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Abstract

Subject-specific musculoskeletal models have become key tools in the clinical decision-

making process. However, the sensitivity of the calculated solution to the unavoidable errors

committed  while  deriving  the  model  parameters  from the  available  information  is  not  fully

understood.  The aim of  this  study was to  calculate  the  sensitivity  of  all  the kinematics  and

kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint

models. The study was based on the computer tomography of the entire lower-limb from a single

donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle

joint  models  were  defined  following  the  International  Society  of  Biomechanics

recommendations. Using a software interface, five expert anatomists identified on the donor’s

images the necessary bony locations five times with a three-day time interval. A detailed subject-

specific musculoskeletal model was taken from an earlier study, and re-formulated to define the

joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim

within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied

randomly according to the estimated distributions. Trends for the joint angles, moments, and the

muscle and joint forces did not substantially change after parameter perturbations. The highest

variations  were  as  follows:  (a)  118  calculated  for  the  hip  rotation  angle,  (b)  1% BW £  H

calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles

and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images

is a robust procedure for human movement modelling and simulation.

Keywords: musculoskeletal model; hip load variation; muscle force sensitivity; joint axes 

uncertainty; gait simulations; human motion



Introduction

In the last decade, musculoskeletal models have evolved from exclusively research tools

to  clinical  methods  used  in  the  decision-making  process  (Jonkers  et  al.  2008).  In  this  new

context, subject-specific models, typically generated from heterogeneous data such as clinical

images,  published  atlases  and  direct  anthropometrical  measurements,  are  key  factors  in  the

calculation of reliable mechanical variables (Lenaerts et al. 2008; Lenaerts et al. 2009; Scheys et

al. 2008; Valente et al. 2012). For example, subject-specific models were found to be key factors

for an accurate calculation of muscle lever arms (Lenaerts et  al.  2008; Valente et  al.  2012),

skeletal  forces  (Lenaerts  et  al.  2008),  bone  stresses  (Jonkers  et  al.  2008),  and  for  properly

addressing the related clinical implications (Steele et al. 2012; Taddei et al. 2012). However, the

error  committed  in  extracting  the  model  parameters  from the  available  clinical  information

affects the calculated variables in a way that needs to be investigated. 

The model identification process involves several and fairly complex operations (Scheys

et al. 2009; Taddei et al. 2012). For instance, the inertial parameters can be derived from simple

anatomical measurements using regression equation with not less than a 21.3% error on one or

more  parameters  (Durkin  and  Dowling,  2006).  The  muscle  attachment  locations  can  be

automatically estimated from Magnetic Resonance Images (MRI) with an average error of 6.1

mm (Scheys et al.  2009). The hip joint center location can be determined using a functional

method from simple recordings of the hip motion or, as a possible alternative, using regression

equations from simple measurements that can be easily taken on the patient skin. The functional

method  was  able  to  estimate  the  hip  joint  center  with  an  average  error  of  13  mm,  whilst

regression equations showed a higher average error up to 30 mm (Leardini et al.  1999). The

skeletal geometry is often extracted from clinical images with an error in the order of at least two

pixels (Testi et al.  2001). The joint axes of the knee and the ankle can be defined using the

location of prominent bony landmarks lying on each respective joint axis (Grood & Suntay 1983;

Wu et al. 2002). To this purpose, a computer- based procedure, the so-called Virtual Palpation

procedure,  has  been  recently  proposed  to  locate  all  the  necessary  bony  landmarks  on  the

available clinical images with an uncertainty up to 3 mm (Taddei et al. 2007). Whatever the

adopted identification process is, the errors committed clearly alter the calculated variables in a

way that is not known a-priori.



Several authors investigated the sensitivity of calculated skeletal forces to changes of the

model parameters. Changes of the muscle physiological cross section area (PCSA) within the

physiological range led to 11% variation of the hip force (Brand et al. 1986) and up to more than

100% variation  of  the  calculated  muscle  forces  (Brand et  al.  1986;  Herzog  1992).  Xiao  &

Higginson (2010) perturbed selected  muscle  parameters  (i.e.,  the number  of  muscle  lines  of

action, the maximum isometric force, the optimal fiber length and the tendon slack length) by a

±10% factor, showing variations in the calculated muscle forces up to 12.8 times the magnitude

of  the  imposed  parameter  perturbations.  Scaling  a  general  pelvis  model  on  personalized

anthropometric information can induce an up to 3 cm misallocation of the hip and a consequent

shift of the calculated hip force in the order of 0.5 times body weight (BW) (Lenaerts et al.

2009). The position in the body segments of the joint axes affects the calculation of muscle and

joint  forces  by  influencing  the  calculation  of  the  joint  torques  and  the  muscle’s  lever  arm.

However, no studies reported on the sensitivity of the calculated muscle and joint forces to the

uncertainty  associated  to  the identification of  the  lower-limb joint  axes  with  clinical  images

available. 

The  aim  of  this  study  is  to  estimate  the  sensitivity  of  the  muscle  and  joint  forces

associated with inter-examiner uncertainty in locating the relevant skeletal landmarks (Grood &

Suntay 1983; Wu et al. 2002) defining the lower-limb joint axes. To  this  aim,  the  uncertainty

on the landmark positions was assessed, and its effect on the skeletal forces calculated using

optimization theory was estimated by means of a subject-specific musculoskeletal model of the

lower limbs, performing a Monte Carlo stochastic analysis.

Materials and methods

The study was based on a whole-body CT dataset from a single donor and the motion

data  from  a  body-matched  volunteer.  Five  expert  anatomists  identified  the  necessary  bony

landmarks using the Virtual Palpation procedure (Taddei et al. 2007), providing the necessary

measurements for the estimation of the probability density distribution of the landmark locations.

A musculoskeletal model was taken from an earlier study (Martelli et al. 2011), and reformulated

in a parametrical way to define the articular joints from the necessary landmark locations. A

Monte Carlo stochastic scheme was used to generate an adequate set of joint models from the

estimated  distributions.  A  standard  software  pipeline  (OpenSim  (Delp  et  al.  2007),

www.simtk.org) was used to calculate the body kinematics, the joint moments and the muscle

and joint forces for a selected stride. Results were post-processed to expose the variations of

calculated parameters. 

The CT dataset and the motion data 



The CT dataset was taken from an 81-year-old donor (female, 167 cm height and 63 kg

weight) during an earlier study (Viceconti et al. 2008). The dataset was recorded with a clinical

scanning machine (manufacturer: Siemens Medical Solutions USA, Inc., model: Sensation 64)

using common physical parameters (tube voltage: 120 kVp, tube current: 270 mA). The dataset

included the entire lower limbs, from the entire pelvis down to the entire feet. The pixel size was

0.9765 mm while the spacing was 1 mm. The body motion was recorded from a body-matched

volunteer (female, 25 years old, 165 cm height and 57 kg weight) following the gait analysis

protocol proposed by Leardini et al. (2007), which provided 3D motion (Vicon Motion Capture,

Oxford UK) of the lower limb segments (sampling rate 100Hz) and the ground reaction forces at

both feet (sampling rate 2000Hz). Bilateral motion and ground reaction forces were recorded for

consecutive right and left steps during walking at normal speed. Both the CT dataset and the

motion data are freely available for download at www.physiomespace.com (Testi et al., 2010).

 Estimation of the joint centres and axes

The  joint  centres  and  axes  were  defined  according  to  the  International  Society  of

Biomechanics (ISB) (Wu et al. 2002) using the location of relevant bony landmarks. The bony

locations necessary to identify the hip, the knee, and the ankle model were the hip center (HC),

the lateral epicondyle (LE), the medial epicondyle (ME), the lateral malleolus (LM), and the

medial malleolus (MM). The HC location was estimated by visually identifying the sphere that

best fitted the femoral head surface,  through a multimodal visualization approach allowing a

combined 3D visualization of the CT volume and the skeletal surface (Taddei et al. 2007). The

femoral epicondyles and the tibio-fibular malleoli were located by picking the selected location

on the skeletal surface extracted from the CT images. Five expert anatomists located the full set

of bony locations on both legs using a dedicated software environment (LHPBuilder, SCS, Italy).

Each anatomist repeated all the measurements three times with a time interval of three days.

The parametric musculoskeletal model



The base musculoskeletal model is extensively described in an earlier work (Martelli et

al. 2011). The biomechanical model was defined as a 7-segment, 10 degree-of-freedom (DOFs)

articulated system, actuated by 82 muscle-tendon units. Three ideal joints articulated each leg: a

ball-and-socket (3 DOFs) at the hip and a hinge (1 DOF) at both the knee and the ankle. A well-

established muscular model of the lower extremity (Delp et al. 1990) was manually registered on

the subject-specific anatomy by an expert anatomist. In the earlier study (Martelli et al. 2011),

the model  was validated showing a good agreement  between the calculated  muscle and hip

forces with, respectively, the available EMG recording and published measurements of hip force

(Figure 1). In the present study, the model was re-written in a parametric form using an in-house

routine (Matlab © , The Mathworks Inc., USA) to allow the definition of the joint axes from the

necessary  landmark  locations.  Specifically,  the  knee  axis  was  defined  from  ME  and  LE

locations, assuming the knee axis passing through the two bony locations and the knee centre as

the midpoint between the two (Grood & Suntay 1983). Similarly, the ankle axis was defined

from MM and LM locations, assuming the ankle axis passing through the two bony locations and

the ankle centre as the midpoint between the two (Wu et al. 2002). 

[Figure 1 near here] 

The Probabilistic Design 

The  AP  (antero-posterior)  and  the  CC  (cranio-caudal)  coordinates  of  the  femoral

epicondyles and the tibio-fibular malleoli were defined as normally distributed variables. The

mean  position  and  the  standard  deviation  of  the  femoral  epicondyles  and  the  tibio-fibular

malleoli were assigned the mean position and the variance from the available measurements. The

hip joint centre,  the medio-lateral position of the femoral  epicondyles,  and the medio-lateral

position of  the tibio-  fibular  malleoli  were assigned deterministic  values,  equal  to  the mean

identified locations. A Latin Hypercube Sampling technique (LHS), which is a more efficient

form of a Monte Carlo simulation method, was applied using Matlab © (The Mathworks Inc.,

USA). The algorithm was used to randomly generate an appropriate set of bony locations, known

as the “sampling points” hereinafter, which were distributed in space according to the probability

distribution estimated from the five anatomists’  measurements. The number of the necessary

sampling points was determined by checking convergence of all the input and output variables,

including marker positions, joint angles, joint moments, muscle and joint forces. Convergence

was assumed when the inclusion of an additional sampling point induced changes of the standard

deviation < 2% and of the mean value < 0.2%. 

The calculation of the skeletal kinematics, kinetics, and the muscle and joint forces 



The musculoskeletal model was input with each sampling point, and the gait cycle was

simulated  using  a  standard  pipeline,  including  inverse  kinematics,  inverse  dynamics,  static

optimization and joint reaction analysis (Delp et al. 2007). The static optimization analysis was

conducted to decompose the joint moments into muscle forces by minimizing the sum of the

squared muscle activation. The time histories of all the kinematics, the kinetics, and the muscle

and joint forces were calculated and normalized in terms of percentage of gait cycle. Calculated

forces  were  normalized  in  terms  of  body  weight  (BW)  whilst  calculated  moments  were

normalized in terms of percentage of body weight times subject height (%BW*H). The muscle

forces were grouped according to  their  main function (Table 1)  and compared by swapping

swing and stance phase in the left leg. The variation range of the calculated distributions was

presented  for  the  joint  kinematics,  moments,  and  calculated  forces.  All  the  analyses  were

performed using Matlab © (The Mathworks Inc., USA). 

[Table 1 near here] 

Results 

Estimation of the joint centres and axes 

The  standard  deviation  of  the  hip  centre  coordinates  was  lower  than  0.4  mm.  The

standard deviation for the LM, MM, LE and ME positions along the antero-posterior and cranio-

caudal coordinates was lower than 2.3 mm while along the medio-lateral coordinate was lower

than 0.5 mm. The resulting variation of the knee and ankle axes orientation was less than 2° and

0.4°, respectively (Table 2).

[Table 2 near here]

Convergence analysis

For all the investigated input and output variables, 400 runs were sufficient to reach an

asymptotic  plateau  ensuring  convergence  of  all  the  input  and  output  variables.  Joint  forces

required  the  higher  number  of  sampling  points  to  reach  convergence;  Figure  2  shows  the

convergence pattern for the knee contact force, the variable that reached convergence after all the

400 runs. 

[Figure 2 near here] 

Uncertainties on joint kinematics, joint moments, and joint and muscle forces



The variation of all the kinematics and kinetics variables showed similar patterns for both

legs. Throughout stride, all the joint angles never exceeded 5.4 degrees variation with the only

exception  for  the  hip  rotation  angle,  which  reached  11  degrees  variation  during  mid-swing

(Figure 3). The variation of the hip moments never exceeded 0.5 %BWxH for the adduction, the

flexion  and the  rotation  axis,  with  peak  variations  predicted  during  the  stance-to-swing and

swing-to-stance  transition phases.  The variation  of  the knee moment was up to  1 %BWxH,

calculated during late stance, whilst the variation of the ankle moment was up to 0.72 %BWxH

calculated, again, during late stance (Figure 4). 

[Figure 3 and 4 near here] 

Patterns for the principal muscle groups and the joint forces were consistent for legs,

either in terms of magnitude and timing (Figure 5), showing the tendency for moderately higher

variations during early and late stance, synchronously with peak variations of the joint moments

(Figure 6). The highest variation of muscle forces was 0.33 BW, calculated during early stance

for the ankle plantarflexors. The peaks of the force variations at the joints were 0.26 BW at the

hip, 0.16 BW at the knee, and 0.33 BW at the ankle. 

[Figure 5 and 6 near here] 

Variation of the joint forces never exceeded the 9% of the peak force calculated for the

same joint while variation of the muscle group forces reached for the hip flexors the 114% of the

hip flexors’s peak force.  



Discussion 

Modelling  the  patient  musculoskeletal  system  has  become  important  in  the  clinical

decision-making process (Jonkers et al. 2008), stimulating the emergence of methodologies to

identify the model parameters from the available clinical information. However, the effect on the

calculated variables of the unavoidable errors committed during the model identification process

is not fully elucidated. The aim of the study was to estimate the variability of the calculated

muscle and joint forces due to the inter-examiner uncertainty in locating the necessary bony

locations. 

Variations in the bony landmark locations induced generally small variations of all the

investigated variables, not substantially altering the calculated patterns. Indeed, the calculated

variations of the joint angles were in average 2.3 degrees, and never exceeded the 11 degrees

calculated for the hip rotation angle. Variations of the joint moments never exceeded the 11 % of

the peak moment. Grouping muscle and joint forces together, variations never exceeded the 0.33

BW, a value that represents the 8-10% of the peak joint forces, which ranged from 3.44 BW at

the hip to 4.04 BW at the ankle. This uncertainty level is consistent with applications for human

motion  modelling  and  simulations  such  as  investigations  into  bone  stresses  and  the  related

clinical implications (Jonkers et al. 2008). However, the sensitivity of forces calculated for each

single  muscle  group  was  much  higher  with  force  variations  reaching  the  same  order  of

magnitude of the median calculated force. Therefore, conclusions taken on calculations of the

muscle force magnitude should be considered cautiously. 

The presented results compare well with published reports of intermediate findings. An

earlier study (Taddei et al. 2007) reported an up to 2.3 mm inter- examiner variability in the

location of the necessary bony landmarks, in good agreement with present findings. The joint

kinematics showed an up to 11 degree variation, in good agreement with the 8 degree inter-

examiner uncertainty reported by Della Croce et al. (1999). In their study, however, the authors

used different optimization algorithms to calculate the instantaneous pose of each body segment

from that used in this study. The much higher variation of muscle forces (up to 114%) than that

of joint forces (9%) over their median value compares well with earlier studies (Brand et al.

1986; Herzog 1992). Brand et al. (1986) showed two to eight time variations in muscle forces

and an up to 11% variation of the hip force by using different sets of the muscle physiological

cross section area from different subjects. Herzog (1992) showed up to 100% variations of the

calculated  muscle  forces  resulting  from  perturbations  of  the  muscle  parameters  within

physiological boundaries. 



This  study  has  some  limitations  that  may  have  affected  the  presented  results.  First,

assuming the hip centre and the medio-lateral components of both the femoral epicondyles and

the tibio-fibular malleoli as deterministic variables, might have led to smaller variations of all the

calculated variables. This, however, allowed a drastic reduction of the number of simulations

necessary to reach convergence. Moreover, the uncertainty on the estimation of the hip center is

very small and the medio-lateral component of the femoral epicondyles and tibial malleoli has

little effect on the knee and ankle axis orientations (Table 2), suggesting that these parameters

are of secondary importance. Second, a specific image-based clinical procedure for identifying a

specific musculoskeletal model comprising a fixed hinge at the knee and the ankle (Taddei et al.,

2012) was studied. Different identification procedures and models (Delp et al., 1990) may be

differently sensitive to the uncertainties on the joint parameters. Third, the results have been

generated using one anatomical dataset. It is possible that the inclusion of additional subjects

may lead to larger variations of all the investigated variables. 

Despite the aforementioned limitations, the present findings provide the first quantitative

comprehensive  evaluation  of  the  sensitivity  of  all  the  calculated  lower-limb  kinematics  and

kinetics variables to the inter-examiner uncertainty in defining the joint axes. By providing a

better understanding of the reliability of the computed solution, these results could be helpful for

those  interested  in  human  movement  modelling  and  simulation,  and  contribute  to  a  better

informed decision- making process in clinical contexts. 

In  summary,  the  identification  of  the  lower-limb  joint  axes  through  the  location  of

prominent bony locations from CT images is a robust procedure to generate musculoskeletal

models. Indeed, the sensitivity of the kinematics, the joint moments, and the joint forces to the

joint  axes  uncertainty  is  moderate.  However,  conclusions  based on calculated muscle  forces

should be interpreted with caution due to their higher sensitivity to joint axes uncertainties. 
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Table 2. Femoral epicondyles (LE, ME) and the tibial malleoli (LM, MM) position

uncertainties and the consequent knee and ankle axis orientation uncertainties (STD

(min:max)).

Epicondyles

position*

(mm)

Knee axis

orientation

(deg)

Malleoli

position*

(mm) 

Ankle axis

orientation

(deg)

medio-lateral 

(ML)

0.2 (-0.8:0.5) 0.2 (-0.5:0.4) 0.5 (-0.9:0.8) 0.4 (-0.8:0.7)

antero-posterior 

(AP)

2.0 (-4.8:6.4) 1.4 (-3.4:4.5) 2.3 (-4.6:3.5) 2.0 (-4.0:3.0)

cranio-caudal 

(CC)

1.4 (-4.2:3.4) 1.0 (-3.0:2.4) 1.4 (-1.7:3.0) 1.2 (-1.5:2.6)



* Epicondyle and malleoli positions are reported as standard-deviation (min:max) of the distances between the digitized positions

and their respective averages. The standard deviation, the min and the max of the knee and ankle axes orientation are calculated

using the epicondyles and malleoli standard-deviation, min and max along the ML, AP and CC coordinates and the average LE-

ME and LM-MM distances for the knee and the ankle respectively.



Figure captions

Fig. 1. The comparison of calculated hip and muscle forces with publishedmeasurements

and the available electromyography is taken from an earlier study(right) (Martelli et al. 2011).

On the left,  skeletal  and skin geometriessuperimposed to the CT volume,  a highlight  of  the

identified lateral epicondyle(LE), and the OpenSim model during an intermediate frame of gait.

Fig. 2. Convergence curve for the joint reaction force at the knee (BW).Mean and SD are

below the defined convergence thresholds 0.2% and 2%.

Fig. 3. The variation bands (top) and the range of variation (bottom) forthe joint angles. The

stance and the swing phase are represents as well as the heelstrike (HS) and toe off (TO) instants.

The discontinuity visible on the left jointangle patterns is due to the swap of the left stance and

swing phase forcomparison purposes.

Fig. 4. The variation bands (top) and the range of variation (bottom) forthe joint moments.

Calculated values are normalised as a percentage of the bodyweight (BW) times the subject high

(H). The discontinuity visible on the left jointangle patterns is due to the swap of the left stance

and swing phase forcomparison purposes. Stride phases are indicated as in Figure 3.

Fig. 5. The variation bands (top) and the range of variation (bottom) forthe muscle forces.

The calculated values are normalised as a percentage of thebody weight (BW). Stride phases are

indicated as in Figure 3.

Fig. 6. The variation bands (top) and the range of variation (bottom) forthe hip (A), the

knee (B) and the ankle force (C). The calculated values arenormalised as a percentage of the

body weight (BW). Stride phases are indicated as in Figure 3.
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