray boxes.

traversing from the top to the bottom of the map (and

vice versa) until sufficient chaotic islands have appeared

at kc ≈ 0.972. After this, it is possible for a trajectory

to traverse the y-axis of the map by following the natural

dynamics of the system. However, this occurs at a very

slow rate. For example, when k = 1.1, the median transit

time is 64 000 iterations of (1), with 27% of trajectories not

reaching the other side within 106 iterations [30].

The aim of this task is to create controllers that can guide

a trajectory from a region at the bottom of the map to a

region at the top of the map, and then back again, in the least

amount of time. These regions are defined as x[0.475, 0.525],

y[0.975, 1] for the top region and x[0.475, 0.525], y[0, 0.025]

for the bottom region. A traversal between these regions can

be seen in Fig. 8. The controller receives the inputs shown

in Table I at each time step, and exerts control by modulating

the parameter k within the interval [1.0, 1.1]. This results in

a small perturbation to the trajectory. In previous work using

this map [9], [30], we have observed that different control

interventions are required when moving through regions with

different dynamical characteristics (e.g., chaotic, ordered, and

mixed). In general, it is not obvious when these transitions in

behavior should occur. This makes the problem challenging

from a control perspective.

In order to generate a fair estimate of a controller’s ability to

guide trajectories, the task is repeated ten times with different

starting positions randomly chosen within the regions shown

in Fig. 2. Two objective values are then calculated for each

controller: 1) the mean trajectory length when moving from

the bottom to the top of the map and 2) the mean trajectory

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Coupled inverted pendulums, illustrating a single controller control-
ling three tethered carts.

length when moving from the top to the bottom of the map.

Controllers, which are not able to traverse the map in either

direction within a limit of 1000 time steps, are assigned an

arbitrary large value of 1000 for the corresponding objective.

This penalty will also be applied if the trajectory in a particular

direction moves beyond the y-axis bound of [0, 1].

B. Balancing a System of Coupled Inverted Pendulums

Balancing an inverted pendulum is a classic problem in

control theory, and a proxy for various real world control

problems, such as bipedal locomotion and missile control [45].

In this task, we consider a harder formulation of this problem

that involves using multiple pendulums, mounting them on

movable carts, and then coupling the carts together (Fig. 3).

The aim is to move the carts in such a way that all the

pendulums become upright, and then remain upright for a

predetermined amount of time. This can be interpreted as

a state-space targeting task, in which a trajectory must be

guided from a stable equilibrium state (all pendulums pointing

downward) to an unstable equilibrium state (all pendulums

pointing upward), followed by a stabilization task that involves

maintaining the trajectory at the unstable point.

In our formulation, the system has between one and five

carts, arranged in a line. When the number of carts is greater

than 1, they are connected to their nearest neighbor(s) with

inelastic tethers. Each cart is controlled using an actuator with

a differential input, allowing it to move toward or away from

its neighbors based on the difference of its two inputs. Table II

shows the physical parameters of the model. Each cart is

controlled independently using the same evolved controller.

The controller has access to a number of state variables. These

are described in Table III, and their application to the cart

can be seen in Fig. 4. The fitness of the controller is defined

as an aggregate function over all the carts of the amount of

time each pendulum spends in the upright position and scaled

between [0, 1]. Hence, if a system contains three pendulums,

of which one remains upright throughout simulation with the

other two remaining hanging from the carts, a fitness of 0.33

would be assigned. If all pendulums are upright throughout the

simulation, a fitness of 1 will be assigned and if all pendulums

remain hanging throughout the simulation, a fitness of 0 will

be assigned.

C. Controlling Transfer Orbits in a Gravitational System

As a more concrete example of control in a conservative

dynamical system, we consider a formulation of the N-body

problem in which the aim is to guide a trajectory through

TABLE II

PHYSICAL PARAMETERS OF THE COUPLED INVERTED PENDULUMS TASK

TABLE III

SENSORY INPUTS USED FOR THE INVERTED COUPLED PENDULUMS TASK.
THE VALUES ARE RESCALED TO [0, 1] BEFORE THEY ARE USED

AS INPUTS TO A NETWORK

Fig. 4. Sensory inputs for a cart within the coupled inverted pendulums task.

a system of planetary bodies. Gravitational systems with more

than two bodies exhibit the kind of mixed chaotic and ordered

dynamics seen in Chirikov’s standard map. This presents a sig-

nificant challenge when controlling spacecraft, since efficient

orbital transfers require traversal of these complex dynamical

regimes. In the example, we consider that there are four

bodies: a spacecraft and three planets. The aim is to guide

the trajectory of the spacecraft so that it moves repeatedly

between two of the three planets. It is required to do this in

the least amount of time, and by using the least amount of

fuel. It can do this either by taking a direct path (see Fig. 5),

or by sling-shotting around the third, more massive, planet.

Either way, the spacecraft is under the influence of gravity

from all three planets. To make simulation time tractable, the

positions of the planets remain fixed. See Tables V and VI for

model parameters.

The force exerted on the spacecraft is calculated using (2),

where m is the mass of a body and q is a 3-D vector

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 7

Fig. 5. System of gravitational bodies used in the orbital control task.
The aim is to guide an orbit so that it transitions repeatedly between
planets A and B, while also under gravitational influence from planet C.

(j specifies an instance of a body, and k represents an instance

which is not equal to the first, i.e., force i is the sum of all

other forces k which are not force i)

m j q j = G
∑

k �= j

m j mk(qk − q j)

|qk − q j |3
. (2)

From this, the acceleration of the spacecraft due to the

gravitational forces of the other planets can be calculated using

Newton’s second law of motion. The equations are simulated

using leapfrog integration, which is well suited to the problems

of orbital mechanics due to its symplectic nature and time

reversibility [46], [47].

The controller has access to the following state variables:

1) distance to target; 2) position of target; 3) spacecraft

acceleration; and 4) spacecraft position. These are mapped

to nine inputs (see Table IV). The target is determined by

the spacecraft’s current position, i.e., planet A if it is in orbit

around planet B, and vice versa. The controller exerts control

by adding thrust in one or more of the three dimensions,

subject to an acceleration limit of ±25 ms−2.

Two objective values are calculated for each controller:

1) the cumulative time taken to move between planets A and B

over the course of the simulation and 2) the cumulative thrust

used to maneuver the spacecraft. The spacecraft is assumed to

be in a valid orbit when it is between 1 × 105 and 2 × 105 m

from a planet’s center of mass. If the spacecraft moves within

2×104 m of the planet’s center of mass, it is assumed to have

collided and the controller is assigned a fitness value of 0 for

planetary hops (corresponding to the lowest possible perfor-

mance) and positive infinity for the fuel used (corresponding

to the worst possible performance). The same penalties are

applied if it takes more than 8000 s to transition between the

two planets. In initial experiments, it was found that evolution

disproportionately favored solutions, which minimize the fuel

usage objective by remaining relatively static. To discourage

this behavior, we introduced a third objective, the product of

the first two objectives. This especially penalizes solutions that

do not achieve at least one orbital transition.

VI. RESULTS AND ANALYSIS

For each of these tasks, the aim is to evolve a closed-

loop controller that can guide the dynamics of the system

TABLE IV

SENSORY INPUTS USED FOR THE ORBITAL CONTROL TASK

TABLE V

INITIAL POSITIONS AND MASSES OF THE BODIES

WITHIN THE ORBITAL CONTROL TASK

TABLE VI

PHYSICAL PARAMETERS FOR THE ORBITAL CONTROL TASK

in the specified manner. At each time step, the state of the

controlled system is fed back to the controlling AEN or RNN

by setting the activation levels of nodes in the input set (In).

See Algorithm 2 for details. There is one input node for each

of the sensory inputs given in the task definition. Control is

then exerted by copying the activation levels of nodes in the

output set (Out) to the governing parameters of the controlled

system, scaling as appropriate.

A. Standard Map

Both AENs and RNNs were evolved to control trajec-

tories within Chirikov’s standard map. A population size

(popsi ze) of 200 was used, with the evolutionary process

allowed to run for 100 generations (maxgen). Mutation and

crossover rates were 0.05 and 0.5, respectively. In the initial

generation, networks were created with lengths of between

10 and 20 nodes. In addition, initial AENs were seeded with

3–5 switches. Solution lengths were otherwise free to vary

during evolution.

Since EAs are nondeterministic algorithms, 50 independent

runs were carried out for each problem instance to give a fair

portrayal of expected performance. Fig. 6 shows the distri-

butions of fitness for the best solutions from these 50 runs,

for both AENs and RNNs. This shows that the AEN model

leads to better solutions both on average (p = 2.04 × 10−4)

and overall. The best performing AEN controller traverses

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 2 Evaluating an AEN on a Control Task

1: initialize control task

2: a ← L ⊲ initialize AEN state

3: repeat

4: cout ← state variables from controlled system

5: In ← SCALE(cout) ⊲ scale inputs to [0, 1]

6: for i ∈ {0, . . . , |S|} do ⊲ update switches

7: as
i ← SIGMOID(I s

i · W s
i)

8: if as
i < 0.5 then ⊲ modify topology

9: for each j ∈ Cs
i do

10: a j ← 0

11: end for

12: end if

13: end for

14: for i ∈ {0, . . . , |N |} do ⊲ update nodes

15: ai ← SIGMOID(Ii · Wi)

16: end for

17: cin ← SCALE(Out) ⊲ scale outputs to range

18: modify controlled system according to cin

19: until control task finished or timed-out

20: f i tness ← progress on control task objectives

Fig. 6. Fitness distributions for AEN and RNN-based controllers, showing
the average number of steps required to traverse the standard map in each
direction by the best controllers from 50 sequential runs of NSGA-II.

the map in each direction in ∼99 steps, on average, which

is ∼20 steps faster than the best RNN. Fig. 7 shows an

example of a controlled trajectory.

Fig. 8 shows the change in mean and maximum controller

fitness over time for the AEN and RNN runs. It is evident

that the fitness for RNN-based controllers begins to converge

considerably earlier than for the AEN-based controllers. It is

also notable that the evolution of the best AEN controller

is much smoother, in terms of fitness changes, than for the

best RNN controller. This may be an indication of better

evolvability for the AEN model, allowing controllers to evolve

through gradual frequent changes rather than large infrequent

changes.

Analysis of the dynamical behavior of evolved controllers

gives some insight into these differences in performance.

First, it is notable that all but one of the evolved AEN

networks used their switches to alter the topology of the

network during execution. This suggests that there is strong

selective pressure toward using topological modification.

Second, significant differences can be seen between the

Fig. 7. Example of an AEN controlling a trajectory within Chirikov’s
standard map, traversing from a region at the bottom to a region at the top
in 94 steps.

Fig. 8. Best and average performance of both the AEN and RNN controllers
at each generation for the standard map task.

Fig. 9. Phase portraits showing control responses of the AEN (left)
from Fig. 10, and a representative RNN (right).

phase spaces of AEN and RNN controllers. For example,

Fig. 9 shows the representative phase spaces reconstructed

using time-delay embedding [48] from the outputs of an

AEN and RNN controller, respectively. It can be seen that

the AEN phase space is well conserved, apparently following

attractors with well-defined topological characteristics as it

navigates the map. The dynamical behavior of the RNN

controller, by comparison, is relatively poorly conserved,

indicative of a less stable attractor structure. This suggests

that the topological modification may play a role in stabilizing

different attractors as the controller navigates through the

different dynamical regimes exhibited by the map.

To understand how topological self-modification is used

by evolved AENs, the smallest working example of an

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 9

Fig. 10. Time series of expression states of the nodes and switches of the
smallest working example of an AEN controlling traversal of Chirikov’s map
in both directions.

AEN controller was first analyzed. Fig. 10 shows the time

series of expression values for nodes and switches within

this network. In this case, it is apparent that the single

switch present in this network is not used simply to transition

between subtasks. Rather, during much of the control period,

it generates an oscillatory pattern of expression which turns

ON and OFF one of the network’s other nodes, thereby affecting

the network’s dynamics. This points to roles for topological

modification beyond task decomposition.

However, it was also noticed that the switch elements

of many evolved AENs could be used to manually switch

between dynamical behaviors. For instance, by forcing a

switch to remain ON, it is often the case that the trajectory will

then remain within a certain dynamical region of the map. This

suggests that the switches are used to move between different

attractors during the course of controlling trajectories. It also

points to an emergent role of these switches as a means for

inferring task decomposition and allowing external control of

transitions between subtasks.

It is also notable that the AEN-based controllers are

significantly smaller than the RNNs, using an average of

seven nodes, compared with an average of ten nodes in the

RNN-based controllers. In addition to offering a small ben-

efit in terms of efficiency, this may indicate that smaller

overlapping subnetworks are used at different stages of the

control task, rather than the single monolithic network used

by an RNN.

B. Coupled Inverted Pendulums

A similar approach was used to evolve AEN- and

RNN-based controllers for the coupled inverted pendulums

problem. Recognizing the greater difficulty of this task, the

generation limit was raised to 200, and initial networks were

generated with between 15 and 25 nodes.

Fitness distributions for one-, three-, and five-cart variants

of the problem are shown in Fig. 11. Unsurprisingly, control

of a single cart is significantly easier than multiple carts, and

effective control could be achieved using both architectures.

Nevertheless, AEN-based controllers were able to balance the

pendulum more consistently and, on average, significantly

faster than the RNN-based controllers. For the multicart prob-

lems, RNN-based controllers were able to solve the three-cart

variant only once out of 40 runs, and were unable to solve the

five-cart variant. AEN-based controllers were also challenging

Fig. 11. Fitness distributions over 40 runs for RNN- and AEN-based
controllers solving the 1, 3, and 5 coupled inverted pendulum problems.

The means are significantly different in all cases (p = 0.029, 7.5 × 10−5,
and 0.01, respectively, using the Wilcoxon rank sum test). Dashed horizontal
line: approximate fitness required to solve the task. Improvements in stabi-
lization time occur beyond this point.

Fig. 12. Best and average performance of both the AEN and RNN controllers
at each generation for the three-cart variant of the coupled inverted pendulums
task.

to evolve; however, substantially more of these solutions were

found for the three-cart problem, and several AEN-based

controllers were also found for the five-cart variant.

Fig. 12 shows the change in mean and maximum controller

fitness over time for the AEN and RNN runs when solving

the three-cart problem (although this is also representative of

the one- and five-cart versions). It can be seen that the AEN-

based controllers evolve much faster and converge toward a

higher fitness value. A smoother pattern of evolution is again

seen for the best solution, with the RNN exhibiting large step

changes. This supports the hypothesis that the AENs are more

evolvable.

Analysis of evolved controllers again suggests that AENs

solve the problem in a different way to RNNs. First of all,

this can be seen in their use of sensory inputs (see Table III),

with all AEN solutions using inputs 0 (pendulum angle sensor)

or 9 (angular velocity), and the majority of RNNs using

inputs 2 (pendulum angle), 3 (pendulum angle), 7 (cart veloc-

ity), and 8 (angular velocity) to solve the task. Neither favored

inputs 4, 5, or 6. This suggests that the two different archi-

tectures are biased toward exploring different input–output

mappings, with the AENs presumably more able to express

mappings that result in higher fitness. Differences in behavior

can also be seen in the reconstructed phase spaces of AEN

and RNN controllers (see Figs. 13 and 14).

Figs. 15 and 16, respectively, show the network topol-

ogy and time series of an AEN evolved to solve the

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 13. Phase portraits of representative control responses of an AEN,
showing the swinging behavior (left) and the balancing behavior (right).

Fig. 14. Phase portraits of representative control responses of an RNN,
showing the swinging behavior (left) and the balancing behavior (right).

Fig. 15. Typical minimum working example AEN evolved for the three
pendulum task. Only the nodes and the switches, which are required to
generate the optimal behavior, are shown. S0 and S1 switches, which when
active, deactivate the genes within their bounds. V0 refers to the angular
velocity in the top quadrants. A0 refers to the angular position in the top-left
quadrant. N0 is a node with no external input, but is required to create the
oscillatory behavior. M0 and M1 are the motor control for the cart.

Fig. 16. Time series of expression states of the nodes and switches in the
AEN shown in Fig. 15 solving the three-cart coupled inverted pendulums
problem. Dashed vertical line indicates where the pendulum stabilizes in the
upright state. Nodes that do not contribute to the behavior of the controller
have been removed.

three-cart problem. This solution used two switches. One of

these is activated when a pendulum is in the upward part of its

swing, causing a transition between swinging and stabilizing

behaviors. The other functions as an oscillator. Hence, we see

both of the behaviors observed in the standard map controllers.

Fig. 17. Performance of AEN and RNN controllers on the orbital transfer
problem, showing (red and green lines) the Pareto fronts achieved by each
controller type.

Fig. 18. Trajectory of the spacecraft generated by the fittest AEN, achieving
nine planetary hops. It can be seen that this controller utilizes the gravitational
slingshot effect.

Again, the first switch can be used to manually transition

between the controller’s behaviors; for instance, turning this

ON during the stabilization phase causes the pendulum to

transition to the swinging phase and remain there.

C. Controlling Transfer Orbits in a Gravitational System

Controlling transfer orbits was the hardest of the three

problems, requiring a population of 500 and a generation limit

of 200. Other parameters were the same as for coupled inverted

pendulums problem.

Fig. 17 shows the Pareto front of solutions generated

by 40 subsequent evolutionary runs for both AENs and RNNs,

showing the tradeoffs between orbital repetitions and fuel used

by each controller. The Pareto front for AEN-based controllers

is significantly further to the bottom-right, indicating solutions

were found that could travel further and with less fuel than

the RNNs.

It was observed that the majority of evolved controllers

used a gravitational slingshot around planet C to conserve fuel

while transitioning between planets A and B. Fig. 18 shows the

behavior of one of the best controllers, guiding the trajectory

over the course of nine planetary transitions.

Topological self-modification was seen to occur in 36 of

the 40 evolved AEN controllers, again suggesting a strong

selective pressure toward making use of this behavior. In the

remaining four controllers, the switches remained perma-

nently OFF. In all instances where topological modification was

applied, its effect included changing the expression state of

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 11

Fig. 19. Structure of an AEN, which was able to perform nine orbital hops in
succession. Only the nodes and switches, which are required to generate the
behavior, are shown. A0 refers to the distance to the target, and A1 and A2
refer to the absolute position of the spacecraft. N0 is a processing node.
R0–R2 are the outputs of the network, which specify the acceleration of the
spacecraft.

Fig. 20. Expression of each node and switch of the AEN shown in Fig. 19
over 50 000 times steps (sampled at one every ten steps) with nonfunctional
nodes and switches removed. It can be seen that the switch is modifying the
topology of the network dynamically.

one of the output nodes—in effect, forcing an abrupt direction

change within the trajectory.

Fig. 20 shows a time series view of node and switch

activations in one of the best evolved AEN controllers. It can

be seen that the switch changes state on only three occasions

during the period of control. This suggests that the mechanism

is being used in a sensitive manner, inducing only small

infrequent changes within the dynamics of the network. In this

case, the switch is regulated by node A2, which indicates the

spacecraft’s position in the z plane. It becomes active when the

trajectory reaches its extremal position, guiding the spacecraft

back into a close orbit.

VII. CONCLUSION

In this paper, we investigated the potential benefits of intro-

ducing topological self-modification to RNN architectures, in

the form of an AEN. The AEN approach is motivated by the

process of chromatin modification within genetic regulatory

networks, particularly the manner in which genes are able to

regulate transcriptional access to other genes through chro-

matin modification. This, in effect, is analogous to adding or

removing nodes to or from the network.

The AEN approach was applied to three different dynamical

control tasks, using evolutionary algorithms to design the

topology and parameters of the networks. A clear pattern

seen in these experiments is that the AEN model allows the

evolution of better solutions than a conventional RNN model,

both in terms of average performance and ability to express

more general solutions.

We propose several hypotheses for why this is the case.

First, it seems likely that the topological change stabilizes

attractors, making it easier for a controller to maintain a

stable behavior. This reflects biological understanding of the

role of chromatin modification in achieving cell specialization.

Second, the topological change can lead to rapid behavioral

change, presumably faster than that which can be achieved

by following the natural dynamics of a network with fixed

topology. This is likely to be beneficial in controllers that

require rapid responses to their environment. Third, we see

that the evolved AENs express behaviors, which are not seen

in evolved RNNs, presumably because the topological change

makes these behaviors easier to discover. These behaviors,

in turn, appear particularly useful for the kind of control

problems we have considered in this paper.

By considering how controllers evolved over time, it also

became evident during our experiments that the AEN con-

trollers evolve more smoothly than the conventional RNN

architectures. This, in turn, may suggest that the AENs are

more evolvable than the RNNs and, therefore, more suitable

for use with evolutionary algorithms. It is known that evolv-

ability and robustness are closely related system properties,

so this may also be related to an AEN’s ability to maintain

different stable behaviors and robustly transition between

them.

A further benefit of the approach was discovered during post

hoc analysis of the evolved controllers, where it was noted

that manually changing the activation state of the topological

switches led the controllers to transition between different

phases of the control task. This gave insights into the natural

decomposition of the tasks, and could potentially be used

as a general mechanism for exploring and understanding the

internal structure of problems. This is something we plan to

explore further in the future work.

Although this paper has focused on solving computational

problems, it is feasible that computational models such as

this could also be used to develop better understanding of

epigenetic mechanisms in biology. Epigenetics is a relatively

new field of study, and experimental limitations make it

difficult to infer general principles from biological data alone.

Computational models could help to fill this gap by allowing

the exploration of systems-level properties, in much the same

way that Boolean network models have helped to understand

genetic networks. As a start, we have begun to look at more

detailed computational models of epigenetic processes that

model the spatiotemporal behavior of chromatin modifying

protein complexes.

The results presented in this paper show the potential for

using self-modifying processes within connectionist architec-

tures. However, an AEN is only one way of achieving this, and

in the future work, we also plan to investigate a broader range

of self-modifying connectionist models. These need not be

limited to switching ON and OFF different parts of an existing

network. They could also, for instance, be used to dynamically

create new nodes or subnetworks using processes analogous

to development or growth.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

REFERENCES

[1] R. A. Jacobs, M. I. Jordan, and A. G. Barto, “Task decomposition
through competition in a modular connectionist architecture: The what
and where vision tasks,” Cognit. Sci., vol. 15, no. 2, pp. 219–250,
Apr. 1991.

[2] G. Auda and M. Kamel, “Modular neural networks: A survey,” Int. J.

Neural Syst., vol. 9, no. 2, pp. 129–151, 1999.

[3] P. Melin and O. Castillo, “Modular neural networks,” in Hybrid Intel-

ligent Systems for Pattern Recognition Using Soft Computing (Stud-
ies in Fuzziness and Soft Computing), vol. 172. Berlin, Germany:
Springer-Verlag, 2005, pp. 109–129.

[4] D. Meunier, R. Lambiotte, A. Fornito, K. Ersche, and E. T. Bullmore,
“Hierarchical modularity in human brain functional networks,” Frontiers

Neuroinformat., vol. 3, no. 37, 2009. DOI: 10.3389/neuro.11.037.2009

[5] H. Ling, S. Samarasinghe, and D. Kulasiri, “Novel recurrent neural
network for modelling biological networks: Oscillatory p53 interaction
dynamics,” BioSystems, vol. 114, no. 3, pp. 191–205, Dec. 2013.

[6] M. A. Lones, A. P. Turner, L. A. Fuente, S. Stepney, L. S. D. Caves, and
A. M. Tyrrell, “Biochemical connectionism,” Natural Comput., vol. 12,
no. 4, pp. 453–472, Dec. 2013.

[7] T. P. Rasmussen, “Embryonic stem cell differentiation: A chromatin
perspective,” Reproductive Biol. Endocrinol., vol. 1, no. 1, p. 100,
Nov. 2003.

[8] A. P. Turner, M. A. Lones, L. A. Fuente, A. M. Tyrrell, S. Stepney,
and L. S. D. Caves, “The incorporation of epigenetics in artificial gene
regulatory networks,” BioSystems, vol. 112, no. 2, pp. 56–62, May 2013.

[9] A. P. Turner, M. A. Lones, L. A. Fuente, S. Stepney, L. S. D. Caves,
and A. Tyrrell, “The artificial epigenetic network,” in Proc. IEEE Symp.
Ser. Comput. Intell. (SSCI), Singapore, Apr. 2013, pp. 66–72.

[10] C. L. Woodcock and R. P. Ghosh, “Chromatin higher-order structure and
dynamics,” Cold Spring Harbor Perspect. Biol., vol. 2, no. 5, p. a000596,
2010.

[11] S. Huang, “Reprogramming cell fates: Reconciling rarity with robust-
ness,” BioEssays, vol. 31, no. 5, pp. 546–560, May 2009.

[12] A. R. Chowdhury, M. Chetty, and N. X. Vinh, “Inferring large
scale genetic networks with S-system model,” in Proc. 15th Annu.

Conf. Genet. Evol. Comput., Amsterdam, The Netherlands, 2013,
pp. 271–278.

[13] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” J. Theoretical Biol., vol. 22, no. 3, pp. 437–467,
Mar. 1969.

[14] M. A. Lones, “Computing with artificial gene regulatory networks,” in
Evolutionary Computation in Gene Regulatory Network Research (Series
in Bioinformatics), H. Iba and N. Noman, Eds. Hoboken, NJ, USA:
Wiley, 2016.

[15] A. Roli, M. Manfroni, C. Pinciroli, and M. Birattari, “On the design of
Boolean network robots,” in Applications of Evolutionary Computation

(Lecture Notes in Computer Science), vol. 6624, C. D. Chio et al., Eds.
Berlin, Germany: Springer-Verlag, 2011, pp. 43–52.

[16] W. Banzhaf, “Artificial regulatory networks and genetic programming,”
in Genetic Programming Theory and Practice (Genetic Programming
Series), vol. 6, R. Riolo and B. Worzel, Eds. Norwell, MA, USA:
Kluwer, 2003, pp. 43–61.

[17] P. J. Bentley, “Evolving fractal gene regulatory networks for graceful
degradation of software,” in Self-Star Properties in Complex Infor-

mation Systems (Lecture Notes in Computer Science), vol. 3460,
O. Babaoglu et al., Eds. Berlin, Germany: Springer-Verlag, 2005,
pp. 21–35.

[18] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: From architec-
tures to learning,” Evol. Intell., vol. 1, no. 1, pp. 47–62, Mar. 2008.

[19] G. Auda and M. Kamel, “Modular neural network classifiers: A compar-
ative study,” J. Intell. Robot. Syst., vol. 21, no. 2, pp. 117–129, Feb. 1998.

[20] L. Medsker and L. C. Jain, Recurrent Neural Networks: Design and

Applications. Boca Raton, FL, USA: CRC Press, 2010.

[21] V. R. Khare, X. Yao, B. Sendhoff, Y. Jin, and H. Wersing, “Co-
evolutionary modular neural networks for automatic problem decompo-
sition,” in Proc. IEEE Congr. Evol. Comput. (CEC), vol. 3. Edinburgh,
U.K., Sep. 2005, pp. 2691–2698.

[22] S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, “Evolving soccer
keepaway players through task decomposition,” Mach. Learn., vol. 59,
no. 1, pp. 5–30, May 2005.

[23] T. Ash, “Dynamic node creation in backpropagation networks,”
Connection Sci., vol. 1, no. 4, pp. 365–375, 1989.

[24] A. Forti and G. L. Foresti, “Growing hierarchical tree SOM: An unsu-
pervised neural network with dynamic topology,” Neural Netw., vol. 19,
no. 10, pp. 1568–1580, Dec. 2006.

[25] J. Schmidhuber, J. Zhao, and N. N. Schraudolph, “Reinforcement
learning with self-modifying policies,” in Learning to Learn,
S. Thrun and L. Pratt, Eds. Norwell, MA, USA: Kluwer, 1998,
pp. 293–309.

[26] F. Gruau, “Genetic synthesis of Boolean neural networks with a cell
rewriting developmental process,” in Proc. Int. Workshop Combinations

Genet. Algorithms Neural Netw. (COGANN), Baltimore, MD, USA,
Jun. 1992, pp. 55–74.

[27] J. C. Astor and C. Adami, “A developmental model for the evolution
of artificial neural networks,” Artif. Life, vol. 6, no. 3, pp. 189–218,
Jun. 2000.

[28] T. Smith, P. Husbands, A. Philippides, and M. O’Shea, “Neuronal
plasticity and temporal adaptivity: GasNet robot control
networks,” Adapt. Behavior, vol. 10, nos. 3–4, pp. 161–183,
2002.

[29] J. Thangavelautham and G. M. T. D’Eleuterio, “Tackling learning
intractability through topological organization and regulation of cortical
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4,
pp. 552–564, Apr. 2012.

[30] M. A. Lones et al., “Artificial biochemical networks: Evolving dynami-
cal systems to control dynamical systems,” IEEE Trans. Evol. Comput.,
vol. 18, no. 2, pp. 145–166, Apr. 2014.

[31] L. Bull, “Consideration of mobile DNA: New forms of artificial genetic
regulatory networks,” Natural Comput., vol. 12, no. 4, pp. 443–452,
Dec. 2013.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[33] X. Cai, S. L. Smith, and A. M. Tyrrell, “Positional independence
and recombination in Cartesian genetic programming,” in Genetic Pro-
gramming (Lecture Notes in Computer Science), vol. 3905, P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds. Berlin,
Germany: Springer-Verlag, 2006, ch. 32, pp. 351–360.

[34] M. A. Lones and A. M. Tyrrell, “Modelling biological evolvability:
Implicit context and variation filtering in enzyme genetic programming,”
BioSystems, vol. 76, nos. 1–3, pp. 229–238, Aug./Sep. 2004.

[35] T. Reil, “Dynamics of gene expression in an artificial genome—
Implications for biological and artificial ontogeny,” in Proc. 5th Eur.

Conf. Artif. Life (ECAL), vol. 1674. 1999, pp. 457–466.

[36] W. Banzhaf, “On the dynamics of an artificial regulatory network,”
in Advances in Artificial Life (Lecture Notes in Computer Science),
vol. 2801, W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and
J. T. Kim, Eds. Berlin, Germany: Springer-Verlag, 2003, ch. 24,
pp. 217–227.

[37] J. W. Pepper, “The evolution of evolvability in genetic
linkage patterns,” BioSystems, vol. 69, nos. 2–3, pp. 115–126,
May 2003.

[38] D. Newth and D. G. Green, “The role of translocation and selection
in the emergence of genetic clusters and modules,” Artif. Life, vol. 13,
no. 3, pp. 249–258, 2007.

[39] M. Conrad, “The geometry of evolution,” BioSystems, vol. 24, no. 1,
pp. 61–81, 1990.

[40] K. Pyragas, “Continuous control of chaos by self-controlling feedback,”
Phys. Lett. A, vol. 170, no. 6, pp. 421–428, Nov. 1992.

[41] F. J. Romeiras, C. Grebogi, E. Ott, and W. P. Dayawansa, “Controlling
chaotic dynamical systems,” Phys. D, Nonlinear Phenomena, vol. 58,
nos. 1–4, pp. 165–192, Sep. 1992.

[42] E. N. Sanchez and L. J. Ricalde, “Chaos control and synchronization,
with input saturation, via recurrent neural networks,” Neural Netw.,
vol. 16, nos. 5–6, pp. 711–717, Jun./Jul. 2003.

[43] H. Richter, “An evolutionary algorithm for controlling chaos: The
use of multi-objective fitness functions,” in Parallel Problem Solv-

ing from Nature—PPSN VII (Lecture Notes in Computer Science),
vol. 2439, J. J. Merelo, P. Adamidis, H.-G. Beyer, H.-P. Schwefel, and
J.-L. Fernández-Villacañas, Eds. Berlin, Germany: Springer-Verlag,
2002, pp. 308–317.

[44] B. V. Chirikov, “Research concerning the theory of non-linear resonance
and stochasticity,” Inst. Nucl. Phys., Novosibirsk, Russia, Tech. Rep.,
1969.

[45] H. Hamann, T. Schmickl, and K. Crailsheim, “Coupled inverted pen-
dulums: A benchmark for evolving decentral controllers in modular
robotics,” in Proc. 13th Annu. Conf. Genet. Evol. Comput. (GECCO),
Dublin, Republic of Ireland, Jul. 2011, pp. 195–202.

[46] K. C. B. New, K. Watt, C. W. Misner, and J. M. Centrella, “Stable
3-level leapfrog integration in numerical relativity,” Phys. Rev. D, vol. 58,
no. 6, p. 064022, Aug. 1998.

TURNER et al.: AUTOMATIC DECOMPOSITION OF DYNAMICAL CONTROL TASKS 13

[47] S. Mikkola, “Efficient symplectic integration of satellite orbits,” Celestial

Mech. Dyn. Astron., vol. 74, no. 4, pp. 275–285, Aug. 1999.
[48] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.

Cambridge, U.K.: Cambridge Univ. Press, 2004.

Alexander P. Turner (M’13) received the
B.Sc. degree in computer science from the
University of Hull, Kingston upon Hull, U.K.,
in 2008, and the M.Sc. degree in natural computing
and the Ph.D. degree in electronics from the
University of York, York, U.K., in 2010 and 2014,
respectively.

He is currently a Research Associate with the
Intelligent Systems Research Group, Department
of Electronics, University of York. His current
research interests include evolutionary computing

and biological modeling.
Dr. Turner is a member of the IEEE Computational Intelligence Society.

He received the ERCIM Alain Bensoussan Fellowship to carry out research
with the Bioinformatics and Gene Regulation Group, Faculty of Medicine,
Norwegian University of Science and Technology, Trondheim, Norway,
in 2014.

Leo S. D. Caves received the B.Sc. degree in
chemistry from the University of Birmingham,
Birmingham, U.K., in 1985, and the D.Phil. degree
in computational biophysics from the University of
York, York, U.K., in 1989.

He was a Research Fellow with the Department
of Chemistry, Harvard University, Cambridge, U.K.,
from 1991 to 1994, with Prof. M. Karplus. From
1994 to 1997, he was a Post-Doctoral Researcher
with the Department of Chemistry, University of
York. In 1997, he became a Lecturer in Compu-

tational Chemistry with the Department of Chemistry, University of York,
and became a Lecturer in Structural Bioinformatics with the Department of
Biology in 2002. In 2008, he became a Senior Lecturer in Computational
Biology. He is currently a Founder Member of the York Centre for Complex
Systems Analysis and was the Nominated Spokesperson from 2005 to 2012.
His current research interests include computational models of biological
systems, such as molecular biophysics, systems biology, and bioinspired
computation, and offering biological perspectives of complexity to systems
in a wide variety of domains.

Susan Stepney received the M.A. degree in natural
sciences (theoretical physics) and the Ph.D. degree
in astrophysics from the University of Cambridge,
Cambridge, U.K., in 1979 and 1983, respectively.

She was an SERC Post-Doctoral Research Fellow
with the Institute of Astronomy, Cambridge, from
1983 to 1984, where she was involved in analytical
and computational modeling of relativistically hot
plasmas. From 1984 to 2002, she was involved
in commercial research and development. From
1984 to 1989, she was a Research Scientist with

GEC-Marconi, Farnborough, U.K., and a Consultant with Logica, Reading,
U.K., from 1989 to 2002. Her industrial work was mostly in the area of
formal methods. She was involved in the Z specification and proof of security
and financially critical smart card products, Mondex and Multos, and was a
member of the BSI/ISO Z Standardization team. Since 2002, she has been
a Professor of Computer Science with the University of York, York, U.K.,
where she leads the Non-Standard Computation Research Group. Since 2012,
she has been the Director of the York Centre for Complex Systems Analysis.
Her current research interests include unconventional models of computation,
complex systems, emergence, bioinspired computing, and computational sim-
ulation of biological systems.

Andy M. Tyrrell (SM’96) received the
B.Sc. (Hons.) degree in electrical and electronic
engineering and the Ph.D. degree in electrical
and electronic engineering from Aston University,
Birmingham, U.K., in 1982 and 1985, respectively.

He was promoted to Chair in Digital Electronics
in 1998. He has been with the Department of
Electronics, University of York, York, U.K.,
since 1990. He is currently the Head of
the Intelligent Systems Research Group with
the University of York, where he was the Head of

the Department of Electronics from 2000 to 2007. In particular, over the last
18 years, his research group with the University of York has concentrated on
bioinspired systems. He has authored over 300 publications in his research
areas and attracted funds in excess of £9 million. His current research
interests include the design of biologically inspired architectures, artificial
immune systems, evolvable hardware, field-programmable gate array system
design, parallel systems, fault tolerant design, and real-time systems.

Prof. Tyrrell is a fellow of the Institution of Engineering and Technology.

Michael A. Lones (M’01–SM’10) received the
M.Eng. degree in computer systems and soft-
ware engineering and the Ph.D. degree in elec-
tronics from the University of York, York, U.K.,
in 1999 and 2003, respectively.

He was a Research Fellow with the Department of
Electronics, University of York, from 2005 to 2013.
Since 2013, he has been an Assistant Professor with
the School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, U.K. His cur-
rent research interests include biologically motivated

models of computation and their application to problems in computational
biology, medical informatics, and complexity science and robotics. He has
authored over 50 publications in his research areas.

Dr. Lones is a member of the IEEE Computational Intelligence Society and
an Active Member of the IEEE Technical Committee on Bioinformatics and
Bioengineering. He received the ERCIM Fellowship to carry out research with
the Bioinformatics and Gene Regulation Group, Faculty of Medicine, Norwe-
gian University of Science and Technology, Trondheim, Norway, in 2004.

